2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 03:33:59 +08:00
linux-next/drivers/net/apne.c
Stephen Hemminger 7d359daafe apne: convert to net_device_ops
Yet another driver.

Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-25 18:25:32 -08:00

621 lines
17 KiB
C

/*
* Amiga Linux/68k 8390 based PCMCIA Ethernet Driver for the Amiga 1200
*
* (C) Copyright 1997 Alain Malek
* (Alain.Malek@cryogen.com)
*
* ----------------------------------------------------------------------------
*
* This program is based on
*
* ne.c: A general non-shared-memory NS8390 ethernet driver for linux
* Written 1992-94 by Donald Becker.
*
* 8390.c: A general NS8390 ethernet driver core for linux.
* Written 1992-94 by Donald Becker.
*
* cnetdevice: A Sana-II ethernet driver for AmigaOS
* Written by Bruce Abbott (bhabbott@inhb.co.nz)
*
* ----------------------------------------------------------------------------
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*
* ----------------------------------------------------------------------------
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/jiffies.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/setup.h>
#include <asm/amigaints.h>
#include <asm/amigahw.h>
#include <asm/amigayle.h>
#include <asm/amipcmcia.h>
#include "8390.h"
/* ---- No user-serviceable parts below ---- */
#define DRV_NAME "apne"
#define NE_BASE (dev->base_addr)
#define NE_CMD 0x00
#define NE_DATAPORT 0x10 /* NatSemi-defined port window offset. */
#define NE_RESET 0x1f /* Issue a read to reset, a write to clear. */
#define NE_IO_EXTENT 0x20
#define NE_EN0_ISR 0x07
#define NE_EN0_DCFG 0x0e
#define NE_EN0_RSARLO 0x08
#define NE_EN0_RSARHI 0x09
#define NE_EN0_RCNTLO 0x0a
#define NE_EN0_RXCR 0x0c
#define NE_EN0_TXCR 0x0d
#define NE_EN0_RCNTHI 0x0b
#define NE_EN0_IMR 0x0f
#define NE1SM_START_PG 0x20 /* First page of TX buffer */
#define NE1SM_STOP_PG 0x40 /* Last page +1 of RX ring */
#define NESM_START_PG 0x40 /* First page of TX buffer */
#define NESM_STOP_PG 0x80 /* Last page +1 of RX ring */
struct net_device * __init apne_probe(int unit);
static int apne_probe1(struct net_device *dev, int ioaddr);
static void apne_reset_8390(struct net_device *dev);
static void apne_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr,
int ring_page);
static void apne_block_input(struct net_device *dev, int count,
struct sk_buff *skb, int ring_offset);
static void apne_block_output(struct net_device *dev, const int count,
const unsigned char *buf, const int start_page);
static irqreturn_t apne_interrupt(int irq, void *dev_id);
static int init_pcmcia(void);
/* IO base address used for nic */
#define IOBASE 0x300
/*
use MANUAL_CONFIG and MANUAL_OFFSET for enabling IO by hand
you can find the values to use by looking at the cnet.device
config file example (the default values are for the CNET40BC card)
*/
/*
#define MANUAL_CONFIG 0x20
#define MANUAL_OFFSET 0x3f8
#define MANUAL_HWADDR0 0x00
#define MANUAL_HWADDR1 0x12
#define MANUAL_HWADDR2 0x34
#define MANUAL_HWADDR3 0x56
#define MANUAL_HWADDR4 0x78
#define MANUAL_HWADDR5 0x9a
*/
static const char version[] =
"apne.c:v1.1 7/10/98 Alain Malek (Alain.Malek@cryogen.ch)\n";
static int apne_owned; /* signal if card already owned */
struct net_device * __init apne_probe(int unit)
{
struct net_device *dev;
#ifndef MANUAL_CONFIG
char tuple[8];
#endif
int err;
