2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 15:44:01 +08:00
linux-next/fs/ntfs/super.c
Linus Torvalds 1751e8a6cb Rename superblock flags (MS_xyz -> SB_xyz)
This is a pure automated search-and-replace of the internal kernel
superblock flags.

The s_flags are now called SB_*, with the names and the values for the
moment mirroring the MS_* flags that they're equivalent to.

Note how the MS_xyz flags are the ones passed to the mount system call,
while the SB_xyz flags are what we then use in sb->s_flags.

The script to do this was:

    # places to look in; re security/*: it generally should *not* be
    # touched (that stuff parses mount(2) arguments directly), but
    # there are two places where we really deal with superblock flags.
    FILES="drivers/mtd drivers/staging/lustre fs ipc mm \
            include/linux/fs.h include/uapi/linux/bfs_fs.h \
            security/apparmor/apparmorfs.c security/apparmor/include/lib.h"
    # the list of MS_... constants
    SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \
          DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \
          POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \
          I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \
          ACTIVE NOUSER"

    SED_PROG=
    for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done

    # we want files that contain at least one of MS_...,
    # with fs/namespace.c and fs/pnode.c excluded.
    L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c')

    for f in $L; do sed -i $f $SED_PROG; done

Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 13:05:09 -08:00

3211 lines
100 KiB
C

/*
* super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
*
* Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
* Copyright (c) 2001,2002 Richard Russon
*
* This program/include file is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program/include file is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (in the main directory of the Linux-NTFS
* distribution in the file COPYING); if not, write to the Free Software
* Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/stddef.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h> /* For bdev_logical_block_size(). */
#include <linux/backing-dev.h>
#include <linux/buffer_head.h>
#include <linux/vfs.h>
#include <linux/moduleparam.h>
#include <linux/bitmap.h>
#include "sysctl.h"
#include "logfile.h"
#include "quota.h"
#include "usnjrnl.h"
#include "dir.h"
#include "debug.h"
#include "index.h"
#include "inode.h"
#include "aops.h"
#include "layout.h"
#include "malloc.h"
#include "ntfs.h"
/* Number of mounted filesystems which have compression enabled. */
static unsigned long ntfs_nr_compression_users;
/* A global default upcase table and a corresponding reference count. */
static ntfschar *default_upcase;
static unsigned long ntfs_nr_upcase_users;
/* Error constants/strings used in inode.c::ntfs_show_options(). */
typedef enum {
/* One of these must be present, default is ON_ERRORS_CONTINUE. */
ON_ERRORS_PANIC = 0x01,
ON_ERRORS_REMOUNT_RO = 0x02,
ON_ERRORS_CONTINUE = 0x04,
/* Optional, can be combined with any of the above. */
ON_ERRORS_RECOVER = 0x10,
} ON_ERRORS_ACTIONS;
const option_t on_errors_arr[] = {
{ ON_ERRORS_PANIC, "panic" },
{ ON_ERRORS_REMOUNT_RO, "remount-ro", },
{ ON_ERRORS_CONTINUE, "continue", },
{ ON_ERRORS_RECOVER, "recover" },
{ 0, NULL }
};
/**
* simple_getbool -
*
* Copied from old ntfs driver (which copied from vfat driver).
*/
static int simple_getbool(char *s, bool *setval)
{
if (s) {
if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
*setval = true;
else if (!strcmp(s, "0") || !strcmp(s, "no") ||
!strcmp(s, "false"))
*setval = false;
else
return 0;
} else
*setval = true;
return 1;
}
/**
* parse_options - parse the (re)mount options
* @vol: ntfs volume
* @opt: string containing the (re)mount options
*
* Parse the recognized options in @opt for the ntfs volume described by @vol.
*/
static bool parse_options(ntfs_volume *vol, char *opt)
{
char *p, *v, *ov;
static char *utf8 = "utf8";
int errors = 0, sloppy = 0;
kuid_t uid = INVALID_UID;
kgid_t gid = INVALID_GID;
umode_t fmask = (umode_t)-1, dmask = (umode_t)-1;
int mft_zone_multiplier = -1, on_errors = -1;
int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
struct nls_table *nls_map = NULL, *old_nls;
/* I am lazy... (-8 */
#define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
if (!strcmp(p, option)) { \
if (!v || !*v) \
variable = default_value; \
else { \
variable = simple_strtoul(ov = v, &v, 0); \
if (*v) \
goto needs_val; \
} \
}
#define NTFS_GETOPT(option, variable) \
if (!strcmp(p, option)) { \
if (!v || !*v) \
goto needs_arg; \
variable = simple_strtoul(ov = v, &v, 0); \
if (*v) \
goto needs_val; \
}
#define NTFS_GETOPT_UID(option, variable) \
if (!strcmp(p, option)) { \
uid_t uid_value; \
if (!v || !*v) \
goto needs_arg; \
uid_value = simple_strtoul(ov = v, &v, 0); \
if (*v) \
goto needs_val; \
variable = make_kuid(current_user_ns(), uid_value); \
if (!uid_valid(variable)) \
goto needs_val; \
}
#define NTFS_GETOPT_GID(option, variable) \
if (!strcmp(p, option)) { \
gid_t gid_value; \
if (!v || !*v) \
goto needs_arg; \
gid_value = simple_strtoul(ov = v, &v, 0); \
if (*v) \
goto needs_val; \
variable = make_kgid(current_user_ns(), gid_value); \
if (!gid_valid(variable)) \
goto needs_val; \
}
#define NTFS_GETOPT_OCTAL(option, variable) \
if (!strcmp(p, option)) { \
if (!v || !*v) \
goto needs_arg; \
variable = simple_strtoul(ov = v, &v, 8); \
if (*v) \
goto needs_val; \
}
#define NTFS_GETOPT_BOOL(option, variable) \
if (!strcmp(p, option)) { \
bool val; \
if (!simple_getbool(v, &val)) \
goto needs_bool; \
variable = val; \
}
#define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
if (!strcmp(p, option)) { \
int _i; \
if (!v || !*v) \
goto needs_arg; \
ov = v; \
if (variable == -1) \
variable = 0; \
for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
if (!strcmp(opt_array[_i].str, v)) { \
variable |= opt_array[_i].val; \
break; \
} \
if (!opt_array[_i].str || !*opt_array[_i].str) \
goto needs_val; \
}
if (!opt || !*opt)
goto no_mount_options;
ntfs_debug("Entering with mount options string: %s", opt);
while ((p = strsep(&opt, ","))) {
if ((v = strchr(p, '=')))
*v++ = 0;
NTFS_GETOPT_UID("uid", uid)
else NTFS_GETOPT_GID("gid", gid)
else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
else NTFS_GETOPT_OCTAL("fmask", fmask)
else NTFS_GETOPT_OCTAL("dmask", dmask)
else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
on_errors_arr)
else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
p);
else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
if (!strcmp(p, "iocharset"))
ntfs_warning(vol->sb, "Option iocharset is "
"deprecated. Please use "
"option nls=<charsetname> in "
"the future.");
if (!v || !*v)
goto needs_arg;
use_utf8:
old_nls = nls_map;
nls_map = load_nls(v);
if (!nls_map) {
if (!old_nls) {
ntfs_error(vol->sb, "NLS character set "
"%s not found.", v);
return false;
}
ntfs_error(vol->sb, "NLS character set %s not "
"found. Using previous one %s.",
v, old_nls->charset);
nls_map = old_nls;
} else /* nls_map */ {
unload_nls(old_nls);
}
} else if (!strcmp(p, "utf8")) {
bool val = false;
ntfs_warning(vol->sb, "Option utf8 is no longer "
"supported, using option nls=utf8. Please "
"use option nls=utf8 in the future and "
"make sure utf8 is compiled either as a "
"module or into the kernel.");
if (!v || !*v)
val = true;
else if (!simple_getbool(v, &val))
goto needs_bool;
if (val) {
v = utf8;
goto use_utf8;
}
} else {
ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
if (errors < INT_MAX)
errors++;
}
#undef NTFS_GETOPT_OPTIONS_ARRAY
#undef NTFS_GETOPT_BOOL
#undef NTFS_GETOPT
#undef NTFS_GETOPT_WITH_DEFAULT
}
no_mount_options:
if (errors && !sloppy)
return false;
if (sloppy)
ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
"unrecognized mount option(s) and continuing.");
/* Keep this first! */
if (on_errors != -1) {
if (!on_errors) {
ntfs_error(vol->sb, "Invalid errors option argument "
"or bug in options parser.");
return false;
}
}
if (nls_map) {
if (vol->nls_map && vol->nls_map != nls_map) {
ntfs_error(vol->sb, "Cannot change NLS character set "
"on remount.");
return false;
} /* else (!vol->nls_map) */
ntfs_debug("Using NLS character set %s.", nls_map->charset);
vol->nls_map = nls_map;
} else /* (!nls_map) */ {
if (!vol->nls_map) {
vol->nls_map = load_nls_default();
if (!vol->nls_map) {
ntfs_error(vol->sb, "Failed to load default "
"NLS character set.");
return false;
}
ntfs_debug("Using default NLS character set (%s).",
vol->nls_map->charset);
}
}
if (mft_zone_multiplier != -1) {
if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
mft_zone_multiplier) {
ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
"on remount.");
return false;
}
if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
"Using default value, i.e. 1.");
mft_zone_multiplier = 1;
}
vol->mft_zone_multiplier = mft_zone_multiplier;
}
if (!vol->mft_zone_multiplier)
vol->mft_zone_multiplier = 1;
if (on_errors != -1)
vol->on_errors = on_errors;
if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
vol->on_errors |= ON_ERRORS_CONTINUE;
if (uid_valid(uid))
vol->uid = uid;
if (gid_valid(gid))
vol->gid = gid;
if (fmask != (umode_t)-1)
vol->fmask = fmask;
if (dmask != (umode_t)-1)
vol->dmask = dmask;
if (show_sys_files != -1) {
if (show_sys_files)
NVolSetShowSystemFiles(vol);
else
NVolClearShowSystemFiles(vol);
}
if (case_sensitive != -1) {
if (case_sensitive)
NVolSetCaseSensitive(vol);
else
NVolClearCaseSensitive(vol);
}
if (disable_sparse != -1) {
if (disable_sparse)
NVolClearSparseEnabled(vol);
else {
if (!NVolSparseEnabled(vol) &&
vol->major_ver && vol->major_ver < 3)
ntfs_warning(vol->sb, "Not enabling sparse "
"support due to NTFS volume "
"version %i.%i (need at least "
"version 3.0).", vol->major_ver,
vol->minor_ver);
else
NVolSetSparseEnabled(vol);
}
}
return true;
needs_arg:
ntfs_error(vol->sb, "The %s option requires an argument.", p);
return false;
needs_bool:
ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
return false;
needs_val:
ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
return false;
}
#ifdef NTFS_RW
/**
* ntfs_write_volume_flags - write new flags to the volume information flags
* @vol: ntfs volume on which to modify the flags
* @flags: new flags value for the volume information flags
*
* Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
* instead (see below).
*
* Replace the volume information flags on the volume @vol with the value
* supplied in @flags. Note, this overwrites the volume information flags, so
* make sure to combine the flags you want to modify with the old flags and use
* the result when calling ntfs_write_volume_flags().
*
* Return 0 on success and -errno on error.
*/
static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
{
ntfs_inode *ni = NTFS_I(vol->vol_ino);
MFT_RECORD *m;
VOLUME_INFORMATION *vi;
ntfs_attr_search_ctx *ctx;
int err;
ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
if (vol->vol_flags == flags)
goto done;
BUG_ON(!ni);
m = map_mft_record(ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
goto err_out;
}
ctx = ntfs_attr_get_search_ctx(ni, m);
if (!ctx) {
err = -ENOMEM;
goto put_unm_err_out;
}
err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
ctx);
if (err)
goto put_unm_err_out;
vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
le16_to_cpu(ctx->attr->data.resident.value_offset));
vol->vol_flags = vi->flags = flags;
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(ni);
done:
ntfs_debug("Done.");
return 0;
put_unm_err_out:
if (ctx)
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(ni);
err_out:
ntfs_error(vol->sb, "Failed with error code %i.", -err);
return err;
}
/**
* ntfs_set_volume_flags - set bits in the volume information flags
* @vol: ntfs volume on which to modify the flags
* @flags: flags to set on the volume
*
* Set the bits in @flags in the volume information flags on the volume @vol.
