2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-28 07:04:00 +08:00
linux-next/arch/arm/mach-shmobile/clock-r8a73a4.c
Laurent Pinchart 52065ef71e ARM: shmobile: r8a73a4: Switch to new style CMT device
The CMT (Compare Match Timer) driver implements a new style of platform
data that handles the timer as a single device with multiple channel.
Switch from the old-style platform data to the new-style platform data.

Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Signed-off-by: Simon Horman <horms+renesas@verge.net.au>
2014-05-11 19:35:27 +09:00

657 lines
18 KiB
C

/*
* r8a73a4 clock framework support
*
* Copyright (C) 2013 Renesas Solutions Corp.
* Copyright (C) 2013 Magnus Damm
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/sh_clk.h>
#include <linux/clkdev.h>
#include <mach/clock.h>
#include <mach/common.h>
#define CPG_BASE 0xe6150000
#define CPG_LEN 0x270
#define SMSTPCR2 0xe6150138
#define SMSTPCR3 0xe615013c
#define SMSTPCR4 0xe6150140
#define SMSTPCR5 0xe6150144
#define FRQCRA 0xE6150000
#define FRQCRB 0xE6150004
#define FRQCRC 0xE61500E0
#define VCLKCR1 0xE6150008
#define VCLKCR2 0xE615000C
#define VCLKCR3 0xE615001C
#define VCLKCR4 0xE6150014
#define VCLKCR5 0xE6150034
#define ZBCKCR 0xE6150010
#define SD0CKCR 0xE6150074
#define SD1CKCR 0xE6150078
#define SD2CKCR 0xE615007C
#define MMC0CKCR 0xE6150240
#define MMC1CKCR 0xE6150244
#define FSIACKCR 0xE6150018
#define FSIBCKCR 0xE6150090
#define MPCKCR 0xe6150080
#define SPUVCKCR 0xE6150094
#define HSICKCR 0xE615026C
#define M4CKCR 0xE6150098
#define PLLECR 0xE61500D0
#define PLL0CR 0xE61500D8
#define PLL1CR 0xE6150028
#define PLL2CR 0xE615002C
#define PLL2SCR 0xE61501F4
#define PLL2HCR 0xE61501E4
#define CKSCR 0xE61500C0
#define CPG_MAP(o) ((o - CPG_BASE) + cpg_mapping.base)
static struct clk_mapping cpg_mapping = {
.phys = CPG_BASE,
.len = CPG_LEN,
};
static struct clk extalr_clk = {
.rate = 32768,
.mapping = &cpg_mapping,
};
static struct clk extal1_clk = {
.rate = 26000000,
.mapping = &cpg_mapping,
};
static struct clk extal2_clk = {
.rate = 48000000,
.mapping = &cpg_mapping,
};
static struct sh_clk_ops followparent_clk_ops = {
.recalc = followparent_recalc,
};
static struct clk main_clk = {
/* .parent will be set r8a73a4_clock_init */
.ops = &followparent_clk_ops,
};
SH_CLK_RATIO(div2, 1, 2);
SH_CLK_RATIO(div4, 1, 4);
SH_FIXED_RATIO_CLK(main_div2_clk, main_clk, div2);
SH_FIXED_RATIO_CLK(extal1_div2_clk, extal1_clk, div2);
SH_FIXED_RATIO_CLK(extal2_div2_clk, extal2_clk, div2);
SH_FIXED_RATIO_CLK(extal2_div4_clk, extal2_clk, div4);
/* External FSIACK/FSIBCK clock */
static struct clk fsiack_clk = {
};
static struct clk fsibck_clk = {
};
/*
* PLL clocks
*/
static struct clk *pll_parent_main[] = {
[0] = &main_clk,
[1] = &main_div2_clk
};
static struct clk *pll_parent_main_extal[8] = {
[0] = &main_div2_clk,
[1] = &extal2_div2_clk,
[3] = &extal2_div4_clk,
[4] = &main_clk,
[5] = &extal2_clk,
};
static unsigned long pll_recalc(struct clk *clk)
{
unsigned long mult = 1;
if (ioread32(CPG_MAP(PLLECR)) & (1 << clk->enable_bit))
mult = (((ioread32(clk->mapped_reg) >> 24) & 0x7f) + 1);
return clk->parent->rate * mult;
}
static int pll_set_parent(struct clk *clk, struct clk *parent)