if (!MACH_IS_AMIGA)
return ERR_PTR(-ENODEV);
if (apne_owned)
return ERR_PTR(-ENODEV);
if ( !(AMIGAHW_PRESENT(PCMCIA)) )
return ERR_PTR(-ENODEV);
printk("Looking for PCMCIA ethernet card : ");
/* check if a card is inserted */
if (!(PCMCIA_INSERTED)) {
printk("NO PCMCIA card inserted\n");
return ERR_PTR(-ENODEV);
}
dev = alloc_ei_netdev();
if (!dev)
return ERR_PTR(-ENOMEM);
if (unit >= 0) {
sprintf(dev->name, "eth%d", unit);
netdev_boot_setup_check(dev);
}
/* disable pcmcia irq for readtuple */
pcmcia_disable_irq();
#ifndef MANUAL_CONFIG
if ((pcmcia_copy_tuple(CISTPL_FUNCID, tuple, 8) < 3) ||
(tuple[2] != CISTPL_FUNCID_NETWORK)) {
printk("not an ethernet card\n");
/* XXX: shouldn't we re-enable irq here? */
free_netdev(dev);
return ERR_PTR(-ENODEV);
}
#endif
printk("ethernet PCMCIA card inserted\n");
if (!init_pcmcia()) {
/* XXX: shouldn't we re-enable irq here? */
free_netdev(dev);
return ERR_PTR(-ENODEV);
}
if (!request_region(IOBASE, 0x20, DRV_NAME)) {
free_netdev(dev);
return ERR_PTR(-EBUSY);
}
err = apne_probe1(dev, IOBASE);
if (err) {
release_region(IOBASE, 0x20);
free_netdev(dev);
return ERR_PTR(err);
}
err = register_netdev(dev);
if (!err)
return dev;
pcmcia_disable_irq();
free_irq(IRQ_AMIGA_PORTS, dev);
pcmcia_reset();
release_region(IOBASE, 0x20);
free_netdev(dev);
return ERR_PTR(err);
}
static int __init apne_probe1(struct net_device *dev, int ioaddr)
{
int i;
unsigned char SA_prom[32];
int wordlength = 2;
const char *name = NULL;
int start_page, stop_page;
#ifndef MANUAL_HWADDR0
int neX000, ctron;
#endif
static unsigned version_printed;
if (ei_debug && version_printed++ == 0)
printk(version);
printk("PCMCIA NE*000 ethercard probe");
/* Reset card. Who knows what dain-bramaged state it was left in. */
{ unsigned long reset_start_time = jiffies;
outb(inb(ioaddr + NE_RESET), ioaddr + NE_RESET);
while ((inb(ioaddr + NE_EN0_ISR) & ENISR_RESET) == 0)
if (time_after(jiffies, reset_start_time + 2*HZ/100)) {
printk(" not found (no reset ack).\n");
return -ENODEV;
}
outb(0xff, ioaddr + NE_EN0_ISR); /* Ack all intr. */
}
#ifndef MANUAL_HWADDR0
/* Read the 16 bytes of station address PROM.
We must first initialize registers, similar to NS8390_init(eifdev, 0).
We can't reliably read the SAPROM address without this.
(I learned the hard way!). */
{
struct {unsigned long value, offset; } program_seq[] = {
{E8390_NODMA+E8390_PAGE0+E8390_STOP, NE_CMD}, /* Select page 0*/
{0x48, NE_EN0_DCFG}, /* Set byte-wide (0x48) access. */
{0x00, NE_EN0_RCNTLO}, /* Clear the count regs. */
{0x00, NE_EN0_RCNTHI},
{0x00, NE_EN0_IMR}, /* Mask completion irq. */
{0xFF, NE_EN0_ISR},
{E8390_RXOFF, NE_EN0_RXCR}, /* 0x20 Set to monitor */
{E8390_TXOFF, NE_EN0_TXCR}, /* 0x02 and loopback mode. */
{32, NE_EN0_RCNTLO},
{0x00, NE_EN0_RCNTHI},
{0x00, NE_EN0_RSARLO}, /* DMA starting at 0x0000. */
{0x00, NE_EN0_RSARHI},
{E8390_RREAD+E8390_START, NE_CMD},
};
for (i = 0; i < ARRAY_SIZE(program_seq); i++) {
outb(program_seq[i].value, ioaddr + program_seq[i].offset);
}
}
for(i = 0; i < 32 /*sizeof(SA_prom)*/; i+=2) {
SA_prom[i] = inb(ioaddr + NE_DATAPORT);
SA_prom[i+1] = inb(ioaddr + NE_DATAPORT);
if (SA_prom[i] != SA_prom[i+1])
wordlength = 1;
}
/* At this point, wordlength *only* tells us if the SA_prom is doubled
up or not because some broken PCI cards don't respect the byte-wide
request in program_seq above, and hence don't have doubled up values.