*
* Return 0 on success and -errno on error.
*/
static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
{
flags &= VOLUME_FLAGS_MASK;
return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
}
/**
* ntfs_clear_volume_flags - clear bits in the volume information flags
* @vol: ntfs volume on which to modify the flags
* @flags: flags to clear on the volume
*
* Clear the bits in @flags in the volume information flags on the volume @vol.
*
* Return 0 on success and -errno on error.
*/
static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
{
flags &= VOLUME_FLAGS_MASK;
flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
return ntfs_write_volume_flags(vol, flags);
}
#endif /* NTFS_RW */
/**
* ntfs_remount - change the mount options of a mounted ntfs filesystem
* @sb: superblock of mounted ntfs filesystem
* @flags: remount flags
* @opt: remount options string
*
* Change the mount options of an already mounted ntfs filesystem.
*
* NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
* ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
* @sb->s_flags are not changed.
*/
static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
{
ntfs_volume *vol = NTFS_SB(sb);
ntfs_debug("Entering with remount options string: %s", opt);
sync_filesystem(sb);
#ifndef NTFS_RW
/* For read-only compiled driver, enforce read-only flag. */
*flags |= SB_RDONLY;
#else /* NTFS_RW */
/*
* For the read-write compiled driver, if we are remounting read-write,
* make sure there are no volume errors and that no unsupported volume
* flags are set. Also, empty the logfile journal as it would become
* stale as soon as something is written to the volume and mark the
* volume dirty so that chkdsk is run if the volume is not umounted
* cleanly. Finally, mark the quotas out of date so Windows rescans
* the volume on boot and updates them.
*
* When remounting read-only, mark the volume clean if no volume errors
* have occurred.
*/
if (sb_rdonly(sb) && !(*flags & SB_RDONLY)) {
static const char *es = ". Cannot remount read-write.";
/* Remounting read-write. */
if (NVolErrors(vol)) {
ntfs_error(sb, "Volume has errors and is read-only%s",
es);
return -EROFS;
}
if (vol->vol_flags & VOLUME_IS_DIRTY) {
ntfs_error(sb, "Volume is dirty and read-only%s", es);
return -EROFS;
}
if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
ntfs_error(sb, "Volume has been modified by chkdsk "
"and is read-only%s", es);
return -EROFS;
}
if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
ntfs_error(sb, "Volume has unsupported flags set "
"(0x%x) and is read-only%s",
(unsigned)le16_to_cpu(vol->vol_flags),
es);
return -EROFS;
}
if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
ntfs_error(sb, "Failed to set dirty bit in volume "
"information flags%s", es);
return -EROFS;
}
#if 0
// TODO: Enable this code once we start modifying anything that
// is different between NTFS 1.2 and 3.x...
/* Set NT4 compatibility flag on newer NTFS version volumes. */
if ((vol->major_ver > 1)) {
if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
ntfs_error(sb, "Failed to set NT4 "
"compatibility flag%s", es);
NVolSetErrors(vol);
return -EROFS;
}
}
#endif
if (!ntfs_empty_logfile(vol->logfile_ino)) {
ntfs_error(sb, "Failed to empty journal $LogFile%s",
es);
NVolSetErrors(vol);
return -EROFS;
}
if (!ntfs_mark_quotas_out_of_date(vol)) {
ntfs_error(sb, "Failed to mark quotas out of date%s",
es);
NVolSetErrors(vol);
return -EROFS;
}
if (!ntfs_stamp_usnjrnl(vol)) {
ntfs_error(sb, "Failed to stamp transaction log "
"($UsnJrnl)%s", es);
NVolSetErrors(vol);
return -EROFS;
}
} else if (!sb_rdonly(sb) && (*flags & SB_RDONLY)) {
/* Remounting read-only. */
if (!NVolErrors(vol)) {
if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
ntfs_warning(sb, "Failed to clear dirty bit "
"in volume information "
"flags. Run chkdsk.");
}
}
#endif /* NTFS_RW */
// TODO: Deal with *flags.
if (!parse_options(vol, opt))
return -EINVAL;
ntfs_debug("Done.");
return 0;
}
/**
* is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
* @sb: Super block of the device to which @b belongs.
* @b: Boot sector of device @sb to check.
* @silent: If 'true', all output will be silenced.
*
* is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
* sector. Returns 'true' if it is valid and 'false' if not.
*
* @sb is only needed for warning/error output, i.e. it can be NULL when silent
* is 'true'.
*/
static bool is_boot_sector_ntfs(const struct super_block *sb,
const NTFS_BOOT_SECTOR *b, const bool silent)
{
/*
* Check that checksum == sum of u32 values from b to the checksum
* field. If checksum is zero, no checking is done. We will work when
* the checksum test fails, since some utilities update the boot sector
* ignoring the checksum which leaves the checksum out-of-date. We
* report a warning if this is the case.
*/
if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
le32 *u;
u32 i;
for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
i += le32_to_cpup(u);
if (le32_to_cpu(b->checksum) != i)
ntfs_warning(sb, "Invalid boot sector checksum.");
}
/* Check OEMidentifier is "NTFS " */
if (b->oem_id != magicNTFS)
goto not_ntfs;
/* Check bytes per sector value is between 256 and 4096. */
if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
goto not_ntfs;
/* Check sectors per cluster value is valid. */
switch (b->bpb.sectors_per_cluster) {
case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
break;
default:
goto not_ntfs;
}
/* Check the cluster size is not above the maximum (64kiB). */
if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
goto not_ntfs;
/* Check reserved/unused fields are really zero. */
if (le16_to_cpu(b->bpb.reserved_sectors) ||
le16_to_cpu(b->bpb.root_entries) ||
le16_to_cpu(b->bpb.sectors) ||
le16_to_cpu(b->bpb.sectors_per_fat) ||
le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
goto not_ntfs;
/* Check clusters per file mft record value is valid. */
if ((u8)b->clusters_per_mft_record < 0xe1 ||
(u8)b->clusters_per_mft_record > 0xf7)
switch (b->clusters_per_mft_record) {
case 1: case 2: case 4: case 8: case 16: case 32: case 64:
break;
default:
goto not_ntfs;
}
/* Check clusters per index block value is valid. */
if ((u8)b->clusters_per_index_record < 0xe1 ||
(u8)b->clusters_per_index_record > 0xf7)
switch (b->clusters_per_index_record) {
case 1: case 2: case 4: case 8: case 16: case 32: case 64:
break;
default:
goto not_ntfs;
}
/*
* Check for valid end of sector marker. We will work without it, but
* many BIOSes will refuse to boot from a bootsector if the magic is
* incorrect, so we emit a warning.
*/
if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
ntfs_warning(sb, "Invalid end of sector marker.");
return true;
not_ntfs:
return false;
}
/**
* read_ntfs_boot_sector - read the NTFS boot sector of a device
* @sb: super block of device to read the boot sector from
* @silent: if true, suppress all output
*
* Reads the boot sector from the device and validates it. If that fails, tries
* to read the backup boot sector, first from the end of the device a-la NT4 and
* later and then from the middle of the device a-la NT3.51 and before.
*
* If a valid boot sector is found but it is not the primary boot sector, we
* repair the primary boot sector silently (unless the device is read-only or
* the primary boot sector is not accessible).
*
* NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
* block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
* to their respective values.
*
* Return the unlocked buffer head containing the boot sector or NULL on error.
*/
static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
const int silent)
{
const char *read_err_str = "Unable to read %s boot sector.";
struct buffer_head *bh_primary, *bh_backup;
sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
/* Try to read primary boot sector. */
if ((bh_primary = sb_bread(sb, 0))) {
if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
bh_primary->b_data, silent))
return bh_primary;
if (!silent)
ntfs_error(sb, "Primary boot sector is invalid.");
} else if (!silent)
ntfs_error(sb, read_err_str, "primary");
if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
if (bh_primary)
brelse(bh_primary);
if (!silent)
ntfs_error(sb, "Mount option errors=recover not used. "
"Aborting without trying to recover.");
return NULL;
}
/* Try to read NT4+ backup boot sector. */
if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
bh_backup->b_data, silent))
goto hotfix_primary_boot_sector;
brelse(bh_backup);
} else if (!silent)
ntfs_error(sb, read_err_str, "backup");
/* Try to read NT3.51- backup boot sector. */
if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
bh_backup->b_data, silent))
goto hotfix_primary_boot_sector;
if (!silent)
ntfs_error(sb, "Could not find a valid backup boot "
"sector.");
brelse(bh_backup);
} else if (!silent)
ntfs_error(sb, read_err_str, "backup");
/* We failed. Cleanup and return. */
if (bh_primary)
brelse(bh_primary);
return NULL;
hotfix_primary_boot_sector:
if (bh_primary) {
/*
* If we managed to read sector zero and the volume is not
* read-only, copy the found, valid backup boot sector to the
* primary boot sector. Note we only copy the actual boot
* sector structure, not the actual whole device sector as that
* may be bigger and would potentially damage the $Boot system
* file (FIXME: Would be nice to know if the backup boot sector
* on a large sector device contains the whole boot loader or
* just the first 512 bytes).
*/
if (!sb_rdonly(sb)) {
ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
"boot sector from backup copy.");
memcpy(bh_primary->b_data, bh_backup->b_data,
NTFS_BLOCK_SIZE);
mark_buffer_dirty(bh_primary);
sync_dirty_buffer(bh_primary);
if (buffer_uptodate(bh_primary)) {
brelse(bh_backup);
return bh_primary;
}
ntfs_error(sb, "Hot-fix: Device write error while "
"recovering primary boot sector.");
} else {
ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
"sector failed: Read-only mount.");
}
brelse(bh_primary);
}
ntfs_warning(sb, "Using backup boot sector.");
return bh_backup;
}
/**
* parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
* @vol: volume structure to initialise with data from boot sector
* @b: boot sector to parse
*
* Parse the ntfs boot sector @b and store all imporant information therein in
* the ntfs super block @vol. Return 'true' on success and 'false' on error.
*/
static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
{
unsigned int sectors_per_cluster_bits, nr_hidden_sects;
int clusters_per_mft_record, clusters_per_index_record;
s64 ll;
vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
vol->sector_size_bits = ffs(vol->sector_size) - 1;
ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
vol->sector_size);
ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
vol->sector_size_bits);
if (vol->sector_size < vol->sb->s_blocksize) {
ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
"device block size (%lu). This is not "
"supported. Sorry.", vol->sector_size,
vol->sb->s_blocksize);
return false;
}
ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
ntfs_debug("sectors_per_cluster_bits = 0x%x",
sectors_per_cluster_bits);
nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
vol->cluster_size_mask = vol->cluster_size - 1;
vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
vol->cluster_size);
ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
if (vol->cluster_size < vol->sector_size) {
ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
"sector size (%i). This is not supported. "
"Sorry.", vol->cluster_size, vol->sector_size);
return false;
}
clusters_per_mft_record = b->clusters_per_mft_record;
ntfs_debug("clusters_per_mft_record = %i (0x%x)",
clusters_per_mft_record, clusters_per_mft_record);
if (clusters_per_mft_record > 0)
vol->mft_record_size = vol->cluster_size <<
(ffs(clusters_per_mft_record) - 1);
else
/*
* When mft_record_size < cluster_size, clusters_per_mft_record
* = -log2(mft_record_size) bytes. mft_record_size normaly is
* 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
*/
vol->mft_record_size = 1 << -clusters_per_mft_record;
vol->mft_record_size_mask = vol->mft_record_size - 1;
vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
vol->mft_record_size);
ntfs_debug("vol->mft_record_size_mask = 0x%x",
vol->mft_record_size_mask);
ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
vol->mft_record_size_bits, vol->mft_record_size_bits);
/*
* We cannot support mft record sizes above the PAGE_SIZE since
* we store $MFT/$DATA, the table of mft records in the page cache.
