mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-21 12:04:03 +08:00
efed9a3337
__blk_mq_sched_bio_merge() gets the ctx and hctx for the current CPU and
passes the hctx to ->bio_merge(). kyber_bio_merge() then gets the ctx
for the current CPU again and uses that to get the corresponding Kyber
context in the passed hctx. However, the thread may be preempted between
the two calls to blk_mq_get_ctx(), and the ctx returned the second time
may no longer correspond to the passed hctx. This "works" accidentally
most of the time, but it can cause us to read garbage if the second ctx
came from an hctx with more ctx's than the first one (i.e., if
ctx->index_hw[hctx->type] > hctx->nr_ctx).
This manifested as this UBSAN array index out of bounds error reported
by Jakub:
UBSAN: array-index-out-of-bounds in ../kernel/locking/qspinlock.c:130:9
index 13106 is out of range for type 'long unsigned int [128]'
Call Trace:
dump_stack+0xa4/0xe5
ubsan_epilogue+0x5/0x40
__ubsan_handle_out_of_bounds.cold.13+0x2a/0x34
queued_spin_lock_slowpath+0x476/0x480
do_raw_spin_lock+0x1c2/0x1d0
kyber_bio_merge+0x112/0x180
blk_mq_submit_bio+0x1f5/0x1100
submit_bio_noacct+0x7b0/0x870
submit_bio+0xc2/0x3a0
btrfs_map_bio+0x4f0/0x9d0
btrfs_submit_data_bio+0x24e/0x310
submit_one_bio+0x7f/0xb0
submit_extent_page+0xc4/0x440
__extent_writepage_io+0x2b8/0x5e0
__extent_writepage+0x28d/0x6e0
extent_write_cache_pages+0x4d7/0x7a0
extent_writepages+0xa2/0x110
do_writepages+0x8f/0x180
__writeback_single_inode+0x99/0x7f0
writeback_sb_inodes+0x34e/0x790
__writeback_inodes_wb+0x9e/0x120
wb_writeback+0x4d2/0x660
wb_workfn+0x64d/0xa10
process_one_work+0x53a/0xa80
worker_thread+0x69/0x5b0
kthread+0x20b/0x240
ret_from_fork+0x1f/0x30
Only Kyber uses the hctx, so fix it by passing the request_queue to
->bio_merge() instead. BFQ and mq-deadline just use that, and Kyber can
map the queues itself to avoid the mismatch.
Fixes: a6088845c2
("block: kyber: make kyber more friendly with merging")
Reported-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Link: https://lore.kernel.org/r/c7598605401a48d5cfeadebb678abd10af22b83f.1620691329.git.osandov@fb.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
648 lines
17 KiB
C
648 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* blk-mq scheduling framework
|
|
*
|
|
* Copyright (C) 2016 Jens Axboe
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/list_sort.h>
|
|
|
|
#include <trace/events/block.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-mq.h"
|
|
#include "blk-mq-debugfs.h"
|
|
#include "blk-mq-sched.h"
|
|
#include "blk-mq-tag.h"
|
|
#include "blk-wbt.h"
|
|
|
|
void blk_mq_sched_assign_ioc(struct request *rq)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct io_context *ioc;
|
|
struct io_cq *icq;
|
|
|
|
/*
|
|
* May not have an IO context if it's a passthrough request
|
|
*/
|
|
ioc = current->io_context;
|
|
if (!ioc)
|
|
return;
|
|
|
|
spin_lock_irq(&q->queue_lock);
|
|
icq = ioc_lookup_icq(ioc, q);
|
|
spin_unlock_irq(&q->queue_lock);
|
|
|
|
if (!icq) {
|
|
icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
|
|
if (!icq)
|
|
return;
|
|
}
|
|
get_io_context(icq->ioc);
|
|
rq->elv.icq = icq;
|
|
}
|
|
|
|
/*
|
|
* Mark a hardware queue as needing a restart. For shared queues, maintain
|
|
* a count of how many hardware queues are marked for restart.
|
|
*/
|
|
void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
|
|
return;
|
|
|
|
set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
|
|
|
|
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
|
|
return;
|
|
clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
|
|
|
|
/*
|
|
* Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
|
|
* in blk_mq_run_hw_queue(). Its pair is the barrier in
|
|
* blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
|
|
* meantime new request added to hctx->dispatch is missed to check in
|
|
* blk_mq_run_hw_queue().