These broken cards would otherwise be detected as an ne1000. */
if (wordlength == 2)
for (i = 0; i < 16; i++)
SA_prom[i] = SA_prom[i+i];
if (wordlength == 2) {
/* We must set the 8390 for word mode. */
outb(0x49, ioaddr + NE_EN0_DCFG);
start_page = NESM_START_PG;
stop_page = NESM_STOP_PG;
} else {
start_page = NE1SM_START_PG;
stop_page = NE1SM_STOP_PG;
}
neX000 = (SA_prom[14] == 0x57 && SA_prom[15] == 0x57);
ctron = (SA_prom[0] == 0x00 && SA_prom[1] == 0x00 && SA_prom[2] == 0x1d);
/* Set up the rest of the parameters. */
if (neX000) {
name = (wordlength == 2) ? "NE2000" : "NE1000";
} else if (ctron) {
name = (wordlength == 2) ? "Ctron-8" : "Ctron-16";
start_page = 0x01;
stop_page = (wordlength == 2) ? 0x40 : 0x20;
} else {
printk(" not found.\n");
return -ENXIO;
}
#else
wordlength = 2;
/* We must set the 8390 for word mode. */
outb(0x49, ioaddr + NE_EN0_DCFG);
start_page = NESM_START_PG;
stop_page = NESM_STOP_PG;
SA_prom[0] = MANUAL_HWADDR0;
SA_prom[1] = MANUAL_HWADDR1;
SA_prom[2] = MANUAL_HWADDR2;
SA_prom[3] = MANUAL_HWADDR3;
SA_prom[4] = MANUAL_HWADDR4;
SA_prom[5] = MANUAL_HWADDR5;
name = "NE2000";
#endif
dev->base_addr = ioaddr;
dev->irq = IRQ_AMIGA_PORTS;
dev->netdev_ops = &ei_netdev_ops;
/* Install the Interrupt handler */
i = request_irq(dev->irq, apne_interrupt, IRQF_SHARED, DRV_NAME, dev);
if (i) return i;
for(i = 0; i < ETHER_ADDR_LEN; i++)
dev->dev_addr[i] = SA_prom[i];
printk(" %pM\n", dev->dev_addr);
printk("%s: %s found.\n", dev->name, name);
ei_status.name = name;
ei_status.tx_start_page = start_page;
ei_status.stop_page = stop_page;
ei_status.word16 = (wordlength == 2);
ei_status.rx_start_page = start_page + TX_PAGES;
ei_status.reset_8390 = &apne_reset_8390;
ei_status.block_input = &apne_block_input;
ei_status.block_output = &apne_block_output;
ei_status.get_8390_hdr = &apne_get_8390_hdr;
NS8390_init(dev, 0);
pcmcia_ack_int(pcmcia_get_intreq()); /* ack PCMCIA int req */
pcmcia_enable_irq();
apne_owned = 1;
return 0;
}
/* Hard reset the card. This used to pause for the same period that a
8390 reset command required, but that shouldn't be necessary. */
static void
apne_reset_8390(struct net_device *dev)
{
unsigned long reset_start_time = jiffies;
init_pcmcia();
if (ei_debug > 1) printk("resetting the 8390 t=%ld...", jiffies);
outb(inb(NE_BASE + NE_RESET), NE_BASE + NE_RESET);
ei_status.txing = 0;
ei_status.dmaing = 0;
/* This check _should_not_ be necessary, omit eventually. */
while ((inb(NE_BASE+NE_EN0_ISR) & ENISR_RESET) == 0)
if (time_after(jiffies, reset_start_time + 2*HZ/100)) {
printk("%s: ne_reset_8390() did not complete.\n", dev->name);
break;
}
outb(ENISR_RESET, NE_BASE + NE_EN0_ISR); /* Ack intr. */
}
/* Grab the 8390 specific header. Similar to the block_input routine, but
we don't need to be concerned with ring wrap as the header will be at
the start of a page, so we optimize accordingly. */
static void
apne_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr, int ring_page)
{
int nic_base = dev->base_addr;
int cnt;
char *ptrc;
short *ptrs;
