mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-25 15:15:33 +08:00
794d5b8a49
The code is unreachable for HVM or PVH, and it also makes little sense in auto-translated environments. On Arm, with xen_{create,destroy}_contiguous_region() both being stubs, I have a hard time seeing what good the Xen specific variant does - the generic one ought to be fine for all purposes there. Still Arm code explicitly references symbols here, so the code will continue to be included there. Instead of making PCI_XEN's "select" conditional, simply drop it - SWIOTLB_XEN will be available unconditionally in the PV case anyway, and is - as explained above - dead code in non-PV environments. This in turn allows dropping the stubs for xen_{create,destroy}_contiguous_region(), the former of which was broken anyway - it failed to set the DMA handle output. Signed-off-by: Jan Beulich <jbeulich@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Stefano Stabellini <sstabellini@kernel.org> Link: https://lore.kernel.org/r/5947b8ae-fdc7-225c-4838-84712265fc1e@suse.com Signed-off-by: Juergen Gross <jgross@suse.com>
309 lines
10 KiB
Plaintext
309 lines
10 KiB
Plaintext
# SPDX-License-Identifier: GPL-2.0-only
|
|
menu "Xen driver support"
|
|
depends on XEN
|
|
|
|
config XEN_BALLOON
|
|
bool "Xen memory balloon driver"
|
|
default y
|
|
help
|
|
The balloon driver allows the Xen domain to request more memory from
|
|
the system to expand the domain's memory allocation, or alternatively
|
|
return unneeded memory to the system.
|
|
|
|
config XEN_BALLOON_MEMORY_HOTPLUG
|
|
bool "Memory hotplug support for Xen balloon driver"
|
|
depends on XEN_BALLOON && MEMORY_HOTPLUG
|
|
default y
|
|
help
|
|
Memory hotplug support for Xen balloon driver allows expanding memory
|
|
available for the system above limit declared at system startup.
|
|
It is very useful on critical systems which require long
|
|
run without rebooting.
|
|
|
|
It's also very useful for non PV domains to obtain unpopulated physical
|
|
memory ranges to use in order to map foreign memory or grants.
|
|
|
|
Memory could be hotplugged in following steps:
|
|
|
|
1) target domain: ensure that memory auto online policy is in
|
|
effect by checking /sys/devices/system/memory/auto_online_blocks
|
|
file (should be 'online').
|
|
|
|
2) control domain: xl mem-max <target-domain> <maxmem>
|
|
where <maxmem> is >= requested memory size,
|
|
|
|
3) control domain: xl mem-set <target-domain> <memory>
|
|
where <memory> is requested memory size; alternatively memory
|
|
could be added by writing proper value to
|
|
/sys/devices/system/xen_memory/xen_memory0/target or
|
|
/sys/devices/system/xen_memory/xen_memory0/target_kb on the
|
|
target domain.
|
|
|
|
Alternatively, if memory auto onlining was not requested at step 1
|
|
the newly added memory can be manually onlined in the target domain
|
|
by doing the following:
|
|
|
|
for i in /sys/devices/system/memory/memory*/state; do \
|
|
[ "`cat "$i"`" = offline ] && echo online > "$i"; done
|
|
|
|
or by adding the following line to udev rules:
|
|
|
|
SUBSYSTEM=="memory", ACTION=="add", RUN+="/bin/sh -c '[ -f /sys$devpath/state ] && echo online > /sys$devpath/state'"
|
|
|
|
config XEN_MEMORY_HOTPLUG_LIMIT
|
|
int "Hotplugged memory limit (in GiB) for a PV guest"
|
|
default 512
|
|
depends on XEN_HAVE_PVMMU
|
|
depends on MEMORY_HOTPLUG
|
|
help
|
|
Maxmium amount of memory (in GiB) that a PV guest can be
|
|
expanded to when using memory hotplug.
|
|
|
|
A PV guest can have more memory than this limit if is
|
|
started with a larger maximum.
|
|
|
|
This value is used to allocate enough space in internal
|
|
tables needed for physical memory administration.
|
|
|
|
config XEN_SCRUB_PAGES_DEFAULT
|
|
bool "Scrub pages before returning them to system by default"
|
|
depends on XEN_BALLOON
|
|
default y
|
|
help
|
|
Scrub pages before returning them to the system for reuse by
|
|
other domains. This makes sure that any confidential data
|
|
is not accidentally visible to other domains. It is more
|
|
secure, but slightly less efficient. This can be controlled with
|
|
xen_scrub_pages=0 parameter and
|
|
/sys/devices/system/xen_memory/xen_memory0/scrub_pages.
|
|
This option only sets the default value.
|
|
|
|
If in doubt, say yes.