|
|
*/
|
|
smp_mb();
|
|
|
|
blk_mq_run_hw_queue(hctx, true);
|
|
}
|
|
|
|
static int sched_rq_cmp(void *priv, const struct list_head *a,
|
|
const struct list_head *b)
|
|
{
|
|
struct request *rqa = container_of(a, struct request, queuelist);
|
|
struct request *rqb = container_of(b, struct request, queuelist);
|
|
|
|
return rqa->mq_hctx > rqb->mq_hctx;
|
|
}
|
|
|
|
static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx =
|
|
list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
|
|
struct request *rq;
|
|
LIST_HEAD(hctx_list);
|
|
unsigned int count = 0;
|
|
|
|
list_for_each_entry(rq, rq_list, queuelist) {
|
|
if (rq->mq_hctx != hctx) {
|
|
list_cut_before(&hctx_list, rq_list, &rq->queuelist);
|
|
goto dispatch;
|
|
}
|
|
count++;
|
|
}
|
|
list_splice_tail_init(rq_list, &hctx_list);
|
|
|
|
dispatch:
|
|
return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
|
|
}
|
|
|
|
#define BLK_MQ_BUDGET_DELAY 3 /* ms units */
|
|
|
|
/*
|
|
* Only SCSI implements .get_budget and .put_budget, and SCSI restarts
|
|
* its queue by itself in its completion handler, so we don't need to
|
|
* restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
|
|
*
|
|
* Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
|
|
* be run again. This is necessary to avoid starving flushes.
|
|
*/
|
|
static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
struct elevator_queue *e = q->elevator;
|
|
bool multi_hctxs = false, run_queue = false;
|
|
bool dispatched = false, busy = false;
|
|
unsigned int max_dispatch;
|
|
LIST_HEAD(rq_list);
|
|
int count = 0;
|
|
|
|
if (hctx->dispatch_busy)
|
|
max_dispatch = 1;
|
|
else
|
|
max_dispatch = hctx->queue->nr_requests;
|
|
|
|
do {
|
|
struct request *rq;
|
|
int budget_token;
|
|
|
|
if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
|
|
break;
|
|
|
|
if (!list_empty_careful(&hctx->dispatch)) {
|
|
busy = true;
|
|
break;
|
|
}
|
|
|
|
budget_token = blk_mq_get_dispatch_budget(q);
|
|
if (budget_token < 0)
|
|
break;
|
|
|
|
rq = e->type->ops.dispatch_request(hctx);
|
|
if (!rq) {
|
|
blk_mq_put_dispatch_budget(q, budget_token);
|
|
/*
|
|
* We're releasing without dispatching. Holding the
|
|
* budget could have blocked any "hctx"s with the
|
|
* same queue and if we didn't dispatch then there's
|
|
* no guarantee anyone will kick the queue. Kick it
|
|
* ourselves.
|
|
*/
|
|
run_queue = true;
|
|
break;
|
|
}
|
|
|
|
blk_mq_set_rq_budget_token(rq, budget_token);
|
|
|
|
/*
|
|
* Now this rq owns the budget which has to be released
|
|
* if this rq won't be queued to driver via .queue_rq()
|
|
* in blk_mq_dispatch_rq_list().
|
|
*/
|
|
list_add_tail(&rq->queuelist, &rq_list);
|
|
if (rq->mq_hctx != hctx)
|
|
multi_hctxs = true;
|
|
} while (++count < max_dispatch);
|
|
|
|
if (!count) {
|
|
if (run_queue)
|
|
blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
|
|
} else if (multi_hctxs) {
|
|
/*
|
|
* Requests from different hctx may be dequeued from some
|
|
* schedulers, such as bfq and deadline.
|
|
*
|
|
* Sort the requests in the list according to their hctx,
|
|
* dispatch batching requests from same hctx at a time.
|
|
*/
|
|
list_sort(NULL, &rq_list, sched_rq_cmp);
|
|
do {
|
|
dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
|
|
} while (!list_empty(&rq_list));
|
|
} else {
|
|
dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
|
|
}
|
|
|
|
if (busy)
|
|
return -EAGAIN;
|
|
return !!dispatched;
|
|
}
|
|
|
|
static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
int ret;
|
|
|
|
do {
|
|
ret = __blk_mq_do_dispatch_sched(hctx);
|
|
} while (ret == 1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
|
|
struct blk_mq_ctx *ctx)
|
|
{
|
|
unsigned short idx = ctx->index_hw[hctx->type];
|
|
|
|
if (++idx == hctx->nr_ctx)
|
|
idx = 0;
|
|
|
|
return hctx->ctxs[idx];
|
|
}
|
|
|
|
/*
|
|
* Only SCSI implements .get_budget and .put_budget, and SCSI restarts
|
|
* its queue by itself in its completion handler, so we don't need to
|
|
* restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
|
|
*
|
|
* Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
|
|
* be run again. This is necessary to avoid starving flushes.