/* This *shouldn't* happen. If it does, it's the last thing you'll see */
if (ei_status.dmaing) {
printk("%s: DMAing conflict in ne_get_8390_hdr "
"[DMAstat:%d][irqlock:%d][intr:%d].\n",
dev->name, ei_status.dmaing, ei_status.irqlock, dev->irq);
return;
}
ei_status.dmaing |= 0x01;
outb(E8390_NODMA+E8390_PAGE0+E8390_START, nic_base+ NE_CMD);
outb(ENISR_RDC, nic_base + NE_EN0_ISR);
outb(sizeof(struct e8390_pkt_hdr), nic_base + NE_EN0_RCNTLO);
outb(0, nic_base + NE_EN0_RCNTHI);
outb(0, nic_base + NE_EN0_RSARLO); /* On page boundary */
outb(ring_page, nic_base + NE_EN0_RSARHI);
outb(E8390_RREAD+E8390_START, nic_base + NE_CMD);
if (ei_status.word16) {
ptrs = (short*)hdr;
for(cnt = 0; cnt < (sizeof(struct e8390_pkt_hdr)>>1); cnt++)
*ptrs++ = inw(NE_BASE + NE_DATAPORT);
} else {
ptrc = (char*)hdr;
for(cnt = 0; cnt < sizeof(struct e8390_pkt_hdr); cnt++)
*ptrc++ = inb(NE_BASE + NE_DATAPORT);
}
outb(ENISR_RDC, nic_base + NE_EN0_ISR); /* Ack intr. */
ei_status.dmaing &= ~0x01;
le16_to_cpus(&hdr->count);
}
/* Block input and output, similar to the Crynwr packet driver. If you
are porting to a new ethercard, look at the packet driver source for hints.
The NEx000 doesn't share the on-board packet memory -- you have to put
the packet out through the "remote DMA" dataport using outb. */
static void
apne_block_input(struct net_device *dev, int count, struct sk_buff *skb, int ring_offset)
{
int nic_base = dev->base_addr;
char *buf = skb->data;
char *ptrc;
short *ptrs;
int cnt;
/* This *shouldn't* happen. If it does, it's the last thing you'll see */
if (ei_status.dmaing) {
printk("%s: DMAing conflict in ne_block_input "
"[DMAstat:%d][irqlock:%d][intr:%d].\n",
dev->name, ei_status.dmaing, ei_status.irqlock, dev->irq);
return;
}
ei_status.dmaing |= 0x01;
outb(E8390_NODMA+E8390_PAGE0+E8390_START, nic_base+ NE_CMD);
outb(ENISR_RDC, nic_base + NE_EN0_ISR);
outb(count & 0xff, nic_base + NE_EN0_RCNTLO);
outb(count >> 8, nic_base + NE_EN0_RCNTHI);
outb(ring_offset & 0xff, nic_base + NE_EN0_RSARLO);
outb(ring_offset >> 8, nic_base + NE_EN0_RSARHI);
outb(E8390_RREAD+E8390_START, nic_base + NE_CMD);
if (ei_status.word16) {
ptrs = (short*)buf;
for (cnt = 0; cnt < (count>>1); cnt++)
*ptrs++ = inw(NE_BASE + NE_DATAPORT);
if (count & 0x01) {
buf[count-1] = inb(NE_BASE + NE_DATAPORT);
}
} else {
ptrc = (char*)buf;
for (cnt = 0; cnt < count; cnt++)
*ptrc++ = inb(NE_BASE + NE_DATAPORT);
}
outb(ENISR_RDC, nic_base + NE_EN0_ISR); /* Ack intr. */
ei_status.dmaing &= ~0x01;
}
static void
apne_block_output(struct net_device *dev, int count,
const unsigned char *buf, const int start_page)
{
int nic_base = NE_BASE;
unsigned long dma_start;
char *ptrc;
short *ptrs;
int cnt;
/* Round the count up for word writes. Do we need to do this?
What effect will an odd byte count have on the 8390?
I should check someday. */
if (ei_status.word16 && (count & 0x01))
count++;
/* This *shouldn't* happen. If it does, it's the last thing you'll see */
if (ei_status.dmaing) {
printk("%s: DMAing conflict in ne_block_output."