*/
if (vol->mft_record_size > PAGE_SIZE) {
ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
"PAGE_SIZE on your system (%lu). "
"This is not supported. Sorry.",
vol->mft_record_size, PAGE_SIZE);
return false;
}
/* We cannot support mft record sizes below the sector size. */
if (vol->mft_record_size < vol->sector_size) {
ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
"sector size (%i). This is not supported. "
"Sorry.", vol->mft_record_size,
vol->sector_size);
return false;
}
clusters_per_index_record = b->clusters_per_index_record;
ntfs_debug("clusters_per_index_record = %i (0x%x)",
clusters_per_index_record, clusters_per_index_record);
if (clusters_per_index_record > 0)
vol->index_record_size = vol->cluster_size <<
(ffs(clusters_per_index_record) - 1);
else
/*
* When index_record_size < cluster_size,
* clusters_per_index_record = -log2(index_record_size) bytes.
* index_record_size normaly equals 4096 bytes, which is
* encoded as 0xF4 (-12 in decimal).
*/
vol->index_record_size = 1 << -clusters_per_index_record;
vol->index_record_size_mask = vol->index_record_size - 1;
vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
ntfs_debug("vol->index_record_size = %i (0x%x)",
vol->index_record_size, vol->index_record_size);
ntfs_debug("vol->index_record_size_mask = 0x%x",
vol->index_record_size_mask);
ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
vol->index_record_size_bits,
vol->index_record_size_bits);
/* We cannot support index record sizes below the sector size. */
if (vol->index_record_size < vol->sector_size) {
ntfs_error(vol->sb, "Index record size (%i) is smaller than "
"the sector size (%i). This is not "
"supported. Sorry.", vol->index_record_size,
vol->sector_size);
return false;
}
/*
* Get the size of the volume in clusters and check for 64-bit-ness.
* Windows currently only uses 32 bits to save the clusters so we do
* the same as it is much faster on 32-bit CPUs.
*/
ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
if ((u64)ll >= 1ULL << 32) {
ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry.");
return false;
}
vol->nr_clusters = ll;
ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
/*
* On an architecture where unsigned long is 32-bits, we restrict the
* volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
* will hopefully optimize the whole check away.
*/
if (sizeof(unsigned long) < 8) {
if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
"large for this architecture. "
"Maximum supported is 2TiB. Sorry.",
(unsigned long long)ll >> (40 -
vol->cluster_size_bits));
return false;
}
}
ll = sle64_to_cpu(b->mft_lcn);
if (ll >= vol->nr_clusters) {
ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
"volume. Weird.", (unsigned long long)ll,
(unsigned long long)ll);
return false;
}
vol->mft_lcn = ll;
ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
ll = sle64_to_cpu(b->mftmirr_lcn);
if (ll >= vol->nr_clusters) {
ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
"of volume. Weird.", (unsigned long long)ll,
(unsigned long long)ll);
return false;
}
vol->mftmirr_lcn = ll;
ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
#ifdef NTFS_RW
/*
* Work out the size of the mft mirror in number of mft records. If the
* cluster size is less than or equal to the size taken by four mft
* records, the mft mirror stores the first four mft records. If the
* cluster size is bigger than the size taken by four mft records, the
* mft mirror contains as many mft records as will fit into one
* cluster.
*/
if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
vol->mftmirr_size = 4;
else
vol->mftmirr_size = vol->cluster_size >>
vol->mft_record_size_bits;
ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
#endif /* NTFS_RW */
vol->serial_no = le64_to_cpu(b->volume_serial_number);
ntfs_debug("vol->serial_no = 0x%llx",
(unsigned long long)vol->serial_no);
return true;
}
/**
* ntfs_setup_allocators - initialize the cluster and mft allocators
* @vol: volume structure for which to setup the allocators
*
* Setup the cluster (lcn) and mft allocators to the starting values.
*/
static void ntfs_setup_allocators(ntfs_volume *vol)
{
#ifdef NTFS_RW
LCN mft_zone_size, mft_lcn;
#endif /* NTFS_RW */
ntfs_debug("vol->mft_zone_multiplier = 0x%x",
vol->mft_zone_multiplier);
#ifdef NTFS_RW
/* Determine the size of the MFT zone. */
mft_zone_size = vol->nr_clusters;
switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */
case 4:
mft_zone_size >>= 1; /* 50% */
break;
case 3:
mft_zone_size = (mft_zone_size +
(mft_zone_size >> 1)) >> 2; /* 37.5% */
break;
case 2:
mft_zone_size >>= 2; /* 25% */
break;
/* case 1: */
default:
mft_zone_size >>= 3; /* 12.5% */
break;
}
/* Setup the mft zone. */
vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
ntfs_debug("vol->mft_zone_pos = 0x%llx",
(unsigned long long)vol->mft_zone_pos);
/*
* Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
* source) and if the actual mft_lcn is in the expected place or even
* further to the front of the volume, extend the mft_zone to cover the
* beginning of the volume as well. This is in order to protect the
* area reserved for the mft bitmap as well within the mft_zone itself.
* On non-standard volumes we do not protect it as the overhead would
* be higher than the speed increase we would get by doing it.
*/
mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
if (mft_lcn * vol->cluster_size < 16 * 1024)
mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
vol->cluster_size;
if (vol->mft_zone_start <= mft_lcn)
vol->mft_zone_start = 0;
ntfs_debug("vol->mft_zone_start = 0x%llx",
(unsigned long long)vol->mft_zone_start);
/*
* Need to cap the mft zone on non-standard volumes so that it does
* not point outside the boundaries of the volume. We do this by
* halving the zone size until we are inside the volume.
*/
vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
while (vol->mft_zone_end >= vol->nr_clusters) {
mft_zone_size >>= 1;
vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
}
ntfs_debug("vol->mft_zone_end = 0x%llx",
(unsigned long long)vol->mft_zone_end);
/*
* Set the current position within each data zone to the start of the
* respective zone.
*/
vol->data1_zone_pos = vol->mft_zone_end;
ntfs_debug("vol->data1_zone_pos = 0x%llx",
(unsigned long long)vol->data1_zone_pos);
vol->data2_zone_pos = 0;
ntfs_debug("vol->data2_zone_pos = 0x%llx",
(unsigned long long)vol->data2_zone_pos);
/* Set the mft data allocation position to mft record 24. */
vol->mft_data_pos = 24;
ntfs_debug("vol->mft_data_pos = 0x%llx",
(unsigned long long)vol->mft_data_pos);
#endif /* NTFS_RW */
}
#ifdef NTFS_RW
/**
* load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
* @vol: ntfs super block describing device whose mft mirror to load
*
* Return 'true' on success or 'false' on error.
*/
static bool load_and_init_mft_mirror(ntfs_volume *vol)
{
struct inode *tmp_ino;
ntfs_inode *tmp_ni;
ntfs_debug("Entering.");
/* Get mft mirror inode. */
tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
if (!IS_ERR(tmp_ino))
iput(tmp_ino);
/* Caller will display error message. */
return false;
}
/*
* Re-initialize some specifics about $MFTMirr's inode as
* ntfs_read_inode() will have set up the default ones.
*/
/* Set uid and gid to root. */
tmp_ino->i_uid = GLOBAL_ROOT_UID;
tmp_ino->i_gid = GLOBAL_ROOT_GID;
/* Regular file. No access for anyone. */
tmp_ino->i_mode = S_IFREG;
/* No VFS initiated operations allowed for $MFTMirr. */
tmp_ino->i_op = &ntfs_empty_inode_ops;
tmp_ino->i_fop = &ntfs_empty_file_ops;
/* Put in our special address space operations. */
tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
tmp_ni = NTFS_I(tmp_ino);
/* The $MFTMirr, like the $MFT is multi sector transfer protected. */
NInoSetMstProtected(tmp_ni);
NInoSetSparseDisabled(tmp_ni);
/*
* Set up our little cheat allowing us to reuse the async read io
* completion handler for directories.
*/
tmp_ni->itype.index.block_size = vol->mft_record_size;
tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
vol->mftmirr_ino = tmp_ino;
ntfs_debug("Done.");
return true;
}
/**
* check_mft_mirror - compare contents of the mft mirror with the mft
* @vol: ntfs super block describing device whose mft mirror to check
*
* Return 'true' on success or 'false' on error.
*
* Note, this function also results in the mft mirror runlist being completely
* mapped into memory. The mft mirror write code requires this and will BUG()
* should it find an unmapped runlist element.
*/
static bool check_mft_mirror(ntfs_volume *vol)
{
struct super_block *sb = vol->sb;
ntfs_inode *mirr_ni;
struct page *mft_page, *mirr_page;
u8 *kmft, *kmirr;
runlist_element *rl, rl2[2];
pgoff_t index;
int mrecs_per_page, i;
ntfs_debug("Entering.");
/* Compare contents of $MFT and $MFTMirr. */
mrecs_per_page = PAGE_SIZE / vol->mft_record_size;
BUG_ON(!mrecs_per_page);
BUG_ON(!vol->mftmirr_size);
mft_page = mirr_page = NULL;
kmft = kmirr = NULL;
index = i = 0;
do {
u32 bytes;
/* Switch pages if necessary. */
if (!(i % mrecs_per_page)) {
if (index) {
ntfs_unmap_page(mft_page);
ntfs_unmap_page(mirr_page);
}
/* Get the $MFT page. */
mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
index);
if (IS_ERR(mft_page)) {
ntfs_error(sb, "Failed to read $MFT.");
return false;
}
kmft = page_address(mft_page);
/* Get the $MFTMirr page. */
mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
index);
if (IS_ERR(mirr_page)) {
ntfs_error(sb, "Failed to read $MFTMirr.");
goto mft_unmap_out;
}
kmirr = page_address(mirr_page);
++index;
}
/* Do not check the record if it is not in use. */
if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
/* Make sure the record is ok. */
if (ntfs_is_baad_recordp((le32*)kmft)) {
ntfs_error(sb, "Incomplete multi sector "
"transfer detected in mft "
"record %i.", i);
mm_unmap_out:
ntfs_unmap_page(mirr_page);
mft_unmap_out:
ntfs_unmap_page(mft_page);
return false;
}
}
/* Do not check the mirror record if it is not in use. */
if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
if (ntfs_is_baad_recordp((le32*)kmirr)) {
ntfs_error(sb, "Incomplete multi sector "
"transfer detected in mft "
"mirror record %i.", i);
goto mm_unmap_out;
}
}
/* Get the amount of data in the current record. */
bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
if (bytes < sizeof(MFT_RECORD_OLD) ||
bytes > vol->mft_record_size ||
ntfs_is_baad_recordp((le32*)kmft)) {
bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
if (bytes < sizeof(MFT_RECORD_OLD) ||
bytes > vol->mft_record_size ||
ntfs_is_baad_recordp((le32*)kmirr))
bytes = vol->mft_record_size;
}
/* Compare the two records. */
if (memcmp(kmft, kmirr, bytes)) {
ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
"match. Run ntfsfix or chkdsk.", i);
goto mm_unmap_out;
}
kmft += vol->mft_record_size;
kmirr += vol->mft_record_size;
} while (++i < vol->mftmirr_size);
/* Release the last pages. */
ntfs_unmap_page(mft_page);
ntfs_unmap_page(mirr_page);
/* Construct the mft mirror runlist by hand. */
rl2[0].vcn = 0;
rl2[0].lcn = vol->mftmirr_lcn;
rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
vol->cluster_size - 1) / vol->cluster_size;
rl2[1].vcn = rl2[0].length;
rl2[1].lcn = LCN_ENOENT;
rl2[1].length = 0;
/*
* Because we have just read all of the mft mirror, we know we have
* mapped the full runlist for it.