|
|
|
|
config XEN_DEV_EVTCHN
|
|
tristate "Xen /dev/xen/evtchn device"
|
|
default y
|
|
help
|
|
The evtchn driver allows a userspace process to trigger event
|
|
channels and to receive notification of an event channel
|
|
firing.
|
|
If in doubt, say yes.
|
|
|
|
config XEN_BACKEND
|
|
bool "Backend driver support"
|
|
default XEN_DOM0
|
|
help
|
|
Support for backend device drivers that provide I/O services
|
|
to other virtual machines.
|
|
|
|
config XENFS
|
|
tristate "Xen filesystem"
|
|
select XEN_PRIVCMD
|
|
default y
|
|
help
|
|
The xen filesystem provides a way for domains to share
|
|
information with each other and with the hypervisor.
|
|
For example, by reading and writing the "xenbus" file, guests
|
|
may pass arbitrary information to the initial domain.
|
|
If in doubt, say yes.
|
|
|
|
config XEN_COMPAT_XENFS
|
|
bool "Create compatibility mount point /proc/xen"
|
|
depends on XENFS
|
|
default y
|
|
help
|
|
The old xenstore userspace tools expect to find "xenbus"
|
|
under /proc/xen, but "xenbus" is now found at the root of the
|
|
xenfs filesystem. Selecting this causes the kernel to create
|
|
the compatibility mount point /proc/xen if it is running on
|
|
a xen platform.
|
|
If in doubt, say yes.
|
|
|
|
config XEN_SYS_HYPERVISOR
|
|
bool "Create xen entries under /sys/hypervisor"
|
|
depends on SYSFS
|
|
select SYS_HYPERVISOR
|
|
default y
|
|
help
|
|
Create entries under /sys/hypervisor describing the Xen
|
|
hypervisor environment. When running native or in another
|
|
virtual environment, /sys/hypervisor will still be present,
|
|
but will have no xen contents.
|
|
|
|
config XEN_XENBUS_FRONTEND
|
|
tristate
|
|
|
|
config XEN_GNTDEV
|
|
tristate "userspace grant access device driver"
|
|
depends on XEN
|
|
default m
|
|
select MMU_NOTIFIER
|
|
help
|
|
Allows userspace processes to use grants.
|
|
|
|
config XEN_GNTDEV_DMABUF
|
|
bool "Add support for dma-buf grant access device driver extension"
|
|
depends on XEN_GNTDEV && XEN_GRANT_DMA_ALLOC
|
|
select DMA_SHARED_BUFFER
|
|
help
|
|
Allows userspace processes and kernel modules to use Xen backed
|
|
dma-buf implementation. With this extension grant references to
|
|
the pages of an imported dma-buf can be exported for other domain
|
|
use and grant references coming from a foreign domain can be
|
|
converted into a local dma-buf for local export.
|
|
|
|
config XEN_GRANT_DEV_ALLOC
|
|
tristate "User-space grant reference allocator driver"
|
|
depends on XEN
|
|
default m
|
|
help
|
|
Allows userspace processes to create pages with access granted
|
|
to other domains. This can be used to implement frontend drivers
|
|
or as part of an inter-domain shared memory channel.
|
|
|
|
config XEN_GRANT_DMA_ALLOC
|
|
bool "Allow allocating DMA capable buffers with grant reference module"
|
|
depends on XEN && HAS_DMA
|
|
help
|
|
Extends grant table module API to allow allocating DMA capable
|
|
buffers and mapping foreign grant references on top of it.
|
|
The resulting buffer is similar to one allocated by the balloon
|
|
driver in that proper memory reservation is made by
|
|
({increase|decrease}_reservation and VA mappings are updated if
|
|
needed).
|
|
This is useful for sharing foreign buffers with HW drivers which
|
|
cannot work with scattered buffers provided by the balloon driver,
|
|
but require DMAable memory instead.
|
|
|
|
config SWIOTLB_XEN
|
|
def_bool y
|
|
depends on XEN_PV || ARM || ARM64
|
|
select DMA_OPS
|
|
select SWIOTLB
|
|
|
|
config XEN_PCIDEV_BACKEND
|
|
tristate "Xen PCI-device backend driver"
|
|
depends on PCI && X86 && XEN
|
|
depends on XEN_BACKEND
|
|
default m
|
|
help
|
|
The PCI device backend driver allows the kernel to export arbitrary
|
|
PCI devices to other guests. If you select this to be a module, you
|
|
will need to make sure no other driver has bound to the device(s)
|
|
you want to make visible to other guests.
|
|
|
|
The parameter "passthrough" allows you specify how you want the PCI
|
|
devices to appear in the guest. You can choose the default (0) where
|
|
PCI topology starts at 00.00.0, or (1) for passthrough if you want
|
|
the PCI devices topology appear the same as in the host.