|
|
*/
|
|
static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
LIST_HEAD(rq_list);
|
|
struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
|
|
int ret = 0;
|
|
struct request *rq;
|
|
|
|
do {
|
|
int budget_token;
|
|
|
|
if (!list_empty_careful(&hctx->dispatch)) {
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
if (!sbitmap_any_bit_set(&hctx->ctx_map))
|
|
break;
|
|
|
|
budget_token = blk_mq_get_dispatch_budget(q);
|
|
if (budget_token < 0)
|
|
break;
|
|
|
|
rq = blk_mq_dequeue_from_ctx(hctx, ctx);
|
|
if (!rq) {
|
|
blk_mq_put_dispatch_budget(q, budget_token);
|
|
/*
|
|
* We're releasing without dispatching. Holding the
|
|
* budget could have blocked any "hctx"s with the
|
|
* same queue and if we didn't dispatch then there's
|
|
* no guarantee anyone will kick the queue. Kick it
|
|
* ourselves.
|
|
*/
|
|
blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
|
|
break;
|
|
}
|
|
|
|
blk_mq_set_rq_budget_token(rq, budget_token);
|
|
|
|
/*
|
|
* Now this rq owns the budget which has to be released
|
|
* if this rq won't be queued to driver via .queue_rq()
|
|
* in blk_mq_dispatch_rq_list().
|
|
*/
|
|
list_add(&rq->queuelist, &rq_list);
|
|
|
|
/* round robin for fair dispatch */
|
|
ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
|
|
|
|
} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
|
|
|
|
WRITE_ONCE(hctx->dispatch_from, ctx);
|
|
return ret;
|
|
}
|
|
|
|
static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
struct elevator_queue *e = q->elevator;
|
|
const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
|
|
int ret = 0;
|
|
LIST_HEAD(rq_list);
|
|
|
|
/*
|
|
* If we have previous entries on our dispatch list, grab them first for
|
|
* more fair dispatch.
|
|
*/
|
|
if (!list_empty_careful(&hctx->dispatch)) {
|
|
spin_lock(&hctx->lock);
|
|
if (!list_empty(&hctx->dispatch))
|
|
list_splice_init(&hctx->dispatch, &rq_list);
|
|
spin_unlock(&hctx->lock);
|
|
}
|
|
|
|
/*
|
|
* Only ask the scheduler for requests, if we didn't have residual
|
|
* requests from the dispatch list. This is to avoid the case where
|
|
* we only ever dispatch a fraction of the requests available because
|
|
* of low device queue depth. Once we pull requests out of the IO
|
|
* scheduler, we can no longer merge or sort them. So it's best to
|
|
* leave them there for as long as we can. Mark the hw queue as
|
|
* needing a restart in that case.
|
|
*
|
|
* We want to dispatch from the scheduler if there was nothing
|
|
* on the dispatch list or we were able to dispatch from the
|
|
* dispatch list.
|
|
*/
|
|
if (!list_empty(&rq_list)) {
|
|
blk_mq_sched_mark_restart_hctx(hctx);
|
|
if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
|
|
if (has_sched_dispatch)
|
|
ret = blk_mq_do_dispatch_sched(hctx);
|
|
else
|
|
ret = blk_mq_do_dispatch_ctx(hctx);
|
|
}
|
|
} else if (has_sched_dispatch) {
|
|
ret = blk_mq_do_dispatch_sched(hctx);
|
|
} else if (hctx->dispatch_busy) {
|
|
/* dequeue request one by one from sw queue if queue is busy */
|
|
ret = blk_mq_do_dispatch_ctx(hctx);
|
|
} else {
|
|
blk_mq_flush_busy_ctxs(hctx, &rq_list);
|
|
blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
|
|
/* RCU or SRCU read lock is needed before checking quiesced flag */
|
|
if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
|
|
return;
|
|
|
|
hctx->run++;
|
|
|
|
/*
|
|
* A return of -EAGAIN is an indication that hctx->dispatch is not
|
|
* empty and we must run again in order to avoid starving flushes.