*/
mirr_ni = NTFS_I(vol->mftmirr_ino);
down_read(&mirr_ni->runlist.lock);
rl = mirr_ni->runlist.rl;
/* Compare the two runlists. They must be identical. */
i = 0;
do {
if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
rl2[i].length != rl[i].length) {
ntfs_error(sb, "$MFTMirr location mismatch. "
"Run chkdsk.");
up_read(&mirr_ni->runlist.lock);
return false;
}
} while (rl2[i++].length);
up_read(&mirr_ni->runlist.lock);
ntfs_debug("Done.");
return true;
}
/**
* load_and_check_logfile - load and check the logfile inode for a volume
* @vol: ntfs super block describing device whose logfile to load
*
* Return 'true' on success or 'false' on error.
*/
static bool load_and_check_logfile(ntfs_volume *vol,
RESTART_PAGE_HEADER **rp)
{
struct inode *tmp_ino;
ntfs_debug("Entering.");
tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
if (!IS_ERR(tmp_ino))
iput(tmp_ino);
/* Caller will display error message. */
return false;
}
if (!ntfs_check_logfile(tmp_ino, rp)) {
iput(tmp_ino);
/* ntfs_check_logfile() will have displayed error output. */
return false;
}
NInoSetSparseDisabled(NTFS_I(tmp_ino));
vol->logfile_ino = tmp_ino;
ntfs_debug("Done.");
return true;
}
#define NTFS_HIBERFIL_HEADER_SIZE 4096
/**
* check_windows_hibernation_status - check if Windows is suspended on a volume
* @vol: ntfs super block of device to check
*
* Check if Windows is hibernated on the ntfs volume @vol. This is done by
* looking for the file hiberfil.sys in the root directory of the volume. If
* the file is not present Windows is definitely not suspended.
*
* If hiberfil.sys exists and is less than 4kiB in size it means Windows is
* definitely suspended (this volume is not the system volume). Caveat: on a
* system with many volumes it is possible that the < 4kiB check is bogus but
* for now this should do fine.
*
* If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
* hiberfil header (which is the first 4kiB). If this begins with "hibr",
* Windows is definitely suspended. If it is completely full of zeroes,
* Windows is definitely not hibernated. Any other case is treated as if
* Windows is suspended. This caters for the above mentioned caveat of a
* system with many volumes where no "hibr" magic would be present and there is
* no zero header.
*
* Return 0 if Windows is not hibernated on the volume, >0 if Windows is
* hibernated on the volume, and -errno on error.
*/
static int check_windows_hibernation_status(ntfs_volume *vol)
{
MFT_REF mref;
struct inode *vi;
struct page *page;
u32 *kaddr, *kend;
ntfs_name *name = NULL;
int ret = 1;
static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
cpu_to_le16('i'), cpu_to_le16('b'),
cpu_to_le16('e'), cpu_to_le16('r'),
cpu_to_le16('f'), cpu_to_le16('i'),
cpu_to_le16('l'), cpu_to_le16('.'),
cpu_to_le16('s'), cpu_to_le16('y'),
cpu_to_le16('s'), 0 };
ntfs_debug("Entering.");
/*
* Find the inode number for the hibernation file by looking up the
* filename hiberfil.sys in the root directory.
*/
inode_lock(vol->root_ino);
mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
&name);
inode_unlock(vol->root_ino);
if (IS_ERR_MREF(mref)) {
ret = MREF_ERR(mref);
/* If the file does not exist, Windows is not hibernated. */
if (ret == -ENOENT) {
ntfs_debug("hiberfil.sys not present. Windows is not "
"hibernated on the volume.");
return 0;
}
/* A real error occurred. */
ntfs_error(vol->sb, "Failed to find inode number for "
"hiberfil.sys.");
return ret;
}
/* We do not care for the type of match that was found. */
kfree(name);
/* Get the inode. */
vi = ntfs_iget(vol->sb, MREF(mref));
if (IS_ERR(vi) || is_bad_inode(vi)) {
if (!IS_ERR(vi))
iput(vi);
ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
}
if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
"Windows is hibernated on the volume. This "
"is not the system volume.", i_size_read(vi));
goto iput_out;
}
page = ntfs_map_page(vi->i_mapping, 0);
if (IS_ERR(page)) {
ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
ret = PTR_ERR(page);
goto iput_out;
}
kaddr = (u32*)page_address(page);
if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
"hibernated on the volume. This is the "
"system volume.");
goto unm_iput_out;
}
kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
do {
if (unlikely(*kaddr)) {
ntfs_debug("hiberfil.sys is larger than 4kiB "
"(0x%llx), does not contain the "
"\"hibr\" magic, and does not have a "
"zero header. Windows is hibernated "
"on the volume. This is not the "
"system volume.", i_size_read(vi));
goto unm_iput_out;
}
} while (++kaddr < kend);
ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
"hibernated on the volume. This is the system "
"volume.");
ret = 0;
unm_iput_out:
ntfs_unmap_page(page);
iput_out:
iput(vi);
return ret;
}
/**
* load_and_init_quota - load and setup the quota file for a volume if present
* @vol: ntfs super block describing device whose quota file to load
*
* Return 'true' on success or 'false' on error. If $Quota is not present, we
* leave vol->quota_ino as NULL and return success.
*/
static bool load_and_init_quota(ntfs_volume *vol)
{
MFT_REF mref;
struct inode *tmp_ino;
ntfs_name *name = NULL;
static const ntfschar Quota[7] = { cpu_to_le16('$'),
cpu_to_le16('Q'), cpu_to_le16('u'),
cpu_to_le16('o'), cpu_to_le16('t'),
cpu_to_le16('a'), 0 };
static ntfschar Q[3] = { cpu_to_le16('$'),
cpu_to_le16('Q'), 0 };
ntfs_debug("Entering.");
/*
* Find the inode number for the quota file by looking up the filename
* $Quota in the extended system files directory $Extend.
*/
inode_lock(vol->extend_ino);
mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
&name);
inode_unlock(vol->extend_ino);
if (IS_ERR_MREF(mref)) {
/*
* If the file does not exist, quotas are disabled and have
* never been enabled on this volume, just return success.
*/
if (MREF_ERR(mref) == -ENOENT) {
ntfs_debug("$Quota not present. Volume does not have "
"quotas enabled.");
/*
* No need to try to set quotas out of date if they are
* not enabled.
*/
NVolSetQuotaOutOfDate(vol);
return true;
}
/* A real error occurred. */
ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
return false;
}
/* We do not care for the type of match that was found. */
kfree(name);
/* Get the inode. */
tmp_ino = ntfs_iget(vol->sb, MREF(mref));
if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
if (!IS_ERR(tmp_ino))
iput(tmp_ino);
ntfs_error(vol->sb, "Failed to load $Quota.");
return false;
}
vol->quota_ino = tmp_ino;
/* Get the $Q index allocation attribute. */
tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
if (IS_ERR(tmp_ino)) {
ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
return false;
}
vol->quota_q_ino = tmp_ino;
ntfs_debug("Done.");
return true;
}
/**
* load_and_init_usnjrnl - load and setup the transaction log if present
* @vol: ntfs super block describing device whose usnjrnl file to load
*
* Return 'true' on success or 'false' on error.
*
* If $UsnJrnl is not present or in the process of being disabled, we set
* NVolUsnJrnlStamped() and return success.
*
* If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
* i.e. transaction logging has only just been enabled or the journal has been
* stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
* and return success.
*/
static bool load_and_init_usnjrnl(ntfs_volume *vol)
{
MFT_REF mref;
struct inode *tmp_ino;
ntfs_inode *tmp_ni;
struct page *page;
ntfs_name *name = NULL;
USN_HEADER *uh;
static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
cpu_to_le16('U'), cpu_to_le16('s'),
cpu_to_le16('n'), cpu_to_le16('J'),
cpu_to_le16('r'), cpu_to_le16('n'),
cpu_to_le16('l'), 0 };
static ntfschar Max[5] = { cpu_to_le16('$'),
cpu_to_le16('M'), cpu_to_le16('a'),
cpu_to_le16('x'), 0 };
static ntfschar J[3] = { cpu_to_le16('$'),
cpu_to_le16('J'), 0 };
ntfs_debug("Entering.");
/*
* Find the inode number for the transaction log file by looking up the
* filename $UsnJrnl in the extended system files directory $Extend.
*/
inode_lock(vol->extend_ino);
mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
&name);
inode_unlock(vol->extend_ino);
if (IS_ERR_MREF(mref)) {
/*
* If the file does not exist, transaction logging is disabled,
* just return success.
*/
if (MREF_ERR(mref) == -ENOENT) {
ntfs_debug("$UsnJrnl not present. Volume does not "
"have transaction logging enabled.");
not_enabled:
/*
* No need to try to stamp the transaction log if
* transaction logging is not enabled.
*/
NVolSetUsnJrnlStamped(vol);
return true;
}
/* A real error occurred. */
ntfs_error(vol->sb, "Failed to find inode number for "
"$UsnJrnl.");
return false;
}
/* We do not care for the type of match that was found. */
kfree(name);
/* Get the inode. */
tmp_ino = ntfs_iget(vol->sb, MREF(mref));
if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
if (!IS_ERR(tmp_ino))
iput(tmp_ino);
ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
return false;
}
vol->usnjrnl_ino = tmp_ino;
/*
* If the transaction log is in the process of being deleted, we can
* ignore it.
*/
if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
ntfs_debug("$UsnJrnl in the process of being disabled. "
"Volume does not have transaction logging "
"enabled.");
goto not_enabled;
}
/* Get the $DATA/$Max attribute. */
tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
if (IS_ERR(tmp_ino)) {
ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
"attribute.");
return false;
}
vol->usnjrnl_max_ino = tmp_ino;
if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
"attribute (size is 0x%llx but should be at "
"least 0x%zx bytes).", i_size_read(tmp_ino),
sizeof(USN_HEADER));
return false;
}
/* Get the $DATA/$J attribute. */
tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
if (IS_ERR(tmp_ino)) {
ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
"attribute.");
return false;
}
vol->usnjrnl_j_ino = tmp_ino;
/* Verify $J is non-resident and sparse. */
tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
"and/or not sparse.");
return false;
}
/* Read the USN_HEADER from $DATA/$Max. */
page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
if (IS_ERR(page)) {
ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
"attribute.");
return false;
}
uh = (USN_HEADER*)page_address(page);
/* Sanity check the $Max. */
if (unlikely(sle64_to_cpu(uh->allocation_delta) >
sle64_to_cpu(uh->maximum_size))) {
ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
"maximum size (0x%llx). $UsnJrnl is corrupt.",
(long long)sle64_to_cpu(uh->allocation_delta),
(long long)sle64_to_cpu(uh->maximum_size));
ntfs_unmap_page(page);
return false;
}
/*
* If the transaction log has been stamped and nothing has been written
* to it since, we do not need to stamp it.
*/
if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
i_size_read(vol->usnjrnl_j_ino))) {
if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
i_size_read(vol->usnjrnl_j_ino))) {
ntfs_unmap_page(page);
ntfs_debug("$UsnJrnl is enabled but nothing has been "
"logged since it was last stamped. "
"Treating this as if the volume does "
"not have transaction logging "
"enabled.");
goto not_enabled;
}
ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
"which is out of bounds (0x%llx). $UsnJrnl "
"is corrupt.",
(long long)sle64_to_cpu(uh->lowest_valid_usn),
i_size_read(vol->usnjrnl_j_ino));
ntfs_unmap_page(page);
return false;
}
ntfs_unmap_page(page);
ntfs_debug("Done.");
return true;
}
/**
* load_and_init_attrdef - load the attribute definitions table for a volume
* @vol: ntfs super block describing device whose attrdef to load
*
* Return 'true' on success or 'false' on error.
