2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 23:53:55 +08:00
linux-next/drivers/media/dvb-frontends/stb6100.c
Peter Senna Tschudin e4533e65b3 [media] drivers/media/dvb-frontends/stb6100.c: Removes useless kfree()
Remove useless kfree() and clean up code related to the removal.
The semantic patch that finds this problem is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@r exists@
position p1,p2;
expression x;
@@
if (x@p1 == NULL) { ... kfree@p2(x); ... return ...; }
@unchanged exists@
position r.p1,r.p2;
expression e <= r.x,x,e1;
iterator I;
statement S;
@@
if (x@p1 == NULL) { ... when != I(x,...) S
                        when != e = e1
                        when != e += e1
                        when != e -= e1
                        when != ++e
                        when != --e
                        when != e++
                        when != e--
                        when != &e
   kfree@p2(x); ... return ...; }
@ok depends on unchanged exists@
position any r.p1;
position r.p2;
expression x;
@@
... when != true x@p1 == NULL
kfree@p2(x);
@depends on !ok && unchanged@
position r.p2;
expression x;
@@
*kfree@p2(x);
// </smpl>

Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2012-10-06 11:13:49 -03:00

608 lines
16 KiB
C

/*
STB6100 Silicon Tuner
Copyright (C) Manu Abraham (abraham.manu@gmail.com)
Copyright (C) ST Microelectronics
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "dvb_frontend.h"
#include "stb6100.h"
static unsigned int verbose;
module_param(verbose, int, 0644);
#define FE_ERROR 0
#define FE_NOTICE 1
#define FE_INFO 2
#define FE_DEBUG 3
#define dprintk(x, y, z, format, arg...) do { \
if (z) { \
if ((x > FE_ERROR) && (x > y)) \
printk(KERN_ERR "%s: " format "\n", __func__ , ##arg); \
else if ((x > FE_NOTICE) && (x > y)) \
printk(KERN_NOTICE "%s: " format "\n", __func__ , ##arg); \
else if ((x > FE_INFO) && (x > y)) \
printk(KERN_INFO "%s: " format "\n", __func__ , ##arg); \
else if ((x > FE_DEBUG) && (x > y)) \
printk(KERN_DEBUG "%s: " format "\n", __func__ , ##arg); \
} else { \
if (x > y) \
printk(format, ##arg); \
} \
} while (0)
struct stb6100_lkup {
u32 val_low;
u32 val_high;
u8 reg;
};
static int stb6100_release(struct dvb_frontend *fe);
static const struct stb6100_lkup lkup[] = {
{ 0, 950000, 0x0a },
{ 950000, 1000000, 0x0a },
{ 1000000, 1075000, 0x0c },
{ 1075000, 1200000, 0x00 },
{ 1200000, 1300000, 0x01 },
{ 1300000, 1370000, 0x02 },
{ 1370000, 1470000, 0x04 },
{ 1470000, 1530000, 0x05 },
{ 1530000, 1650000, 0x06 },
{ 1650000, 1800000, 0x08 },
{ 1800000, 1950000, 0x0a },
{ 1950000, 2150000, 0x0c },
{ 2150000, 9999999, 0x0c },
{ 0, 0, 0x00 }
};
/* Register names for easy debugging. */
static const char *stb6100_regnames[] = {
[STB6100_LD] = "LD",
[STB6100_VCO] = "VCO",
[STB6100_NI] = "NI",
[STB6100_NF_LSB] = "NF",
[STB6100_K] = "K",
[STB6100_G] = "G",
[STB6100_F] = "F",
[STB6100_DLB] = "DLB",
[STB6100_TEST1] = "TEST1",
[STB6100_FCCK] = "FCCK",
[STB6100_LPEN] = "LPEN",
[STB6100_TEST3] = "TEST3",
};
/* Template for normalisation, i.e. setting unused or undocumented
* bits as required according to the documentation.