{
u32 val;
int i, ret;
if (!clk->parent_table || !clk->parent_num)
return -EINVAL;
/* Search the parent */
for (i = 0; i < clk->parent_num; i++)
if (clk->parent_table[i] == parent)
break;
if (i == clk->parent_num)
return -ENODEV;
ret = clk_reparent(clk, parent);
if (ret < 0)
return ret;
val = ioread32(clk->mapped_reg) &
~(((1 << clk->src_width) - 1) << clk->src_shift);
iowrite32(val | i << clk->src_shift, clk->mapped_reg);
return 0;
}
static struct sh_clk_ops pll_clk_ops = {
.recalc = pll_recalc,
.set_parent = pll_set_parent,
};
#define PLL_CLOCK(name, p, pt, w, s, reg, e) \
static struct clk name = { \
.ops = &pll_clk_ops, \
.flags = CLK_ENABLE_ON_INIT, \
.parent = p, \
.parent_table = pt, \
.parent_num = ARRAY_SIZE(pt), \
.src_width = w, \
.src_shift = s, \
.enable_reg = (void __iomem *)reg, \
.enable_bit = e, \
.mapping = &cpg_mapping, \
}
PLL_CLOCK(pll0_clk, &main_clk, pll_parent_main, 1, 20, PLL0CR, 0);
PLL_CLOCK(pll1_clk, &main_clk, pll_parent_main, 1, 7, PLL1CR, 1);
PLL_CLOCK(pll2_clk, &main_div2_clk, pll_parent_main_extal, 3, 5, PLL2CR, 2);
PLL_CLOCK(pll2s_clk, &main_div2_clk, pll_parent_main_extal, 3, 5, PLL2SCR, 4);
PLL_CLOCK(pll2h_clk, &main_div2_clk, pll_parent_main_extal, 3, 5, PLL2HCR, 5);
SH_FIXED_RATIO_CLK(pll1_div2_clk, pll1_clk, div2);
static atomic_t frqcr_lock;
/* Several clocks need to access FRQCRB, have to lock */
static bool frqcr_kick_check(struct clk *clk)
{
return !(ioread32(CPG_MAP(FRQCRB)) & BIT(31));
}
static int frqcr_kick_do(struct clk *clk)
{
int i;
/* set KICK bit in FRQCRB to update hardware setting, check success */
iowrite32(ioread32(CPG_MAP(FRQCRB)) | BIT(31), CPG_MAP(FRQCRB));
for (i = 1000; i; i--)
if (ioread32(CPG_MAP(FRQCRB)) & BIT(31))
cpu_relax();
else
return 0;
return -ETIMEDOUT;
}
static int zclk_set_rate(struct clk *clk, unsigned long rate)
{
void __iomem *frqcrc;
int ret;
unsigned long step, p_rate;
u32 val;
if (!clk->parent || !__clk_get(clk->parent))
return -ENODEV;
if (!atomic_inc_and_test(&frqcr_lock) || !frqcr_kick_check(clk)) {
ret = -EBUSY;
goto done;
}
/*
* Users are supposed to first call clk_set_rate() only with
* clk_round_rate() results. So, we don't fix wrong rates here, but
* guard against them anyway
*/
p_rate = clk_get_rate(clk->parent);
if (rate == p_rate) {
val = 0;
} else {
step = DIV_ROUND_CLOSEST(p_rate, 32);
if (rate > p_rate || rate < step) {
ret = -EINVAL;
goto done;
}
val = 32 - rate / step;
}
frqcrc = clk->mapped_reg + (FRQCRC - (u32)clk->enable_reg);
iowrite32((ioread32(frqcrc) & ~(clk->div_mask << clk->enable_bit)) |
(val << clk->enable_bit), frqcrc);
ret = frqcr_kick_do(clk);
done:
atomic_dec(&frqcr_lock);
__clk_put(clk->parent);
return ret;
}
static long zclk_round_rate(struct clk *clk, unsigned long rate)
{
/*
* theoretical rate = parent rate * multiplier / 32,
* where 1 <= multiplier <= 32. Therefore we should do
* multiplier = rate * 32 / parent rate
* rounded rate = parent rate * multiplier / 32.
* However, multiplication before division won't fit in 32 bits, so
* we sacrifice some precision by first dividing and then multiplying.
* To find the nearest divisor we calculate both and pick up the best
* one. This avoids 64-bit arithmetics.