*/
static bool load_and_init_attrdef(ntfs_volume *vol)
{
loff_t i_size;
struct super_block *sb = vol->sb;
struct inode *ino;
struct page *page;
pgoff_t index, max_index;
unsigned int size;
ntfs_debug("Entering.");
/* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
ino = ntfs_iget(sb, FILE_AttrDef);
if (IS_ERR(ino) || is_bad_inode(ino)) {
if (!IS_ERR(ino))
iput(ino);
goto failed;
}
NInoSetSparseDisabled(NTFS_I(ino));
/* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
i_size = i_size_read(ino);
if (i_size <= 0 || i_size > 0x7fffffff)
goto iput_failed;
vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
if (!vol->attrdef)
goto iput_failed;
index = 0;
max_index = i_size >> PAGE_SHIFT;
size = PAGE_SIZE;
while (index < max_index) {
/* Read the attrdef table and copy it into the linear buffer. */
read_partial_attrdef_page:
page = ntfs_map_page(ino->i_mapping, index);
if (IS_ERR(page))
goto free_iput_failed;
memcpy((u8*)vol->attrdef + (index++ << PAGE_SHIFT),
page_address(page), size);
ntfs_unmap_page(page);
};
if (size == PAGE_SIZE) {
size = i_size & ~PAGE_MASK;
if (size)
goto read_partial_attrdef_page;
}
vol->attrdef_size = i_size;
ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
iput(ino);
return true;
free_iput_failed:
ntfs_free(vol->attrdef);
vol->attrdef = NULL;
iput_failed:
iput(ino);
failed:
ntfs_error(sb, "Failed to initialize attribute definition table.");
return false;
}
#endif /* NTFS_RW */
/**
* load_and_init_upcase - load the upcase table for an ntfs volume
* @vol: ntfs super block describing device whose upcase to load
*
* Return 'true' on success or 'false' on error.
*/
static bool load_and_init_upcase(ntfs_volume *vol)
{
loff_t i_size;
struct super_block *sb = vol->sb;
struct inode *ino;
struct page *page;
pgoff_t index, max_index;
unsigned int size;
int i, max;
ntfs_debug("Entering.");
/* Read upcase table and setup vol->upcase and vol->upcase_len. */
ino = ntfs_iget(sb, FILE_UpCase);
if (IS_ERR(ino) || is_bad_inode(ino)) {
if (!IS_ERR(ino))
iput(ino);
goto upcase_failed;
}
/*
* The upcase size must not be above 64k Unicode characters, must not
* be zero and must be a multiple of sizeof(ntfschar).
*/
i_size = i_size_read(ino);
if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
i_size > 64ULL * 1024 * sizeof(ntfschar))
goto iput_upcase_failed;
vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
if (!vol->upcase)
goto iput_upcase_failed;
index = 0;
max_index = i_size >> PAGE_SHIFT;
size = PAGE_SIZE;
while (index < max_index) {
/* Read the upcase table and copy it into the linear buffer. */
read_partial_upcase_page:
page = ntfs_map_page(ino->i_mapping, index);
if (IS_ERR(page))
goto iput_upcase_failed;
memcpy((char*)vol->upcase + (index++ << PAGE_SHIFT),
page_address(page), size);
ntfs_unmap_page(page);
};
if (size == PAGE_SIZE) {
size = i_size & ~PAGE_MASK;
if (size)
goto read_partial_upcase_page;
}
vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
i_size, 64 * 1024 * sizeof(ntfschar));
iput(ino);
mutex_lock(&ntfs_lock);
if (!default_upcase) {
ntfs_debug("Using volume specified $UpCase since default is "
"not present.");
mutex_unlock(&ntfs_lock);
return true;
}
max = default_upcase_len;
if (max > vol->upcase_len)
max = vol->upcase_len;
for (i = 0; i < max; i++)
if (vol->upcase[i] != default_upcase[i])
break;
if (i == max) {
ntfs_free(vol->upcase);
vol->upcase = default_upcase;
vol->upcase_len = max;
ntfs_nr_upcase_users++;
mutex_unlock(&ntfs_lock);
ntfs_debug("Volume specified $UpCase matches default. Using "
"default.");
return true;
}
mutex_unlock(&ntfs_lock);
ntfs_debug("Using volume specified $UpCase since it does not match "
"the default.");
return true;
iput_upcase_failed:
iput(ino);
ntfs_free(vol->upcase);
vol->upcase = NULL;
upcase_failed:
mutex_lock(&ntfs_lock);
if (default_upcase) {
vol->upcase = default_upcase;
vol->upcase_len = default_upcase_len;
ntfs_nr_upcase_users++;
mutex_unlock(&ntfs_lock);
ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
"default.");
return true;
}
mutex_unlock(&ntfs_lock);
ntfs_error(sb, "Failed to initialize upcase table.");
return false;
}
/*
* The lcn and mft bitmap inodes are NTFS-internal inodes with
* their own special locking rules:
*/
static struct lock_class_key
lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
/**
* load_system_files - open the system files using normal functions
* @vol: ntfs super block describing device whose system files to load
*
* Open the system files with normal access functions and complete setting up
* the ntfs super block @vol.
*
* Return 'true' on success or 'false' on error.
*/
static bool load_system_files(ntfs_volume *vol)
{
struct super_block *sb = vol->sb;
MFT_RECORD *m;
VOLUME_INFORMATION *vi;
ntfs_attr_search_ctx *ctx;
#ifdef NTFS_RW
RESTART_PAGE_HEADER *rp;
int err;
#endif /* NTFS_RW */
ntfs_debug("Entering.");
#ifdef NTFS_RW
/* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
static const char *es1 = "Failed to load $MFTMirr";
static const char *es2 = "$MFTMirr does not match $MFT";
static const char *es3 = ". Run ntfsfix and/or chkdsk.";
/* If a read-write mount, convert it to a read-only mount. */
if (!sb_rdonly(sb)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
!vol->mftmirr_ino ? es1 : es2,
es3);
goto iput_mirr_err_out;
}
sb->s_flags |= SB_RDONLY;
ntfs_error(sb, "%s. Mounting read-only%s",
!vol->mftmirr_ino ? es1 : es2, es3);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s",
!vol->mftmirr_ino ? es1 : es2, es3);
/* This will prevent a read-write remount. */
NVolSetErrors(vol);
}
#endif /* NTFS_RW */
/* Get mft bitmap attribute inode. */
vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
if (IS_ERR(vol->mftbmp_ino)) {
ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
goto iput_mirr_err_out;
}
lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
&mftbmp_runlist_lock_key);
lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
&mftbmp_mrec_lock_key);
/* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
if (!load_and_init_upcase(vol))
goto iput_mftbmp_err_out;
#ifdef NTFS_RW
/*
* Read attribute definitions table and setup @vol->attrdef and
* @vol->attrdef_size.
*/
if (!load_and_init_attrdef(vol))
goto iput_upcase_err_out;
#endif /* NTFS_RW */
/*
* Get the cluster allocation bitmap inode and verify the size, no
* need for any locking at this stage as we are already running
* exclusively as we are mount in progress task.
*/
vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
if (!IS_ERR(vol->lcnbmp_ino))
iput(vol->lcnbmp_ino);
goto bitmap_failed;
}
lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
&lcnbmp_runlist_lock_key);
lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
&lcnbmp_mrec_lock_key);
NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
iput(vol->lcnbmp_ino);
bitmap_failed:
ntfs_error(sb, "Failed to load $Bitmap.");
goto iput_attrdef_err_out;
}
/*
* Get the volume inode and setup our cache of the volume flags and
* version.
*/
vol->vol_ino = ntfs_iget(sb, FILE_Volume);
if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
if (!IS_ERR(vol->vol_ino))
iput(vol->vol_ino);
volume_failed:
ntfs_error(sb, "Failed to load $Volume.");
goto iput_lcnbmp_err_out;
}
m = map_mft_record(NTFS_I(vol->vol_ino));
if (IS_ERR(m)) {
iput_volume_failed:
iput(vol->vol_ino);
goto volume_failed;
}
if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
ntfs_error(sb, "Failed to get attribute search context.");
goto get_ctx_vol_failed;
}
if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
ctx) || ctx->attr->non_resident || ctx->attr->flags) {
err_put_vol:
ntfs_attr_put_search_ctx(ctx);
get_ctx_vol_failed:
unmap_mft_record(NTFS_I(vol->vol_ino));
goto iput_volume_failed;
}
vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
le16_to_cpu(ctx->attr->data.resident.value_offset));
/* Some bounds checks. */
if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
le32_to_cpu(ctx->attr->data.resident.value_length) >
(u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
goto err_put_vol;
/* Copy the volume flags and version to the ntfs_volume structure. */
vol->vol_flags = vi->flags;
vol->major_ver = vi->major_ver;
vol->minor_ver = vi->minor_ver;
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(NTFS_I(vol->vol_ino));
pr_info("volume version %i.%i.\n", vol->major_ver,
vol->minor_ver);
if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
"volume version %i.%i (need at least version "
"3.0).", vol->major_ver, vol->minor_ver);
NVolClearSparseEnabled(vol);
}
#ifdef NTFS_RW
/* Make sure that no unsupported volume flags are set. */
if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
static const char *es1a = "Volume is dirty";
static const char *es1b = "Volume has been modified by chkdsk";
static const char *es1c = "Volume has unsupported flags set";
static const char *es2a = ". Run chkdsk and mount in Windows.";
static const char *es2b = ". Mount in Windows.";
const char *es1, *es2;
es2 = es2a;
if (vol->vol_flags & VOLUME_IS_DIRTY)
es1 = es1a;
else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
es1 = es1b;
es2 = es2b;
} else {
es1 = es1c;
ntfs_warning(sb, "Unsupported volume flags 0x%x "
"encountered.",
(unsigned)le16_to_cpu(vol->vol_flags));
}
/* If a read-write mount, convert it to a read-only mount. */
if (!sb_rdonly(sb)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
es1, es2);
goto iput_vol_err_out;
}
sb->s_flags |= SB_RDONLY;
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s", es1, es2);
/*
* Do not set NVolErrors() because ntfs_remount() re-checks the
* flags which we need to do in case any flags have changed.
*/
}
/*
* Get the inode for the logfile, check it and determine if the volume
* was shutdown cleanly.
*/
rp = NULL;
if (!load_and_check_logfile(vol, &rp) ||
!ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
static const char *es1a = "Failed to load $LogFile";
static const char *es1b = "$LogFile is not clean";
static const char *es2 = ". Mount in Windows.";
const char *es1;
es1 = !vol->logfile_ino ? es1a : es1b;
/* If a read-write mount, convert it to a read-only mount. */
if (!sb_rdonly(sb)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
es1, es2);
if (vol->logfile_ino) {
BUG_ON(!rp);
ntfs_free(rp);
}
goto iput_logfile_err_out;
}
sb->s_flags |= SB_RDONLY;
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s", es1, es2);
/* This will prevent a read-write remount. */
NVolSetErrors(vol);
}
ntfs_free(rp);
#endif /* NTFS_RW */
/* Get the root directory inode so we can do path lookups. */
vol->root_ino = ntfs_iget(sb, FILE_root);
if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
if (!IS_ERR(vol->root_ino))
iput(vol->root_ino);
ntfs_error(sb, "Failed to load root directory.");
goto iput_logfile_err_out;
}
#ifdef NTFS_RW
/*
* Check if Windows is suspended to disk on the target volume. If it
* is hibernated, we must not write *anything* to the disk so set
* NVolErrors() without setting the dirty volume flag and mount
* read-only. This will prevent read-write remounting and it will also
* prevent all writes.