*/
struct stb6100_regmask {
u8 mask;
u8 set;
};
static const struct stb6100_regmask stb6100_template[] = {
[STB6100_LD] = { 0xff, 0x00 },
[STB6100_VCO] = { 0xff, 0x00 },
[STB6100_NI] = { 0xff, 0x00 },
[STB6100_NF_LSB] = { 0xff, 0x00 },
[STB6100_K] = { 0xc7, 0x38 },
[STB6100_G] = { 0xef, 0x10 },
[STB6100_F] = { 0x1f, 0xc0 },
[STB6100_DLB] = { 0x38, 0xc4 },
[STB6100_TEST1] = { 0x00, 0x8f },
[STB6100_FCCK] = { 0x40, 0x0d },
[STB6100_LPEN] = { 0xf0, 0x0b },
[STB6100_TEST3] = { 0x00, 0xde },
};
/*
* Currently unused. Some boards might need it in the future
*/
static inline void stb6100_normalise_regs(u8 regs[])
{
int i;
for (i = 0; i < STB6100_NUMREGS; i++)
regs[i] = (regs[i] & stb6100_template[i].mask) | stb6100_template[i].set;
}
static int stb6100_read_regs(struct stb6100_state *state, u8 regs[])
{
int rc;
struct i2c_msg msg = {
.addr = state->config->tuner_address,
.flags = I2C_M_RD,
.buf = regs,
.len = STB6100_NUMREGS
};
rc = i2c_transfer(state->i2c, &msg, 1);
if (unlikely(rc != 1)) {
dprintk(verbose, FE_ERROR, 1, "Read (0x%x) err, rc=[%d]",
state->config->tuner_address, rc);
return -EREMOTEIO;
}
if (unlikely(verbose > FE_DEBUG)) {
int i;
dprintk(verbose, FE_DEBUG, 1, " Read from 0x%02x", state->config->tuner_address);
for (i = 0; i < STB6100_NUMREGS; i++)
dprintk(verbose, FE_DEBUG, 1, " %s: 0x%02x", stb6100_regnames[i], regs[i]);
}
return 0;
}
static int stb6100_read_reg(struct stb6100_state *state, u8 reg)
{
u8 regs[STB6100_NUMREGS];
struct i2c_msg msg = {
.addr = state->config->tuner_address + reg,
.flags = I2C_M_RD,
.buf = regs,
.len = 1
};
i2c_transfer(state->i2c, &msg, 1);
if (unlikely(reg >= STB6100_NUMREGS)) {
dprintk(verbose, FE_ERROR, 1, "Invalid register offset 0x%x", reg);
return -EINVAL;
}
if (unlikely(verbose > FE_DEBUG)) {
dprintk(verbose, FE_DEBUG, 1, " Read from 0x%02x", state->config->tuner_address);
dprintk(verbose, FE_DEBUG, 1, " %s: 0x%02x", stb6100_regnames[reg], regs[0]);
}
return (unsigned int)regs[0];
}
static int stb6100_write_reg_range(struct stb6100_state *state, u8 buf[], int start, int len)
{
int rc;
u8 cmdbuf[len + 1];
struct i2c_msg msg = {
.addr = state->config->tuner_address,
.flags = 0,
.buf = cmdbuf,
.len = len + 1
};
if (unlikely(start < 1 || start + len > STB6100_NUMREGS)) {
dprintk(verbose, FE_ERROR, 1, "Invalid register range %d:%d",
start, len);
return -EINVAL;
}
memcpy(&cmdbuf[1], buf, len);
cmdbuf[0] = start;
if (unlikely(verbose > FE_DEBUG)) {
int i;
dprintk(verbose, FE_DEBUG, 1, " Write @ 0x%02x: [%d:%d]", state->config->tuner_address, start, len);
for (i = 0; i < len; i++)
dprintk(verbose, FE_DEBUG, 1, " %s: 0x%02x", stb6100_regnames[start + i], buf[i]);
}
rc = i2c_transfer(state->i2c, &msg, 1);
if (unlikely(rc != 1)) {
dprintk(verbose, FE_ERROR, 1, "(0x%x) write err [%d:%d], rc=[%d]",
(unsigned int)state->config->tuner_address, start, len, rc);
return -EREMOTEIO;
}
return 0;
}
static int stb6100_write_reg(struct stb6100_state *state, u8 reg, u8 data)
{
if (unlikely(reg >= STB6100_NUMREGS)) {
dprintk(verbose, FE_ERROR, 1, "Invalid register offset 0x%x", reg);
return -EREMOTEIO;
}
data = (data & stb6100_template[reg].mask) | stb6100_template[reg].set;
return stb6100_write_reg_range(state, &data, reg, 1);
}
