mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-27 08:05:27 +08:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
244 lines
8.1 KiB
C
244 lines
8.1 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/* thread_info.h: low-level thread information
|
|
*
|
|
* Copyright (C) 2002 David Howells (dhowells@redhat.com)
|
|
* - Incorporating suggestions made by Linus Torvalds and Dave Miller
|
|
*/
|
|
|
|
#ifndef _ASM_X86_THREAD_INFO_H
|
|
#define _ASM_X86_THREAD_INFO_H
|
|
|
|
#include <linux/compiler.h>
|
|
#include <asm/page.h>
|
|
#include <asm/percpu.h>
|
|
#include <asm/types.h>
|
|
|
|
/*
|
|
* TOP_OF_KERNEL_STACK_PADDING is a number of unused bytes that we
|
|
* reserve at the top of the kernel stack. We do it because of a nasty
|
|
* 32-bit corner case. On x86_32, the hardware stack frame is
|
|
* variable-length. Except for vm86 mode, struct pt_regs assumes a
|
|
* maximum-length frame. If we enter from CPL 0, the top 8 bytes of
|
|
* pt_regs don't actually exist. Ordinarily this doesn't matter, but it
|
|
* does in at least one case:
|
|
*
|
|
* If we take an NMI early enough in SYSENTER, then we can end up with
|
|
* pt_regs that extends above sp0. On the way out, in the espfix code,
|
|
* we can read the saved SS value, but that value will be above sp0.
|
|
* Without this offset, that can result in a page fault. (We are
|
|
* careful that, in this case, the value we read doesn't matter.)
|
|
*
|
|
* In vm86 mode, the hardware frame is much longer still, so add 16
|
|
* bytes to make room for the real-mode segments.
|
|
*
|
|
* x86_64 has a fixed-length stack frame.
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
# ifdef CONFIG_VM86
|
|
# define TOP_OF_KERNEL_STACK_PADDING 16
|
|
# else
|
|
# define TOP_OF_KERNEL_STACK_PADDING 8
|
|
# endif
|
|
#else
|
|
# define TOP_OF_KERNEL_STACK_PADDING 0
|
|
#endif
|
|
|
|
/*
|
|
* low level task data that entry.S needs immediate access to
|
|
* - this struct should fit entirely inside of one cache line
|
|
* - this struct shares the supervisor stack pages
|
|
*/
|
|
#ifndef __ASSEMBLY__
|
|
struct task_struct;
|
|
#include <asm/cpufeature.h>
|
|
#include <linux/atomic.h>
|
|
|
|
struct thread_info {
|
|
unsigned long flags; /* low level flags */
|
|
};
|
|
|
|
#define INIT_THREAD_INFO(tsk) \
|
|
{ \
|
|
.flags = 0, \
|
|
}
|
|
|
|
#define init_stack (init_thread_union.stack)
|
|
|
|
#else /* !__ASSEMBLY__ */
|
|
|
|
#include <asm/asm-offsets.h>
|
|
|
|
#endif
|
|
|
|
/*
|
|
* thread information flags
|
|
* - these are process state flags that various assembly files
|
|
* may need to access
|
|
*/
|
|
#define TIF_SYSCALL_TRACE 0 /* syscall trace active */
|
|
#define TIF_NOTIFY_RESUME 1 /* callback before returning to user */
|
|
#define TIF_SIGPENDING 2 /* signal pending */
|
|
#define TIF_NEED_RESCHED 3 /* rescheduling necessary */
|
|
#define TIF_SINGLESTEP 4 /* reenable singlestep on user return*/
|
|
#define TIF_SYSCALL_EMU 6 /* syscall emulation active */
|
|
#define TIF_SYSCALL_AUDIT 7 /* syscall auditing active */
|
|
#define TIF_SECCOMP 8 /* secure computing */
|
|
#define TIF_USER_RETURN_NOTIFY 11 /* notify kernel of userspace return */
|
|
#define TIF_UPROBE 12 /* breakpointed or singlestepping */
|
|
#define TIF_PATCH_PENDING 13 /* pending live patching update */