|
|
|
|
The "hide" parameter (only applicable if backend driver is compiled
|
|
into the kernel) allows you to bind the PCI devices to this module
|
|
from the default device drivers. The argument is the list of PCI BDFs:
|
|
xen-pciback.hide=(03:00.0)(04:00.0)
|
|
|
|
If in doubt, say m.
|
|
|
|
config XEN_PVCALLS_FRONTEND
|
|
tristate "XEN PV Calls frontend driver"
|
|
depends on INET && XEN
|
|
select XEN_XENBUS_FRONTEND
|
|
help
|
|
Experimental frontend for the Xen PV Calls protocol
|
|
(https://xenbits.xen.org/docs/unstable/misc/pvcalls.html). It
|
|
sends a small set of POSIX calls to the backend, which
|
|
implements them.
|
|
|
|
config XEN_PVCALLS_BACKEND
|
|
tristate "XEN PV Calls backend driver"
|
|
depends on INET && XEN && XEN_BACKEND
|
|
help
|
|
Experimental backend for the Xen PV Calls protocol
|
|
(https://xenbits.xen.org/docs/unstable/misc/pvcalls.html). It
|
|
allows PV Calls frontends to send POSIX calls to the backend,
|
|
which implements them.
|
|
|
|
If in doubt, say n.
|
|
|
|
config XEN_SCSI_BACKEND
|
|
tristate "XEN SCSI backend driver"
|
|
depends on XEN && XEN_BACKEND && TARGET_CORE
|
|
help
|
|
The SCSI backend driver allows the kernel to export its SCSI Devices
|
|
to other guests via a high-performance shared-memory interface.
|
|
Only needed for systems running as XEN driver domains (e.g. Dom0) and
|
|
if guests need generic access to SCSI devices.
|
|
|
|
config XEN_PRIVCMD
|
|
tristate
|
|
depends on XEN
|
|
default m
|
|
|
|
config XEN_ACPI_PROCESSOR
|
|
tristate "Xen ACPI processor"
|
|
depends on XEN && XEN_DOM0 && X86 && ACPI_PROCESSOR && CPU_FREQ
|
|
default m
|
|
help
|
|
This ACPI processor uploads Power Management information to the Xen
|
|
hypervisor.
|
|
|
|
To do that the driver parses the Power Management data and uploads
|
|
said information to the Xen hypervisor. Then the Xen hypervisor can
|
|
select the proper Cx and Pxx states. It also registers itself as the
|
|
SMM so that other drivers (such as ACPI cpufreq scaling driver) will
|
|
not load.
|
|
|
|
To compile this driver as a module, choose M here: the module will be
|
|
called xen_acpi_processor If you do not know what to choose, select
|
|
M here. If the CPUFREQ drivers are built in, select Y here.
|
|
|
|
config XEN_MCE_LOG
|
|
bool "Xen platform mcelog"
|
|
depends on XEN_DOM0 && X86_MCE
|
|
help
|
|
Allow kernel fetching MCE error from Xen platform and
|
|
converting it into Linux mcelog format for mcelog tools
|
|
|
|
config XEN_HAVE_PVMMU
|
|
bool
|
|
|
|
config XEN_EFI
|
|
def_bool y
|
|
depends on (ARM || ARM64 || X86_64) && EFI
|
|
|
|
config XEN_AUTO_XLATE
|
|
def_bool y
|
|
depends on ARM || ARM64 || XEN_PVHVM
|
|
help
|
|
Support for auto-translated physmap guests.
|
|
|
|
config XEN_ACPI
|
|
def_bool y
|
|
depends on X86 && ACPI
|
|
|
|
config XEN_SYMS
|
|
bool "Xen symbols"
|
|
depends on X86 && XEN_DOM0 && XENFS
|
|
default y if KALLSYMS
|
|
help
|
|
Exports hypervisor symbols (along with their types and addresses) via
|
|
/proc/xen/xensyms file, similar to /proc/kallsyms
|
|
|
|
config XEN_HAVE_VPMU
|
|
bool
|
|
|
|
config XEN_FRONT_PGDIR_SHBUF
|
|
tristate
|
|
|
|
config XEN_UNPOPULATED_ALLOC
|
|
bool "Use unpopulated memory ranges for guest mappings"
|
|
depends on X86 && ZONE_DEVICE
|
|
default XEN_BACKEND || XEN_GNTDEV || XEN_DOM0
|
|
help
|
|
Use unpopulated memory ranges in order to create mappings for guest
|
|
memory regions, including grant maps and foreign pages. This avoids
|
|
having to balloon out RAM regions in order to obtain physical memory
|
|
space to create such mappings.
|
|
|
|
endmenu
|