"[DMAstat:%d][irqlock:%d][intr:%d]\n",
dev->name, ei_status.dmaing, ei_status.irqlock, dev->irq);
return;
}
ei_status.dmaing |= 0x01;
/* We should already be in page 0, but to be safe... */
outb(E8390_PAGE0+E8390_START+E8390_NODMA, nic_base + NE_CMD);
outb(ENISR_RDC, nic_base + NE_EN0_ISR);
/* Now the normal output. */
outb(count & 0xff, nic_base + NE_EN0_RCNTLO);
outb(count >> 8, nic_base + NE_EN0_RCNTHI);
outb(0x00, nic_base + NE_EN0_RSARLO);
outb(start_page, nic_base + NE_EN0_RSARHI);
outb(E8390_RWRITE+E8390_START, nic_base + NE_CMD);
if (ei_status.word16) {
ptrs = (short*)buf;
for (cnt = 0; cnt < count>>1; cnt++)
outw(*ptrs++, NE_BASE+NE_DATAPORT);
} else {
ptrc = (char*)buf;
for (cnt = 0; cnt < count; cnt++)
outb(*ptrc++, NE_BASE + NE_DATAPORT);
}
dma_start = jiffies;
while ((inb(NE_BASE + NE_EN0_ISR) & ENISR_RDC) == 0)
if (time_after(jiffies, dma_start + 2*HZ/100)) { /* 20ms */
printk("%s: timeout waiting for Tx RDC.\n", dev->name);
apne_reset_8390(dev);
NS8390_init(dev,1);
break;
}
outb(ENISR_RDC, nic_base + NE_EN0_ISR); /* Ack intr. */
ei_status.dmaing &= ~0x01;
return;
}
static irqreturn_t apne_interrupt(int irq, void *dev_id)
{
unsigned char pcmcia_intreq;
if (!(gayle.inten & GAYLE_IRQ_IRQ))
return IRQ_NONE;
pcmcia_intreq = pcmcia_get_intreq();
if (!(pcmcia_intreq & GAYLE_IRQ_IRQ)) {
pcmcia_ack_int(pcmcia_intreq);
return IRQ_NONE;
}
if (ei_debug > 3)
printk("pcmcia intreq = %x\n", pcmcia_intreq);
pcmcia_disable_irq(); /* to get rid of the sti() within ei_interrupt */
ei_interrupt(irq, dev_id);
pcmcia_ack_int(pcmcia_get_intreq());
pcmcia_enable_irq();
return IRQ_HANDLED;
}
#ifdef MODULE
static struct net_device *apne_dev;
static int __init apne_module_init(void)
{
apne_dev = apne_probe(-1);
if (IS_ERR(apne_dev))
return PTR_ERR(apne_dev);
return 0;
}
static void __exit apne_module_exit(void)
{
unregister_netdev(apne_dev);
pcmcia_disable_irq();
free_irq(IRQ_AMIGA_PORTS, apne_dev);
pcmcia_reset();
release_region(IOBASE, 0x20);
free_netdev(apne_dev);
}
module_init(apne_module_init);
module_exit(apne_module_exit);
#endif
static int init_pcmcia(void)
{
u_char config;
#ifndef MANUAL_CONFIG
u_char tuple[32];
int offset_len;
#endif
u_long offset;
pcmcia_reset();
pcmcia_program_voltage(PCMCIA_0V);
pcmcia_access_speed(PCMCIA_SPEED_250NS);
pcmcia_write_enable();
#ifdef MANUAL_CONFIG
config = MANUAL_CONFIG;
#else
/* get and write config byte to enable IO port */
if (pcmcia_copy_tuple(CISTPL_CFTABLE_ENTRY, tuple, 32) < 3)
return 0;
config = tuple[2] & 0x3f;
#endif
#ifdef MANUAL_OFFSET
offset = MANUAL_OFFSET;
#else
if (pcmcia_copy_tuple(CISTPL_CONFIG, tuple, 32) < 6)
return 0;
offset_len = (tuple[2] & 0x3) + 1;
offset = 0;
while(offset_len--) {
offset = (offset << 8) | tuple[4+offset_len];
}
#endif
out_8(GAYLE_ATTRIBUTE+offset, config);
return 1;
}
MODULE_LICENSE("GPL");