*/
err = check_windows_hibernation_status(vol);
if (unlikely(err)) {
static const char *es1a = "Failed to determine if Windows is "
"hibernated";
static const char *es1b = "Windows is hibernated";
static const char *es2 = ". Run chkdsk.";
const char *es1;
es1 = err < 0 ? es1a : es1b;
/* If a read-write mount, convert it to a read-only mount. */
if (!sb_rdonly(sb)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
es1, es2);
goto iput_root_err_out;
}
sb->s_flags |= SB_RDONLY;
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s", es1, es2);
/* This will prevent a read-write remount. */
NVolSetErrors(vol);
}
/* If (still) a read-write mount, mark the volume dirty. */
if (!sb_rdonly(sb) && ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
static const char *es1 = "Failed to set dirty bit in volume "
"information flags";
static const char *es2 = ". Run chkdsk.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_root_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= SB_RDONLY;
/*
* Do not set NVolErrors() because ntfs_remount() might manage
* to set the dirty flag in which case all would be well.
*/
}
#if 0
// TODO: Enable this code once we start modifying anything that is
// different between NTFS 1.2 and 3.x...
/*
* If (still) a read-write mount, set the NT4 compatibility flag on
* newer NTFS version volumes.
*/
if (!(sb->s_flags & SB_RDONLY) && (vol->major_ver > 1) &&
ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
static const char *es1 = "Failed to set NT4 compatibility flag";
static const char *es2 = ". Run chkdsk.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_root_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= SB_RDONLY;
NVolSetErrors(vol);
}
#endif
/* If (still) a read-write mount, empty the logfile. */
if (!sb_rdonly(sb) && !ntfs_empty_logfile(vol->logfile_ino)) {
static const char *es1 = "Failed to empty $LogFile";
static const char *es2 = ". Mount in Windows.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_root_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= SB_RDONLY;
NVolSetErrors(vol);
}
#endif /* NTFS_RW */
/* If on NTFS versions before 3.0, we are done. */
if (unlikely(vol->major_ver < 3))
return true;
/* NTFS 3.0+ specific initialization. */
/* Get the security descriptors inode. */
vol->secure_ino = ntfs_iget(sb, FILE_Secure);
if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
if (!IS_ERR(vol->secure_ino))
iput(vol->secure_ino);
ntfs_error(sb, "Failed to load $Secure.");
goto iput_root_err_out;
}
// TODO: Initialize security.
/* Get the extended system files' directory inode. */
vol->extend_ino = ntfs_iget(sb, FILE_Extend);
if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
if (!IS_ERR(vol->extend_ino))
iput(vol->extend_ino);
ntfs_error(sb, "Failed to load $Extend.");
goto iput_sec_err_out;
}
#ifdef NTFS_RW
/* Find the quota file, load it if present, and set it up. */
if (!load_and_init_quota(vol)) {
static const char *es1 = "Failed to load $Quota";
static const char *es2 = ". Run chkdsk.";
/* If a read-write mount, convert it to a read-only mount. */
if (!sb_rdonly(sb)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
es1, es2);
goto iput_quota_err_out;
}
sb->s_flags |= SB_RDONLY;
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s", es1, es2);
/* This will prevent a read-write remount. */
NVolSetErrors(vol);
}
/* If (still) a read-write mount, mark the quotas out of date. */
if (!sb_rdonly(sb) && !ntfs_mark_quotas_out_of_date(vol)) {
static const char *es1 = "Failed to mark quotas out of date";
static const char *es2 = ". Run chkdsk.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_quota_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= SB_RDONLY;
NVolSetErrors(vol);
}
/*
* Find the transaction log file ($UsnJrnl), load it if present, check
* it, and set it up.
*/
if (!load_and_init_usnjrnl(vol)) {
static const char *es1 = "Failed to load $UsnJrnl";
static const char *es2 = ". Run chkdsk.";
/* If a read-write mount, convert it to a read-only mount. */
if (!sb_rdonly(sb)) {
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors="
"continue nor on_errors="
"remount-ro was specified%s",
es1, es2);
goto iput_usnjrnl_err_out;
}
sb->s_flags |= SB_RDONLY;
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
} else
ntfs_warning(sb, "%s. Will not be able to remount "
"read-write%s", es1, es2);
/* This will prevent a read-write remount. */
NVolSetErrors(vol);
}
/* If (still) a read-write mount, stamp the transaction log. */
if (!sb_rdonly(sb) && !ntfs_stamp_usnjrnl(vol)) {
static const char *es1 = "Failed to stamp transaction log "
"($UsnJrnl)";
static const char *es2 = ". Run chkdsk.";
/* Convert to a read-only mount. */
if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
ON_ERRORS_CONTINUE))) {
ntfs_error(sb, "%s and neither on_errors=continue nor "
"on_errors=remount-ro was specified%s",
es1, es2);
goto iput_usnjrnl_err_out;
}
ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
sb->s_flags |= SB_RDONLY;
NVolSetErrors(vol);
}
#endif /* NTFS_RW */
return true;
#ifdef NTFS_RW
iput_usnjrnl_err_out:
iput(vol->usnjrnl_j_ino);
iput(vol->usnjrnl_max_ino);
iput(vol->usnjrnl_ino);
iput_quota_err_out:
iput(vol->quota_q_ino);
iput(vol->quota_ino);
iput(vol->extend_ino);
#endif /* NTFS_RW */
iput_sec_err_out:
iput(vol->secure_ino);
iput_root_err_out:
iput(vol->root_ino);
iput_logfile_err_out:
#ifdef NTFS_RW
iput(vol->logfile_ino);
iput_vol_err_out:
#endif /* NTFS_RW */
iput(vol->vol_ino);
iput_lcnbmp_err_out:
iput(vol->lcnbmp_ino);
iput_attrdef_err_out:
vol->attrdef_size = 0;
if (vol->attrdef) {
ntfs_free(vol->attrdef);
vol->attrdef = NULL;
}
#ifdef NTFS_RW
iput_upcase_err_out:
#endif /* NTFS_RW */
vol->upcase_len = 0;
mutex_lock(&ntfs_lock);
if (vol->upcase == default_upcase) {
ntfs_nr_upcase_users--;
vol->upcase = NULL;
}
mutex_unlock(&ntfs_lock);
if (vol->upcase) {
ntfs_free(vol->upcase);
vol->upcase = NULL;
}
iput_mftbmp_err_out:
iput(vol->mftbmp_ino);
iput_mirr_err_out:
#ifdef NTFS_RW
iput(vol->mftmirr_ino);
#endif /* NTFS_RW */
return false;
}
/**
* ntfs_put_super - called by the vfs to unmount a volume
* @sb: vfs superblock of volume to unmount
*
* ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
* the volume is being unmounted (umount system call has been invoked) and it
* releases all inodes and memory belonging to the NTFS specific part of the
* super block.
*/
static void ntfs_put_super(struct super_block *sb)
{
ntfs_volume *vol = NTFS_SB(sb);
ntfs_debug("Entering.");
#ifdef NTFS_RW
/*
* Commit all inodes while they are still open in case some of them
* cause others to be dirtied.
*/
ntfs_commit_inode(vol->vol_ino);
/* NTFS 3.0+ specific. */
if (vol->major_ver >= 3) {
if (vol->usnjrnl_j_ino)
ntfs_commit_inode(vol->usnjrnl_j_ino);
if (vol->usnjrnl_max_ino)
ntfs_commit_inode(vol->usnjrnl_max_ino);
if (vol->usnjrnl_ino)
ntfs_commit_inode(vol->usnjrnl_ino);
if (vol->quota_q_ino)
ntfs_commit_inode(vol->quota_q_ino);
if (vol->quota_ino)
ntfs_commit_inode(vol->quota_ino);
if (vol->extend_ino)
ntfs_commit_inode(vol->extend_ino);
if (vol->secure_ino)
ntfs_commit_inode(vol->secure_ino);
}
ntfs_commit_inode(vol->root_ino);
down_write(&vol->lcnbmp_lock);
ntfs_commit_inode(vol->lcnbmp_ino);
up_write(&vol->lcnbmp_lock);
down_write(&vol->mftbmp_lock);
ntfs_commit_inode(vol->mftbmp_ino);
up_write(&vol->mftbmp_lock);
if (vol->logfile_ino)
ntfs_commit_inode(vol->logfile_ino);
if (vol->mftmirr_ino)
ntfs_commit_inode(vol->mftmirr_ino);
ntfs_commit_inode(vol->mft_ino);
/*
* If a read-write mount and no volume errors have occurred, mark the
* volume clean. Also, re-commit all affected inodes.
*/
if (!sb_rdonly(sb)) {
if (!NVolErrors(vol)) {
if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
ntfs_warning(sb, "Failed to clear dirty bit "
"in volume information "
"flags. Run chkdsk.");
ntfs_commit_inode(vol->vol_ino);
ntfs_commit_inode(vol->root_ino);
if (vol->mftmirr_ino)
ntfs_commit_inode(vol->mftmirr_ino);
ntfs_commit_inode(vol->mft_ino);
} else {
ntfs_warning(sb, "Volume has errors. Leaving volume "
"marked dirty. Run chkdsk.");
}
}
#endif /* NTFS_RW */
iput(vol->vol_ino);
vol->vol_ino = NULL;
/* NTFS 3.0+ specific clean up. */
if (vol->major_ver >= 3) {
#ifdef NTFS_RW
if (vol->usnjrnl_j_ino) {
iput(vol->usnjrnl_j_ino);
vol->usnjrnl_j_ino = NULL;
}
if (vol->usnjrnl_max_ino) {
iput(vol->usnjrnl_max_ino);
vol->usnjrnl_max_ino = NULL;
}
if (vol->usnjrnl_ino) {
iput(vol->usnjrnl_ino);
vol->usnjrnl_ino = NULL;
}
if (vol->quota_q_ino) {
iput(vol->quota_q_ino);
vol->quota_q_ino = NULL;
}
if (vol->quota_ino) {
iput(vol->quota_ino);
vol->quota_ino = NULL;
}
#endif /* NTFS_RW */
if (vol->extend_ino) {
iput(vol->extend_ino);
vol->extend_ino = NULL;
}
if (vol->secure_ino) {
iput(vol->secure_ino);
vol->secure_ino = NULL;
}
}
iput(vol->root_ino);
vol->root_ino = NULL;
down_write(&vol->lcnbmp_lock);
iput(vol->lcnbmp_ino);
vol->lcnbmp_ino = NULL;
up_write(&vol->lcnbmp_lock);
down_write(&vol->mftbmp_lock);
iput(vol->mftbmp_ino);
vol->mftbmp_ino = NULL;
up_write(&vol->mftbmp_lock);
#ifdef NTFS_RW
if (vol->logfile_ino) {
iput(vol->logfile_ino);
vol->logfile_ino = NULL;
}
if (vol->mftmirr_ino) {
/* Re-commit the mft mirror and mft just in case. */
ntfs_commit_inode(vol->mftmirr_ino);
ntfs_commit_inode(vol->mft_ino);
iput(vol->mftmirr_ino);
vol->mftmirr_ino = NULL;
}
/*
* We should have no dirty inodes left, due to
* mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
* the underlying mft records are written out and cleaned.
*/
ntfs_commit_inode(vol->mft_ino);
write_inode_now(vol->mft_ino, 1);
#endif /* NTFS_RW */
iput(vol->mft_ino);
vol->mft_ino = NULL;
/* Throw away the table of attribute definitions. */
vol->attrdef_size = 0;
if (vol->attrdef) {
ntfs_free(vol->attrdef);
vol->attrdef = NULL;
}
vol->upcase_len = 0;
/*
* Destroy the global default upcase table if necessary. Also decrease
* the number of upcase users if we are a user.
*/
mutex_lock(&ntfs_lock);
if (vol->upcase == default_upcase) {
ntfs_nr_upcase_users--;
vol->upcase = NULL;
}
if (!ntfs_nr_upcase_users && default_upcase) {
ntfs_free(default_upcase);
default_upcase = NULL;
}
if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
free_compression_buffers();
mutex_unlock(&ntfs_lock);
if (vol->upcase) {
ntfs_free(vol->upcase);
vol->upcase = NULL;
}
unload_nls(vol->nls_map);
sb->s_fs_info = NULL;
kfree(vol);
}
/**
* get_nr_free_clusters - return the number of free clusters on a volume
* @vol: ntfs volume for which to obtain free cluster count
*
* Calculate the number of free clusters on the mounted NTFS volume @vol. We
* actually calculate the number of clusters in use instead because this
* allows us to not care about partial pages as these will be just zero filled
* and hence not be counted as allocated clusters.