static int stb6100_get_status(struct dvb_frontend *fe, u32 *status)
{
int rc;
struct stb6100_state *state = fe->tuner_priv;
rc = stb6100_read_reg(state, STB6100_LD);
if (rc < 0) {
dprintk(verbose, FE_ERROR, 1, "%s failed", __func__);
return rc;
}
return (rc & STB6100_LD_LOCK) ? TUNER_STATUS_LOCKED : 0;
}
static int stb6100_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
int rc;
u8 f;
struct stb6100_state *state = fe->tuner_priv;
rc = stb6100_read_reg(state, STB6100_F);
if (rc < 0)
return rc;
f = rc & STB6100_F_F;
state->status.bandwidth = (f + 5) * 2000; /* x2 for ZIF */
*bandwidth = state->bandwidth = state->status.bandwidth * 1000;
dprintk(verbose, FE_DEBUG, 1, "bandwidth = %u Hz", state->bandwidth);
return 0;
}
static int stb6100_set_bandwidth(struct dvb_frontend *fe, u32 bandwidth)
{
u32 tmp;
int rc;
struct stb6100_state *state = fe->tuner_priv;
dprintk(verbose, FE_DEBUG, 1, "set bandwidth to %u Hz", bandwidth);
bandwidth /= 2; /* ZIF */
if (bandwidth >= 36000000) /* F[4:0] BW/2 max =31+5=36 mhz for F=31 */
tmp = 31;
else if (bandwidth <= 5000000) /* bw/2 min = 5Mhz for F=0 */
tmp = 0;
else /* if 5 < bw/2 < 36 */
tmp = (bandwidth + 500000) / 1000000 - 5;
/* Turn on LPF bandwidth setting clock control,
* set bandwidth, wait 10ms, turn off.
*/
rc = stb6100_write_reg(state, STB6100_FCCK, 0x0d | STB6100_FCCK_FCCK);
if (rc < 0)
return rc;
rc = stb6100_write_reg(state, STB6100_F, 0xc0 | tmp);
if (rc < 0)
return rc;
msleep(5); /* This is dangerous as another (related) thread may start */
rc = stb6100_write_reg(state, STB6100_FCCK, 0x0d);
if (rc < 0)
return rc;
msleep(10); /* This is dangerous as another (related) thread may start */
return 0;
}
static int stb6100_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
int rc;
u32 nint, nfrac, fvco;
int psd2, odiv;
struct stb6100_state *state = fe->tuner_priv;
u8 regs[STB6100_NUMREGS];
rc = stb6100_read_regs(state, regs);
if (rc < 0)
return rc;
odiv = (regs[STB6100_VCO] & STB6100_VCO_ODIV) >> STB6100_VCO_ODIV_SHIFT;
psd2 = (regs[STB6100_K] & STB6100_K_PSD2) >> STB6100_K_PSD2_SHIFT;
nint = regs[STB6100_NI];
nfrac = ((regs[STB6100_K] & STB6100_K_NF_MSB) << 8) | regs[STB6100_NF_LSB];
fvco = (nfrac * state->reference >> (9 - psd2)) + (nint * state->reference << psd2);
*frequency = state->frequency = fvco >> (odiv + 1);
dprintk(verbose, FE_DEBUG, 1,
"frequency = %u kHz, odiv = %u, psd2 = %u, fxtal = %u kHz, fvco = %u kHz, N(I) = %u, N(F) = %u",
state->frequency, odiv, psd2, state->reference, fvco, nint, nfrac);
return 0;
}
static int stb6100_set_frequency(struct dvb_frontend *fe, u32 frequency)
{
int rc;
const struct stb6100_lkup *ptr;
struct stb6100_state *state = fe->tuner_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u32 srate = 0, fvco, nint, nfrac;
u8 regs[STB6100_NUMREGS];
u8 g, psd2, odiv;
dprintk(verbose, FE_DEBUG, 1, "Version 2010-8-14 13:51");
if (fe->ops.get_frontend) {
dprintk(verbose, FE_DEBUG, 1, "Get frontend parameters");
fe->ops.get_frontend(fe);
}
srate = p->symbol_rate;
/* Set up tuner cleanly, LPF calibration on */
rc = stb6100_write_reg(state, STB6100_FCCK, 0x4d | STB6100_FCCK_FCCK);
if (rc < 0)
return rc; /* allow LPF calibration */
/* PLL Loop disabled, bias on, VCO on, synth on */
regs[STB6100_LPEN] = 0xeb;