|
|
#define TIF_NOCPUID 15 /* CPUID is not accessible in userland */
|
|
#define TIF_NOTSC 16 /* TSC is not accessible in userland */
|
|
#define TIF_IA32 17 /* IA32 compatibility process */
|
|
#define TIF_NOHZ 19 /* in adaptive nohz mode */
|
|
#define TIF_MEMDIE 20 /* is terminating due to OOM killer */
|
|
#define TIF_POLLING_NRFLAG 21 /* idle is polling for TIF_NEED_RESCHED */
|
|
#define TIF_IO_BITMAP 22 /* uses I/O bitmap */
|
|
#define TIF_FORCED_TF 24 /* true if TF in eflags artificially */
|
|
#define TIF_BLOCKSTEP 25 /* set when we want DEBUGCTLMSR_BTF */
|
|
#define TIF_LAZY_MMU_UPDATES 27 /* task is updating the mmu lazily */
|
|
#define TIF_SYSCALL_TRACEPOINT 28 /* syscall tracepoint instrumentation */
|
|
#define TIF_ADDR32 29 /* 32-bit address space on 64 bits */
|
|
#define TIF_X32 30 /* 32-bit native x86-64 binary */
|
|
#define TIF_FSCHECK 31 /* Check FS is USER_DS on return */
|
|
|
|
#define _TIF_SYSCALL_TRACE (1 << TIF_SYSCALL_TRACE)
|
|
#define _TIF_NOTIFY_RESUME (1 << TIF_NOTIFY_RESUME)
|
|
#define _TIF_SIGPENDING (1 << TIF_SIGPENDING)
|
|
#define _TIF_NEED_RESCHED (1 << TIF_NEED_RESCHED)
|
|
#define _TIF_SINGLESTEP (1 << TIF_SINGLESTEP)
|
|
#define _TIF_SYSCALL_EMU (1 << TIF_SYSCALL_EMU)
|
|
#define _TIF_SYSCALL_AUDIT (1 << TIF_SYSCALL_AUDIT)
|
|
#define _TIF_SECCOMP (1 << TIF_SECCOMP)
|
|
#define _TIF_USER_RETURN_NOTIFY (1 << TIF_USER_RETURN_NOTIFY)
|
|
#define _TIF_UPROBE (1 << TIF_UPROBE)
|
|
#define _TIF_PATCH_PENDING (1 << TIF_PATCH_PENDING)
|
|
#define _TIF_NOCPUID (1 << TIF_NOCPUID)
|
|
#define _TIF_NOTSC (1 << TIF_NOTSC)
|
|
#define _TIF_IA32 (1 << TIF_IA32)
|
|
#define _TIF_NOHZ (1 << TIF_NOHZ)
|
|
#define _TIF_POLLING_NRFLAG (1 << TIF_POLLING_NRFLAG)
|
|
#define _TIF_IO_BITMAP (1 << TIF_IO_BITMAP)
|
|
#define _TIF_FORCED_TF (1 << TIF_FORCED_TF)
|
|
#define _TIF_BLOCKSTEP (1 << TIF_BLOCKSTEP)
|
|
#define _TIF_LAZY_MMU_UPDATES (1 << TIF_LAZY_MMU_UPDATES)
|
|
#define _TIF_SYSCALL_TRACEPOINT (1 << TIF_SYSCALL_TRACEPOINT)
|
|
#define _TIF_ADDR32 (1 << TIF_ADDR32)
|
|
#define _TIF_X32 (1 << TIF_X32)
|
|
#define _TIF_FSCHECK (1 << TIF_FSCHECK)
|
|
|
|
/*
|
|
* work to do in syscall_trace_enter(). Also includes TIF_NOHZ for
|
|
* enter_from_user_mode()
|
|
*/
|
|
#define _TIF_WORK_SYSCALL_ENTRY \
|
|
(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_EMU | _TIF_SYSCALL_AUDIT | \
|
|
_TIF_SECCOMP | _TIF_SYSCALL_TRACEPOINT | \
|
|
_TIF_NOHZ)
|
|
|
|
/* work to do on any return to user space */
|
|
#define _TIF_ALLWORK_MASK \
|
|
(_TIF_SYSCALL_TRACE | _TIF_NOTIFY_RESUME | _TIF_SIGPENDING | \
|
|
_TIF_NEED_RESCHED | _TIF_SINGLESTEP | _TIF_SYSCALL_EMU | \
|
|
_TIF_SYSCALL_AUDIT | _TIF_USER_RETURN_NOTIFY | _TIF_UPROBE | \
|
|
_TIF_PATCH_PENDING | _TIF_NOHZ | _TIF_SYSCALL_TRACEPOINT | \
|
|
_TIF_FSCHECK)
|
|
|
|
/* flags to check in __switch_to() */
|
|
#define _TIF_WORK_CTXSW \
|
|
(_TIF_IO_BITMAP|_TIF_NOCPUID|_TIF_NOTSC|_TIF_BLOCKSTEP)
|
|
|
|
#define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW|_TIF_USER_RETURN_NOTIFY)
|
|
#define _TIF_WORK_CTXSW_NEXT (_TIF_WORK_CTXSW)
|
|
|
|
#define STACK_WARN (THREAD_SIZE/8)
|
|
|
|
/*
|
|
* macros/functions for gaining access to the thread information structure
|
|
*
|
|
* preempt_count needs to be 1 initially, until the scheduler is functional.