*
* The only particularity is that clusters beyond the end of the logical ntfs
* volume will be marked as allocated to prevent errors which means we have to
* discount those at the end. This is important as the cluster bitmap always
* has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
* the logical volume and marked in use when they are not as they do not exist.
*
* If any pages cannot be read we assume all clusters in the erroring pages are
* in use. This means we return an underestimate on errors which is better than
* an overestimate.
*/
static s64 get_nr_free_clusters(ntfs_volume *vol)
{
s64 nr_free = vol->nr_clusters;
struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
struct page *page;
pgoff_t index, max_index;
ntfs_debug("Entering.");
/* Serialize accesses to the cluster bitmap. */
down_read(&vol->lcnbmp_lock);
/*
* Convert the number of bits into bytes rounded up, then convert into
* multiples of PAGE_SIZE, rounding up so that if we have one
* full and one partial page max_index = 2.
*/
max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_SIZE - 1) >>
PAGE_SHIFT;
/* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
max_index, PAGE_SIZE / 4);
for (index = 0; index < max_index; index++) {
unsigned long *kaddr;
/*
* Read the page from page cache, getting it from backing store
* if necessary, and increment the use count.
*/
page = read_mapping_page(mapping, index, NULL);
/* Ignore pages which errored synchronously. */
if (IS_ERR(page)) {
ntfs_debug("read_mapping_page() error. Skipping "
"page (index 0x%lx).", index);
nr_free -= PAGE_SIZE * 8;
continue;
}
kaddr = kmap_atomic(page);
/*
* Subtract the number of set bits. If this
* is the last page and it is partial we don't really care as
* it just means we do a little extra work but it won't affect
* the result as all out of range bytes are set to zero by
* ntfs_readpage().
*/
nr_free -= bitmap_weight(kaddr,
PAGE_SIZE * BITS_PER_BYTE);
kunmap_atomic(kaddr);
put_page(page);
}
ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
/*
* Fixup for eventual bits outside logical ntfs volume (see function
* description above).
*/
if (vol->nr_clusters & 63)
nr_free += 64 - (vol->nr_clusters & 63);
up_read(&vol->lcnbmp_lock);
/* If errors occurred we may well have gone below zero, fix this. */
if (nr_free < 0)
nr_free = 0;
ntfs_debug("Exiting.");
return nr_free;
}
/**
* __get_nr_free_mft_records - return the number of free inodes on a volume
* @vol: ntfs volume for which to obtain free inode count
* @nr_free: number of mft records in filesystem
* @max_index: maximum number of pages containing set bits
*
* Calculate the number of free mft records (inodes) on the mounted NTFS
* volume @vol. We actually calculate the number of mft records in use instead
* because this allows us to not care about partial pages as these will be just
* zero filled and hence not be counted as allocated mft record.
*
* If any pages cannot be read we assume all mft records in the erroring pages
* are in use. This means we return an underestimate on errors which is better
* than an overestimate.
*
* NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
*/
static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
s64 nr_free, const pgoff_t max_index)
{
struct address_space *mapping = vol->mftbmp_ino->i_mapping;
struct page *page;
pgoff_t index;
ntfs_debug("Entering.");
/* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
"0x%lx.", max_index, PAGE_SIZE / 4);
for (index = 0; index < max_index; index++) {
unsigned long *kaddr;
/*
* Read the page from page cache, getting it from backing store
* if necessary, and increment the use count.
*/
page = read_mapping_page(mapping, index, NULL);
/* Ignore pages which errored synchronously. */
if (IS_ERR(page)) {
ntfs_debug("read_mapping_page() error. Skipping "
"page (index 0x%lx).", index);
nr_free -= PAGE_SIZE * 8;
continue;
}
kaddr = kmap_atomic(page);
/*
* Subtract the number of set bits. If this
* is the last page and it is partial we don't really care as
* it just means we do a little extra work but it won't affect
* the result as all out of range bytes are set to zero by
* ntfs_readpage().
*/
nr_free -= bitmap_weight(kaddr,
PAGE_SIZE * BITS_PER_BYTE);
kunmap_atomic(kaddr);
put_page(page);
}
ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
index - 1);
/* If errors occurred we may well have gone below zero, fix this. */
if (nr_free < 0)
nr_free = 0;
ntfs_debug("Exiting.");
return nr_free;
}
/**
* ntfs_statfs - return information about mounted NTFS volume
* @dentry: dentry from mounted volume
* @sfs: statfs structure in which to return the information
*
* Return information about the mounted NTFS volume @dentry in the statfs structure
* pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
* called). We interpret the values to be correct of the moment in time at
* which we are called. Most values are variable otherwise and this isn't just
* the free values but the totals as well. For example we can increase the
* total number of file nodes if we run out and we can keep doing this until
* there is no more space on the volume left at all.
*
* Called from vfs_statfs which is used to handle the statfs, fstatfs, and
* ustat system calls.
*
* Return 0 on success or -errno on error.
*/
static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
{
struct super_block *sb = dentry->d_sb;
s64 size;
ntfs_volume *vol = NTFS_SB(sb);
ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
pgoff_t max_index;
unsigned long flags;
ntfs_debug("Entering.");
/* Type of filesystem. */
sfs->f_type = NTFS_SB_MAGIC;
/* Optimal transfer block size. */
sfs->f_bsize = PAGE_SIZE;
/*
* Total data blocks in filesystem in units of f_bsize and since
* inodes are also stored in data blocs ($MFT is a file) this is just
* the total clusters.
*/
sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
PAGE_SHIFT;
/* Free data blocks in filesystem in units of f_bsize. */
size = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
PAGE_SHIFT;
if (size < 0LL)
size = 0LL;
/* Free blocks avail to non-superuser, same as above on NTFS. */
sfs->f_bavail = sfs->f_bfree = size;
/* Serialize accesses to the inode bitmap. */
down_read(&vol->mftbmp_lock);
read_lock_irqsave(&mft_ni->size_lock, flags);
size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
/*
* Convert the maximum number of set bits into bytes rounded up, then
* convert into multiples of PAGE_SIZE, rounding up so that if we
* have one full and one partial page max_index = 2.
*/
max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
+ 7) >> 3) + PAGE_SIZE - 1) >> PAGE_SHIFT;
read_unlock_irqrestore(&mft_ni->size_lock, flags);
/* Number of inodes in filesystem (at this point in time). */
sfs->f_files = size;
/* Free inodes in fs (based on current total count). */
sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
up_read(&vol->mftbmp_lock);
/*
* File system id. This is extremely *nix flavour dependent and even
* within Linux itself all fs do their own thing. I interpret this to
* mean a unique id associated with the mounted fs and not the id
* associated with the filesystem driver, the latter is already given
* by the filesystem type in sfs->f_type. Thus we use the 64-bit
* volume serial number splitting it into two 32-bit parts. We enter
* the least significant 32-bits in f_fsid[0] and the most significant
* 32-bits in f_fsid[1].
*/
sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
/* Maximum length of filenames. */
sfs->f_namelen = NTFS_MAX_NAME_LEN;
return 0;
}
#ifdef NTFS_RW
static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
{
return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
}
#endif
/**
* The complete super operations.
*/
static const struct super_operations ntfs_sops = {
.alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */
.destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
#ifdef NTFS_RW
.write_inode = ntfs_write_inode, /* VFS: Write dirty inode to
disk. */
#endif /* NTFS_RW */
.put_super = ntfs_put_super, /* Syscall: umount. */
.statfs = ntfs_statfs, /* Syscall: statfs */
.remount_fs = ntfs_remount, /* Syscall: mount -o remount. */
.evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is
removed from memory. */
.show_options = ntfs_show_options, /* Show mount options in
proc. */
};
/**
* ntfs_fill_super - mount an ntfs filesystem
* @sb: super block of ntfs filesystem to mount
* @opt: string containing the mount options
* @silent: silence error output
*
* ntfs_fill_super() is called by the VFS to mount the device described by @sb
* with the mount otions in @data with the NTFS filesystem.
*
* If @silent is true, remain silent even if errors are detected. This is used
* during bootup, when the kernel tries to mount the root filesystem with all
* registered filesystems one after the other until one succeeds. This implies
* that all filesystems except the correct one will quite correctly and
* expectedly return an error, but nobody wants to see error messages when in
* fact this is what is supposed to happen.
*
* NOTE: @sb->s_flags contains the mount options flags.
*/
static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
{
ntfs_volume *vol;
struct buffer_head *bh;
struct inode *tmp_ino;
int blocksize, result;
/*
* We do a pretty difficult piece of bootstrap by reading the
* MFT (and other metadata) from disk into memory. We'll only
* release this metadata during umount, so the locking patterns
* observed during bootstrap do not count. So turn off the
* observation of locking patterns (strictly for this context
* only) while mounting NTFS. [The validator is still active
* otherwise, even for this context: it will for example record
* lock class registrations.]
*/
lockdep_off();
ntfs_debug("Entering.");
#ifndef NTFS_RW
sb->s_flags |= SB_RDONLY;
#endif /* ! NTFS_RW */
/* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
vol = NTFS_SB(sb);
if (!vol) {
if (!silent)
ntfs_error(sb, "Allocation of NTFS volume structure "
"failed. Aborting mount...");
lockdep_on();
return -ENOMEM;
}
/* Initialize ntfs_volume structure. */
*vol = (ntfs_volume) {
.sb = sb,
/*
* Default is group and other don't have any access to files or
* directories while owner has full access. Further, files by
* default are not executable but directories are of course
* browseable.
*/
.fmask = 0177,
.dmask = 0077,
};
init_rwsem(&vol->mftbmp_lock);
init_rwsem(&vol->lcnbmp_lock);
/* By default, enable sparse support. */
NVolSetSparseEnabled(vol);
/* Important to get the mount options dealt with now. */
if (!parse_options(vol, (char*)opt))
goto err_out_now;
/* We support sector sizes up to the PAGE_SIZE. */
if (bdev_logical_block_size(sb->s_bdev) > PAGE_SIZE) {
if (!silent)
ntfs_error(sb, "Device has unsupported sector size "
"(%i). The maximum supported sector "
"size on this architecture is %lu "
"bytes.",
bdev_logical_block_size(sb->s_bdev),
PAGE_SIZE);
goto err_out_now;
}
/*
* Setup the device access block size to NTFS_BLOCK_SIZE or the hard
* sector size, whichever is bigger.
*/
blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
if (blocksize < NTFS_BLOCK_SIZE) {
if (!silent)
ntfs_error(sb, "Unable to set device block size.");
goto err_out_now;
}
BUG_ON(blocksize != sb->s_blocksize);
ntfs_debug("Set device block size to %i bytes (block size bits %i).",
blocksize, sb->s_blocksize_bits);
/* Determine the size of the device in units of block_size bytes. */
if (!i_size_read(sb->s_bdev->bd_inode)) {
if (!silent)
ntfs_error(sb, "Unable to determine device size.");
goto err_out_now;
}
vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
sb->s_blocksize_bits;
/* Read the boot sector and return unlocked buffer head to it. */
if (!(bh = read_ntfs_boot_sector(sb, silent))) {
if (!silent)
ntfs_error(sb, "Not an NTFS volume.");
goto err_out_now;
}
/*
* Extract the data from the boot sector and setup the ntfs volume
* using it.
*/
result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
brelse(bh);
if (!result) {
if (!silent)
ntfs_error(sb, "Unsupported NTFS filesystem.");
goto err_out_now;
}
/*
* If the boot sector indicates a sector size bigger than the current
* device block size, switch the device block size to the sector size.