*/
unsigned long step, mul_min, mul_max, rate_min, rate_max;
rate_max = clk_get_rate(clk->parent);
/* output freq <= parent */
if (rate >= rate_max)
return rate_max;
step = DIV_ROUND_CLOSEST(rate_max, 32);
/* output freq >= parent / 32 */
if (step >= rate)
return step;
mul_min = rate / step;
mul_max = DIV_ROUND_UP(rate, step);
rate_min = step * mul_min;
if (mul_max == mul_min)
return rate_min;
rate_max = step * mul_max;
if (rate_max - rate < rate - rate_min)
return rate_max;
return rate_min;
}
static unsigned long zclk_recalc(struct clk *clk)
{
void __iomem *frqcrc = FRQCRC - (u32)clk->enable_reg + clk->mapped_reg;
unsigned int max = clk->div_mask + 1;
unsigned long val = ((ioread32(frqcrc) >> clk->enable_bit) &
clk->div_mask);
return DIV_ROUND_CLOSEST(clk_get_rate(clk->parent), max) *
(max - val);
}
static struct sh_clk_ops zclk_ops = {
.recalc = zclk_recalc,
.set_rate = zclk_set_rate,
.round_rate = zclk_round_rate,
};
static struct clk z_clk = {
.parent = &pll0_clk,
.div_mask = 0x1f,
.enable_bit = 8,
/* We'll need to access FRQCRB and FRQCRC */
.enable_reg = (void __iomem *)FRQCRB,
.ops = &zclk_ops,
};
/*
* It seems only 1/2 divider is usable in manual mode. 1/2 / 2/3
* switching is only available in auto-DVFS mode
*/
SH_FIXED_RATIO_CLK(pll0_div2_clk, pll0_clk, div2);
static struct clk z2_clk = {
.parent = &pll0_div2_clk,
.div_mask = 0x1f,
.enable_bit = 0,
/* We'll need to access FRQCRB and FRQCRC */
.enable_reg = (void __iomem *)FRQCRB,
.ops = &zclk_ops,
};
static struct clk *main_clks[] = {
&extalr_clk,
&extal1_clk,
&extal1_div2_clk,
&extal2_clk,
&extal2_div2_clk,
&extal2_div4_clk,
&main_clk,
&main_div2_clk,
&fsiack_clk,
&fsibck_clk,
&pll0_clk,
&pll1_clk,
&pll1_div2_clk,
&pll2_clk,
&pll2s_clk,
&pll2h_clk,
&z_clk,
&pll0_div2_clk,
&z2_clk,
};
/* DIV4 */
static void div4_kick(struct clk *clk)
{
if (!WARN(!atomic_inc_and_test(&frqcr_lock), "FRQCR* lock broken!\n"))
frqcr_kick_do(clk);
atomic_dec(&frqcr_lock);
}
static int divisors[] = { 2, 3, 4, 6, 8, 12, 16, 18, 24, 0, 36, 48, 10};
static struct clk_div_mult_table div4_div_mult_table = {
.divisors = divisors,
.nr_divisors = ARRAY_SIZE(divisors),
};
static struct clk_div4_table div4_table = {
.div_mult_table = &div4_div_mult_table,
.kick = div4_kick,
};
enum {
DIV4_I, DIV4_M3, DIV4_B, DIV4_M1, DIV4_M2,
DIV4_ZX, DIV4_ZS, DIV4_HP,
DIV4_NR };
static struct clk div4_clks[DIV4_NR] = {
[DIV4_I] = SH_CLK_DIV4(&pll1_clk, FRQCRA, 20, 0x0dff, CLK_ENABLE_ON_INIT),
[DIV4_M3] = SH_CLK_DIV4(&pll1_clk, FRQCRA, 12, 0x1dff, CLK_ENABLE_ON_INIT),
[DIV4_B] = SH_CLK_DIV4(&pll1_clk, FRQCRA, 8, 0x0dff, CLK_ENABLE_ON_INIT),
[DIV4_M1] = SH_CLK_DIV4(&pll1_clk, FRQCRA, 4, 0x1dff, 0),
[DIV4_M2] = SH_CLK_DIV4(&pll1_clk, FRQCRA, 0, 0x1dff, 0),
[DIV4_ZX] = SH_CLK_DIV4(&pll1_clk, FRQCRB, 12, 0x0dff, 0),
[DIV4_ZS] = SH_CLK_DIV4(&pll1_clk, FRQCRB, 8, 0x0dff, 0),
[DIV4_HP] = SH_CLK_DIV4(&pll1_clk, FRQCRB, 4, 0x0dff, 0),