|
|
*/
|
|
if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
|
|
if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
|
|
blk_mq_run_hw_queue(hctx, true);
|
|
}
|
|
}
|
|
|
|
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
|
|
unsigned int nr_segs)
|
|
{
|
|
struct elevator_queue *e = q->elevator;
|
|
struct blk_mq_ctx *ctx;
|
|
struct blk_mq_hw_ctx *hctx;
|
|
bool ret = false;
|
|
enum hctx_type type;
|
|
|
|
if (e && e->type->ops.bio_merge)
|
|
return e->type->ops.bio_merge(q, bio, nr_segs);
|
|
|
|
ctx = blk_mq_get_ctx(q);
|
|
hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
|
|
type = hctx->type;
|
|
if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
|
|
list_empty_careful(&ctx->rq_lists[type]))
|
|
return false;
|
|
|
|
/* default per sw-queue merge */
|
|
spin_lock(&ctx->lock);
|
|
/*
|
|
* Reverse check our software queue for entries that we could
|
|
* potentially merge with. Currently includes a hand-wavy stop
|
|
* count of 8, to not spend too much time checking for merges.
|
|
*/
|
|
if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
|
|
ctx->rq_merged++;
|
|
ret = true;
|
|
}
|
|
|
|
spin_unlock(&ctx->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
|
|
{
|
|
return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
|
|
|
|
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
|
|
struct request *rq)
|
|
{
|
|
/*
|
|
* dispatch flush and passthrough rq directly
|
|
*
|
|
* passthrough request has to be added to hctx->dispatch directly.
|
|
* For some reason, device may be in one situation which can't
|
|
* handle FS request, so STS_RESOURCE is always returned and the
|
|
* FS request will be added to hctx->dispatch. However passthrough
|
|
* request may be required at that time for fixing the problem. If
|
|
* passthrough request is added to scheduler queue, there isn't any
|
|
* chance to dispatch it given we prioritize requests in hctx->dispatch.
|
|
*/
|
|
if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
|
|
bool run_queue, bool async)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct elevator_queue *e = q->elevator;
|
|
struct blk_mq_ctx *ctx = rq->mq_ctx;
|
|
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
|
|
|
|
WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
|
|
|
|
if (blk_mq_sched_bypass_insert(hctx, rq)) {
|
|
/*
|
|
* Firstly normal IO request is inserted to scheduler queue or
|
|
* sw queue, meantime we add flush request to dispatch queue(
|
|
* hctx->dispatch) directly and there is at most one in-flight
|
|
* flush request for each hw queue, so it doesn't matter to add
|
|
* flush request to tail or front of the dispatch queue.
|
|
*
|
|
* Secondly in case of NCQ, flush request belongs to non-NCQ
|
|
* command, and queueing it will fail when there is any
|
|
* in-flight normal IO request(NCQ command). When adding flush
|
|
* rq to the front of hctx->dispatch, it is easier to introduce
|
|
* extra time to flush rq's latency because of S_SCHED_RESTART
|
|
* compared with adding to the tail of dispatch queue, then
|
|
* chance of flush merge is increased, and less flush requests
|
|
* will be issued to controller. It is observed that ~10% time
|
|
* is saved in blktests block/004 on disk attached to AHCI/NCQ
|
|
* drive when adding flush rq to the front of hctx->dispatch.
|
|
*
|
|
* Simply queue flush rq to the front of hctx->dispatch so that
|
|
* intensive flush workloads can benefit in case of NCQ HW.
|
|
*/
|
|
at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
|
|
blk_mq_request_bypass_insert(rq, at_head, false);
|
|
goto run;
|
|
}
|
|
|
|
if (e && e->type->ops.insert_requests) {
|
|
LIST_HEAD(list);
|
|
|
|
list_add(&rq->queuelist, &list);
|
|
e->type->ops.insert_requests(hctx, &list, at_head);
|
|
} else {
|
|
spin_lock(&ctx->lock);
|
|
__blk_mq_insert_request(hctx, rq, at_head);
|
|
spin_unlock(&ctx->lock);
|
|
}
|
|
|
|
run:
|
|
if (run_queue)
|
|
blk_mq_run_hw_queue(hctx, async);
|
|
}
|
|
|
|
void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
|
|
struct blk_mq_ctx *ctx,
|
|
struct list_head *list, bool run_queue_async)
|
|
{
|
|
struct elevator_queue *e;
|
|
struct request_queue *q = hctx->queue;
|
|
|
|
/*
|
|
* blk_mq_sched_insert_requests() is called from flush plug
|
|
* context only, and hold one usage counter to prevent queue
|
|
* from being released.