* TODO: It may be possible to support this case even when the set
* below fails, we would just be breaking up the i/o for each sector
* into multiple blocks for i/o purposes but otherwise it should just
* work. However it is safer to leave disabled until someone hits this
* error message and then we can get them to try it without the setting
* so we know for sure that it works.
*/
if (vol->sector_size > blocksize) {
blocksize = sb_set_blocksize(sb, vol->sector_size);
if (blocksize != vol->sector_size) {
if (!silent)
ntfs_error(sb, "Unable to set device block "
"size to sector size (%i).",
vol->sector_size);
goto err_out_now;
}
BUG_ON(blocksize != sb->s_blocksize);
vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
sb->s_blocksize_bits;
ntfs_debug("Changed device block size to %i bytes (block size "
"bits %i) to match volume sector size.",
blocksize, sb->s_blocksize_bits);
}
/* Initialize the cluster and mft allocators. */
ntfs_setup_allocators(vol);
/* Setup remaining fields in the super block. */
sb->s_magic = NTFS_SB_MAGIC;
/*
* Ntfs allows 63 bits for the file size, i.e. correct would be:
* sb->s_maxbytes = ~0ULL >> 1;
* But the kernel uses a long as the page cache page index which on
* 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
* defined to the maximum the page cache page index can cope with
* without overflowing the index or to 2^63 - 1, whichever is smaller.
*/
sb->s_maxbytes = MAX_LFS_FILESIZE;
/* Ntfs measures time in 100ns intervals. */
sb->s_time_gran = 100;
/*
* Now load the metadata required for the page cache and our address
* space operations to function. We do this by setting up a specialised
* read_inode method and then just calling the normal iget() to obtain
* the inode for $MFT which is sufficient to allow our normal inode
* operations and associated address space operations to function.
*/
sb->s_op = &ntfs_sops;
tmp_ino = new_inode(sb);
if (!tmp_ino) {
if (!silent)
ntfs_error(sb, "Failed to load essential metadata.");
goto err_out_now;
}
tmp_ino->i_ino = FILE_MFT;
insert_inode_hash(tmp_ino);
if (ntfs_read_inode_mount(tmp_ino) < 0) {
if (!silent)
ntfs_error(sb, "Failed to load essential metadata.");
goto iput_tmp_ino_err_out_now;
}
mutex_lock(&ntfs_lock);
/*
* The current mount is a compression user if the cluster size is
* less than or equal 4kiB.
*/
if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
result = allocate_compression_buffers();
if (result) {
ntfs_error(NULL, "Failed to allocate buffers "
"for compression engine.");
ntfs_nr_compression_users--;
mutex_unlock(&ntfs_lock);
goto iput_tmp_ino_err_out_now;
}
}
/*
* Generate the global default upcase table if necessary. Also
* temporarily increment the number of upcase users to avoid race
* conditions with concurrent (u)mounts.
*/
if (!default_upcase)
default_upcase = generate_default_upcase();
ntfs_nr_upcase_users++;
mutex_unlock(&ntfs_lock);
/*
* From now on, ignore @silent parameter. If we fail below this line,
* it will be due to a corrupt fs or a system error, so we report it.
*/
/*
* Open the system files with normal access functions and complete
* setting up the ntfs super block.
*/
if (!load_system_files(vol)) {
ntfs_error(sb, "Failed to load system files.");
goto unl_upcase_iput_tmp_ino_err_out_now;
}
/* We grab a reference, simulating an ntfs_iget(). */
ihold(vol->root_ino);
if ((sb->s_root = d_make_root(vol->root_ino))) {
ntfs_debug("Exiting, status successful.");
/* Release the default upcase if it has no users. */
mutex_lock(&ntfs_lock);
if (!--ntfs_nr_upcase_users && default_upcase) {
ntfs_free(default_upcase);
default_upcase = NULL;
}
mutex_unlock(&ntfs_lock);
sb->s_export_op = &ntfs_export_ops;
lockdep_on();
return 0;
}
ntfs_error(sb, "Failed to allocate root directory.");
/* Clean up after the successful load_system_files() call from above. */
// TODO: Use ntfs_put_super() instead of repeating all this code...
// FIXME: Should mark the volume clean as the error is most likely
// -ENOMEM.
iput(vol->vol_ino);
vol->vol_ino = NULL;
/* NTFS 3.0+ specific clean up. */
if (vol->major_ver >= 3) {
#ifdef NTFS_RW
if (vol->usnjrnl_j_ino) {
iput(vol->usnjrnl_j_ino);
vol->usnjrnl_j_ino = NULL;
}
if (vol->usnjrnl_max_ino) {
iput(vol->usnjrnl_max_ino);
vol->usnjrnl_max_ino = NULL;
}
if (vol->usnjrnl_ino) {
iput(vol->usnjrnl_ino);
vol->usnjrnl_ino = NULL;
}
if (vol->quota_q_ino) {
iput(vol->quota_q_ino);
vol->quota_q_ino = NULL;
}
if (vol->quota_ino) {
iput(vol->quota_ino);
vol->quota_ino = NULL;
}
#endif /* NTFS_RW */
if (vol->extend_ino) {
iput(vol->extend_ino);
vol->extend_ino = NULL;
}
if (vol->secure_ino) {
iput(vol->secure_ino);
vol->secure_ino = NULL;
}
}
iput(vol->root_ino);
vol->root_ino = NULL;
iput(vol->lcnbmp_ino);
vol->lcnbmp_ino = NULL;
iput(vol->mftbmp_ino);
vol->mftbmp_ino = NULL;
#ifdef NTFS_RW
if (vol->logfile_ino) {
iput(vol->logfile_ino);
vol->logfile_ino = NULL;
}
if (vol->mftmirr_ino) {
iput(vol->mftmirr_ino);
vol->mftmirr_ino = NULL;
}
#endif /* NTFS_RW */
/* Throw away the table of attribute definitions. */
vol->attrdef_size = 0;
if (vol->attrdef) {
ntfs_free(vol->attrdef);
vol->attrdef = NULL;
}
vol->upcase_len = 0;
mutex_lock(&ntfs_lock);
if (vol->upcase == default_upcase) {
ntfs_nr_upcase_users--;
vol->upcase = NULL;
}
mutex_unlock(&ntfs_lock);
if (vol->upcase) {
ntfs_free(vol->upcase);
vol->upcase = NULL;
}
if (vol->nls_map) {
unload_nls(vol->nls_map);
vol->nls_map = NULL;
}
/* Error exit code path. */
unl_upcase_iput_tmp_ino_err_out_now:
/*
* Decrease the number of upcase users and destroy the global default
* upcase table if necessary.
*/
mutex_lock(&ntfs_lock);
if (!--ntfs_nr_upcase_users && default_upcase) {
ntfs_free(default_upcase);
default_upcase = NULL;
}
if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
free_compression_buffers();
mutex_unlock(&ntfs_lock);
iput_tmp_ino_err_out_now:
iput(tmp_ino);
if (vol->mft_ino && vol->mft_ino != tmp_ino)
iput(vol->mft_ino);
vol->mft_ino = NULL;
/* Errors at this stage are irrelevant. */
err_out_now:
sb->s_fs_info = NULL;
kfree(vol);
ntfs_debug("Failed, returning -EINVAL.");
lockdep_on();
return -EINVAL;
}
/*
* This is a slab cache to optimize allocations and deallocations of Unicode
* strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
* (255) Unicode characters + a terminating NULL Unicode character.
*/
struct kmem_cache *ntfs_name_cache;
/* Slab caches for efficient allocation/deallocation of inodes. */
struct kmem_cache *ntfs_inode_cache;
struct kmem_cache *ntfs_big_inode_cache;
/* Init once constructor for the inode slab cache. */
static void ntfs_big_inode_init_once(void *foo)
{
ntfs_inode *ni = (ntfs_inode *)foo;
inode_init_once(VFS_I(ni));
}
/*
* Slab caches to optimize allocations and deallocations of attribute search
* contexts and index contexts, respectively.
*/
struct kmem_cache *ntfs_attr_ctx_cache;
struct kmem_cache *ntfs_index_ctx_cache;
/* Driver wide mutex. */
DEFINE_MUTEX(ntfs_lock);
static struct dentry *ntfs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
}
static struct file_system_type ntfs_fs_type = {
.owner = THIS_MODULE,
.name = "ntfs",
.mount = ntfs_mount,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("ntfs");
/* Stable names for the slab caches. */
static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
static const char ntfs_name_cache_name[] = "ntfs_name_cache";
static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
static int __init init_ntfs_fs(void)
{
int err = 0;
/* This may be ugly but it results in pretty output so who cares. (-8 */
pr_info("driver " NTFS_VERSION " [Flags: R/"
#ifdef NTFS_RW
"W"
#else
"O"
#endif
#ifdef DEBUG
" DEBUG"
#endif
#ifdef MODULE
" MODULE"
#endif
"].\n");
ntfs_debug("Debug messages are enabled.");
ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
sizeof(ntfs_index_context), 0 /* offset */,
SLAB_HWCACHE_ALIGN, NULL /* ctor */);
if (!ntfs_index_ctx_cache) {
pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name);
goto ictx_err_out;
}
ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
sizeof(ntfs_attr_search_ctx), 0 /* offset */,
SLAB_HWCACHE_ALIGN, NULL /* ctor */);
if (!ntfs_attr_ctx_cache) {
pr_crit("NTFS: Failed to create %s!\n",
ntfs_attr_ctx_cache_name);
goto actx_err_out;
}
ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
(NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
SLAB_HWCACHE_ALIGN, NULL);
if (!ntfs_name_cache) {
pr_crit("Failed to create %s!\n", ntfs_name_cache_name);
goto name_err_out;
}
ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
sizeof(ntfs_inode), 0,
SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
if (!ntfs_inode_cache) {
pr_crit("Failed to create %s!\n", ntfs_inode_cache_name);
goto inode_err_out;
}
ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
sizeof(big_ntfs_inode), 0,
SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
SLAB_ACCOUNT, ntfs_big_inode_init_once);
if (!ntfs_big_inode_cache) {
pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name);
goto big_inode_err_out;
}
/* Register the ntfs sysctls. */
err = ntfs_sysctl(1);
if (err) {
pr_crit("Failed to register NTFS sysctls!\n");
goto sysctl_err_out;
}
err = register_filesystem(&ntfs_fs_type);
if (!err) {
ntfs_debug("NTFS driver registered successfully.");
return 0; /* Success! */
}
pr_crit("Failed to register NTFS filesystem driver!\n");
/* Unregister the ntfs sysctls. */
ntfs_sysctl(0);
sysctl_err_out:
kmem_cache_destroy(ntfs_big_inode_cache);
big_inode_err_out:
kmem_cache_destroy(ntfs_inode_cache);
inode_err_out:
kmem_cache_destroy(ntfs_name_cache);
name_err_out:
kmem_cache_destroy(ntfs_attr_ctx_cache);
actx_err_out:
kmem_cache_destroy(ntfs_index_ctx_cache);
ictx_err_out:
if (!err) {
pr_crit("Aborting NTFS filesystem driver registration...\n");
err = -ENOMEM;
}
return err;
}
static void __exit exit_ntfs_fs(void)
{
ntfs_debug("Unregistering NTFS driver.");
unregister_filesystem(&ntfs_fs_type);
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(ntfs_big_inode_cache);
kmem_cache_destroy(ntfs_inode_cache);
kmem_cache_destroy(ntfs_name_cache);
kmem_cache_destroy(ntfs_attr_ctx_cache);
kmem_cache_destroy(ntfs_index_ctx_cache);
/* Unregister the ntfs sysctls. */
ntfs_sysctl(0);
}
MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.");
MODULE_VERSION(NTFS_VERSION);
MODULE_LICENSE("GPL");
#ifdef DEBUG
module_param(debug_msgs, bint, 0);
MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
#endif
module_init(init_ntfs_fs)
module_exit(exit_ntfs_fs)