rc = stb6100_write_reg(state, STB6100_LPEN, regs[STB6100_LPEN]);
if (rc < 0)
return rc;
/* Program the registers with their data values */
/* VCO divide ratio (LO divide ratio, VCO prescaler enable). */
if (frequency <= 1075000)
odiv = 1;
else
odiv = 0;
/* VCO enabled, search clock off as per LL3.7, 3.4.1 */
regs[STB6100_VCO] = 0xe0 | (odiv << STB6100_VCO_ODIV_SHIFT);
/* OSM */
for (ptr = lkup;
(ptr->val_high != 0) && !CHKRANGE(frequency, ptr->val_low, ptr->val_high);
ptr++);
if (ptr->val_high == 0) {
printk(KERN_ERR "%s: frequency out of range: %u kHz\n", __func__, frequency);
return -EINVAL;
}
regs[STB6100_VCO] = (regs[STB6100_VCO] & ~STB6100_VCO_OSM) | ptr->reg;
rc = stb6100_write_reg(state, STB6100_VCO, regs[STB6100_VCO]);
if (rc < 0)
return rc;
if ((frequency > 1075000) && (frequency <= 1325000))
psd2 = 0;
else
psd2 = 1;
/* F(VCO) = F(LO) * (ODIV == 0 ? 2 : 4) */
fvco = frequency << (1 + odiv);
/* N(I) = floor(f(VCO) / (f(XTAL) * (PSD2 ? 2 : 1))) */
nint = fvco / (state->reference << psd2);
/* N(F) = round(f(VCO) / f(XTAL) * (PSD2 ? 2 : 1) - N(I)) * 2 ^ 9 */
nfrac = DIV_ROUND_CLOSEST((fvco - (nint * state->reference << psd2))
<< (9 - psd2), state->reference);
/* NI */
regs[STB6100_NI] = nint;
rc = stb6100_write_reg(state, STB6100_NI, regs[STB6100_NI]);
if (rc < 0)
return rc;
/* NF */
regs[STB6100_NF_LSB] = nfrac;
rc = stb6100_write_reg(state, STB6100_NF_LSB, regs[STB6100_NF_LSB]);
if (rc < 0)
return rc;
/* K */
regs[STB6100_K] = (0x38 & ~STB6100_K_PSD2) | (psd2 << STB6100_K_PSD2_SHIFT);
regs[STB6100_K] = (regs[STB6100_K] & ~STB6100_K_NF_MSB) | ((nfrac >> 8) & STB6100_K_NF_MSB);
rc = stb6100_write_reg(state, STB6100_K, regs[STB6100_K]);
if (rc < 0)
return rc;
/* G Baseband gain. */
if (srate >= 15000000)
g = 9; /* +4 dB */
else if (srate >= 5000000)
g = 11; /* +8 dB */
else
g = 14; /* +14 dB */
regs[STB6100_G] = (0x10 & ~STB6100_G_G) | g;
regs[STB6100_G] &= ~STB6100_G_GCT; /* mask GCT */
regs[STB6100_G] |= (1 << 5); /* 2Vp-p Mode */
rc = stb6100_write_reg(state, STB6100_G, regs[STB6100_G]);
if (rc < 0)
return rc;
/* F we don't write as it is set up in BW set */
/* DLB set DC servo loop BW to 160Hz (LLA 3.8 / 2.1) */
regs[STB6100_DLB] = 0xcc;
rc = stb6100_write_reg(state, STB6100_DLB, regs[STB6100_DLB]);
if (rc < 0)
return rc;
dprintk(verbose, FE_DEBUG, 1,
"frequency = %u, srate = %u, g = %u, odiv = %u, psd2 = %u, fxtal = %u, osm = %u, fvco = %u, N(I) = %u, N(F) = %u",
frequency, srate, (unsigned int)g, (unsigned int)odiv,
(unsigned int)psd2, state->reference,
ptr->reg, fvco, nint, nfrac);
/* Set up the test registers */
regs[STB6100_TEST1] = 0x8f;
rc = stb6100_write_reg(state, STB6100_TEST1, regs[STB6100_TEST1]);
if (rc < 0)
return rc;
regs[STB6100_TEST3] = 0xde;
rc = stb6100_write_reg(state, STB6100_TEST3, regs[STB6100_TEST3]);
if (rc < 0)
return rc;
/* Bring up tuner according to LLA 3.7 3.4.1, step 2 */
regs[STB6100_LPEN] = 0xfb; /* PLL Loop enabled, bias on, VCO on, synth on */
rc = stb6100_write_reg(state, STB6100_LPEN, regs[STB6100_LPEN]);
if (rc < 0)
return rc;
msleep(2);
/* Bring up tuner according to LLA 3.7 3.4.1, step 3 */
regs[STB6100_VCO] &= ~STB6100_VCO_OCK; /* VCO fast search */
rc = stb6100_write_reg(state, STB6100_VCO, regs[STB6100_VCO]);