|
|
*/
|
|
percpu_ref_get(&q->q_usage_counter);
|
|
|
|
e = hctx->queue->elevator;
|
|
if (e && e->type->ops.insert_requests)
|
|
e->type->ops.insert_requests(hctx, list, false);
|
|
else {
|
|
/*
|
|
* try to issue requests directly if the hw queue isn't
|
|
* busy in case of 'none' scheduler, and this way may save
|
|
* us one extra enqueue & dequeue to sw queue.
|
|
*/
|
|
if (!hctx->dispatch_busy && !e && !run_queue_async) {
|
|
blk_mq_try_issue_list_directly(hctx, list);
|
|
if (list_empty(list))
|
|
goto out;
|
|
}
|
|
blk_mq_insert_requests(hctx, ctx, list);
|
|
}
|
|
|
|
blk_mq_run_hw_queue(hctx, run_queue_async);
|
|
out:
|
|
percpu_ref_put(&q->q_usage_counter);
|
|
}
|
|
|
|
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
|
|
struct blk_mq_hw_ctx *hctx,
|
|
unsigned int hctx_idx)
|
|
{
|
|
unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
|
|
|
|
if (hctx->sched_tags) {
|
|
blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
|
|
blk_mq_free_rq_map(hctx->sched_tags, flags);
|
|
hctx->sched_tags = NULL;
|
|
}
|
|
}
|
|
|
|
static int blk_mq_sched_alloc_tags(struct request_queue *q,
|
|
struct blk_mq_hw_ctx *hctx,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct blk_mq_tag_set *set = q->tag_set;
|
|
/* Clear HCTX_SHARED so tags are init'ed */
|
|
unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
|
|
int ret;
|
|
|
|
hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
|
|
set->reserved_tags, flags);
|
|
if (!hctx->sched_tags)
|
|
return -ENOMEM;
|
|
|
|
ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
|
|
if (ret)
|
|
blk_mq_sched_free_tags(set, hctx, hctx_idx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* called in queue's release handler, tagset has gone away */
|
|
static void blk_mq_sched_tags_teardown(struct request_queue *q)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
/* Clear HCTX_SHARED so tags are freed */
|
|
unsigned int flags = hctx->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
|
|
|
|
if (hctx->sched_tags) {
|
|
blk_mq_free_rq_map(hctx->sched_tags, flags);
|
|
hctx->sched_tags = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
struct elevator_queue *eq;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
if (!e) {
|
|
q->elevator = NULL;
|
|
q->nr_requests = q->tag_set->queue_depth;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Default to double of smaller one between hw queue_depth and 128,
|
|
* since we don't split into sync/async like the old code did.
|
|
* Additionally, this is a per-hw queue depth.
|
|
*/
|
|
q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
|
|
BLKDEV_MAX_RQ);
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
ret = blk_mq_sched_alloc_tags(q, hctx, i);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
ret = e->ops.init_sched(q, e);
|
|
if (ret)
|
|
goto err;
|
|
|
|
blk_mq_debugfs_register_sched(q);
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
if (e->ops.init_hctx) {
|
|
ret = e->ops.init_hctx(hctx, i);
|
|
if (ret) {
|
|
eq = q->elevator;
|
|
blk_mq_sched_free_requests(q);
|
|
blk_mq_exit_sched(q, eq);
|
|
kobject_put(&eq->kobj);
|
|
return ret;
|
|
}
|
|
}
|
|
blk_mq_debugfs_register_sched_hctx(q, hctx);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
blk_mq_sched_free_requests(q);
|
|
blk_mq_sched_tags_teardown(q);
|
|
q->elevator = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* called in either blk_queue_cleanup or elevator_switch, tagset
|
|
* is required for freeing requests
|
|
*/
|
|
void blk_mq_sched_free_requests(struct request_queue *q)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
if (hctx->sched_tags)
|
|
blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
|
|
}
|
|
}
|
|
|
|
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
unsigned int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
blk_mq_debugfs_unregister_sched_hctx(hctx);
|
|
if (e->type->ops.exit_hctx && hctx->sched_data) {
|
|
e->type->ops.exit_hctx(hctx, i);
|
|
hctx->sched_data = NULL;
|
|
}
|
|
}
|
|
blk_mq_debugfs_unregister_sched(q);
|
|
if (e->type->ops.exit_sched)
|
|
e->type->ops.exit_sched(e);
|
|
blk_mq_sched_tags_teardown(q);
|
|
q->elevator = NULL;
|
|
}
|