|
|
*/
|
|
#ifndef __ASSEMBLY__
|
|
|
|
/*
|
|
* Walks up the stack frames to make sure that the specified object is
|
|
* entirely contained by a single stack frame.
|
|
*
|
|
* Returns:
|
|
* GOOD_FRAME if within a frame
|
|
* BAD_STACK if placed across a frame boundary (or outside stack)
|
|
* NOT_STACK unable to determine (no frame pointers, etc)
|
|
*/
|
|
static inline int arch_within_stack_frames(const void * const stack,
|
|
const void * const stackend,
|
|
const void *obj, unsigned long len)
|
|
{
|
|
#if defined(CONFIG_FRAME_POINTER)
|
|
const void *frame = NULL;
|
|
const void *oldframe;
|
|
|
|
oldframe = __builtin_frame_address(1);
|
|
if (oldframe)
|
|
frame = __builtin_frame_address(2);
|
|
/*
|
|
* low ----------------------------------------------> high
|
|
* [saved bp][saved ip][args][local vars][saved bp][saved ip]
|
|
* ^----------------^
|
|
* allow copies only within here
|
|
*/
|
|
while (stack <= frame && frame < stackend) {
|
|
/*
|
|
* If obj + len extends past the last frame, this
|
|
* check won't pass and the next frame will be 0,
|
|
* causing us to bail out and correctly report
|
|
* the copy as invalid.
|
|
*/
|
|
if (obj + len <= frame)
|
|
return obj >= oldframe + 2 * sizeof(void *) ?
|
|
GOOD_FRAME : BAD_STACK;
|
|
oldframe = frame;
|
|
frame = *(const void * const *)frame;
|
|
}
|
|
return BAD_STACK;
|
|
#else
|
|
return NOT_STACK;
|
|
#endif
|
|
}
|
|
|
|
#else /* !__ASSEMBLY__ */
|
|
|
|
#ifdef CONFIG_X86_64
|
|
# define cpu_current_top_of_stack (cpu_tss + TSS_sp0)
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
#define TS_I386_REGS_POKED 0x0004 /* regs poked by 32-bit ptracer */
|
|
#endif
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#ifdef CONFIG_X86_32
|
|
#define in_ia32_syscall() true
|
|
#else
|
|
#define in_ia32_syscall() (IS_ENABLED(CONFIG_IA32_EMULATION) && \
|
|
current->thread.status & TS_COMPAT)
|
|
#endif
|
|
|
|
/*
|
|
* Force syscall return via IRET by making it look as if there was
|
|
* some work pending. IRET is our most capable (but slowest) syscall
|
|
* return path, which is able to restore modified SS, CS and certain
|
|
* EFLAGS values that other (fast) syscall return instructions
|
|
* are not able to restore properly.
|
|
*/
|
|
#define force_iret() set_thread_flag(TIF_NOTIFY_RESUME)
|
|
|
|
extern void arch_task_cache_init(void);
|
|
extern int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src);
|
|
extern void arch_release_task_struct(struct task_struct *tsk);
|
|
extern void arch_setup_new_exec(void);
|
|
#define arch_setup_new_exec arch_setup_new_exec
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#endif /* _ASM_X86_THREAD_INFO_H */
|