if (rc < 0)
return rc;
msleep(10); /* This is dangerous as another (related) thread may start */ /* wait for LO to lock */
regs[STB6100_VCO] &= ~STB6100_VCO_OSCH; /* vco search disabled */
regs[STB6100_VCO] |= STB6100_VCO_OCK; /* search clock off */
rc = stb6100_write_reg(state, STB6100_VCO, regs[STB6100_VCO]);
if (rc < 0)
return rc;
rc = stb6100_write_reg(state, STB6100_FCCK, 0x0d);
if (rc < 0)
return rc; /* Stop LPF calibration */
msleep(10); /* This is dangerous as another (related) thread may start */
/* wait for stabilisation, (should not be necessary) */
return 0;
}
static int stb6100_sleep(struct dvb_frontend *fe)
{
/* TODO: power down */
return 0;
}
static int stb6100_init(struct dvb_frontend *fe)
{
struct stb6100_state *state = fe->tuner_priv;
struct tuner_state *status = &state->status;
status->tunerstep = 125000;
status->ifreq = 0;
status->refclock = 27000000; /* Hz */
status->iqsense = 1;
status->bandwidth = 36000; /* kHz */
state->bandwidth = status->bandwidth * 1000; /* Hz */
state->reference = status->refclock / 1000; /* kHz */
/* Set default bandwidth. Modified, PN 13-May-10 */
return 0;
}
static int stb6100_get_state(struct dvb_frontend *fe,
enum tuner_param param,
struct tuner_state *state)
{
switch (param) {
case DVBFE_TUNER_FREQUENCY:
stb6100_get_frequency(fe, &state->frequency);
break;
case DVBFE_TUNER_TUNERSTEP:
break;
case DVBFE_TUNER_IFFREQ:
break;
case DVBFE_TUNER_BANDWIDTH:
stb6100_get_bandwidth(fe, &state->bandwidth);
break;
case DVBFE_TUNER_REFCLOCK:
break;
default:
break;
}
return 0;
}
static int stb6100_set_state(struct dvb_frontend *fe,
enum tuner_param param,
struct tuner_state *state)
{
struct stb6100_state *tstate = fe->tuner_priv;
switch (param) {
case DVBFE_TUNER_FREQUENCY:
stb6100_set_frequency(fe, state->frequency);
tstate->frequency = state->frequency;
break;
case DVBFE_TUNER_TUNERSTEP:
break;
case DVBFE_TUNER_IFFREQ:
break;
case DVBFE_TUNER_BANDWIDTH:
stb6100_set_bandwidth(fe, state->bandwidth);
tstate->bandwidth = state->bandwidth;
break;
case DVBFE_TUNER_REFCLOCK:
break;
default:
break;
}
return 0;
}
static struct dvb_tuner_ops stb6100_ops = {
.info = {
.name = "STB6100 Silicon Tuner",
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_step = 0,
},
.init = stb6100_init,
.sleep = stb6100_sleep,
.get_status = stb6100_get_status,
.get_state = stb6100_get_state,
.set_state = stb6100_set_state,
.release = stb6100_release
};
struct dvb_frontend *stb6100_attach(struct dvb_frontend *fe,
const struct stb6100_config *config,
struct i2c_adapter *i2c)
{
struct stb6100_state *state = NULL;
state = kzalloc(sizeof (struct stb6100_state), GFP_KERNEL);
if (!state)
return NULL;
state->config = config;
state->i2c = i2c;
state->frontend = fe;
state->reference = config->refclock / 1000; /* kHz */
fe->tuner_priv = state;
fe->ops.tuner_ops = stb6100_ops;
printk("%s: Attaching STB6100 \n", __func__);
return fe;
}
static int stb6100_release(struct dvb_frontend *fe)
{
struct stb6100_state *state = fe->tuner_priv;
fe->tuner_priv = NULL;
kfree(state);
return 0;
}
EXPORT_SYMBOL(stb6100_attach);
MODULE_PARM_DESC(verbose, "Set Verbosity level");
MODULE_AUTHOR("Manu Abraham");
MODULE_DESCRIPTION("STB6100 Silicon tuner");
MODULE_LICENSE("GPL");