};
enum {
DIV6_ZB,
DIV6_SDHI0, DIV6_SDHI1, DIV6_SDHI2,
DIV6_MMC0, DIV6_MMC1,
DIV6_VCK1, DIV6_VCK2, DIV6_VCK3, DIV6_VCK4, DIV6_VCK5,
DIV6_FSIA, DIV6_FSIB,
DIV6_MP, DIV6_M4, DIV6_HSI, DIV6_SPUV,
DIV6_NR };
static struct clk *div6_parents[8] = {
[0] = &pll1_div2_clk,
[1] = &pll2s_clk,
[3] = &extal2_clk,
[4] = &main_div2_clk,
[6] = &extalr_clk,
};
static struct clk *fsia_parents[4] = {
[0] = &pll1_div2_clk,
[1] = &pll2s_clk,
[2] = &fsiack_clk,
};
static struct clk *fsib_parents[4] = {
[0] = &pll1_div2_clk,
[1] = &pll2s_clk,
[2] = &fsibck_clk,
};
static struct clk *mp_parents[4] = {
[0] = &pll1_div2_clk,
[1] = &pll2s_clk,
[2] = &extal2_clk,
[3] = &extal2_clk,
};
static struct clk *m4_parents[2] = {
[0] = &pll2s_clk,
};
static struct clk *hsi_parents[4] = {
[0] = &pll2h_clk,
[1] = &pll1_div2_clk,
[3] = &pll2s_clk,
};
/*** FIXME ***
* SH_CLK_DIV6_EXT() macro doesn't care .mapping
* but, it is necessary on R-Car (= ioremap() base CPG)
* The difference between
* SH_CLK_DIV6_EXT() <--> SH_CLK_MAP_DIV6_EXT()
* is only .mapping
*/
#define SH_CLK_MAP_DIV6_EXT(_reg, _flags, _parents, \
_num_parents, _src_shift, _src_width) \
{ \
.enable_reg = (void __iomem *)_reg, \
.enable_bit = 0, /* unused */ \
.flags = _flags | CLK_MASK_DIV_ON_DISABLE, \
.div_mask = SH_CLK_DIV6_MSK, \
.parent_table = _parents, \
.parent_num = _num_parents, \
.src_shift = _src_shift, \
.src_width = _src_width, \
.mapping = &cpg_mapping, \
}
static struct clk div6_clks[DIV6_NR] = {
[DIV6_ZB] = SH_CLK_MAP_DIV6_EXT(ZBCKCR, CLK_ENABLE_ON_INIT,
div6_parents, 2, 7, 1),
[DIV6_SDHI0] = SH_CLK_MAP_DIV6_EXT(SD0CKCR, 0,
div6_parents, 2, 6, 2),
[DIV6_SDHI1] = SH_CLK_MAP_DIV6_EXT(SD1CKCR, 0,
div6_parents, 2, 6, 2),
[DIV6_SDHI2] = SH_CLK_MAP_DIV6_EXT(SD2CKCR, 0,
div6_parents, 2, 6, 2),
[DIV6_MMC0] = SH_CLK_MAP_DIV6_EXT(MMC0CKCR, 0,
div6_parents, 2, 6, 2),
[DIV6_MMC1] = SH_CLK_MAP_DIV6_EXT(MMC1CKCR, 0,
div6_parents, 2, 6, 2),
[DIV6_VCK1] = SH_CLK_MAP_DIV6_EXT(VCLKCR1, 0, /* didn't care bit[6-7] */
div6_parents, ARRAY_SIZE(div6_parents), 12, 3),
[DIV6_VCK2] = SH_CLK_MAP_DIV6_EXT(VCLKCR2, 0, /* didn't care bit[6-7] */
div6_parents, ARRAY_SIZE(div6_parents), 12, 3),
[DIV6_VCK3] = SH_CLK_MAP_DIV6_EXT(VCLKCR3, 0, /* didn't care bit[6-7] */
div6_parents, ARRAY_SIZE(div6_parents), 12, 3),
[DIV6_VCK4] = SH_CLK_MAP_DIV6_EXT(VCLKCR4, 0, /* didn't care bit[6-7] */
div6_parents, ARRAY_SIZE(div6_parents), 12, 3),
[DIV6_VCK5] = SH_CLK_MAP_DIV6_EXT(VCLKCR5, 0, /* didn't care bit[6-7] */
div6_parents, ARRAY_SIZE(div6_parents), 12, 3),
[DIV6_FSIA] = SH_CLK_MAP_DIV6_EXT(FSIACKCR, 0,
fsia_parents, ARRAY_SIZE(fsia_parents), 6, 2),
[DIV6_FSIB] = SH_CLK_MAP_DIV6_EXT(FSIBCKCR, 0,
fsib_parents, ARRAY_SIZE(fsib_parents), 6, 2),
[DIV6_MP] = SH_CLK_MAP_DIV6_EXT(MPCKCR, 0, /* it needs bit[9-11] control */
mp_parents, ARRAY_SIZE(mp_parents), 6, 2),
/* pll2s will be selected always for M4 */
[DIV6_M4] = SH_CLK_MAP_DIV6_EXT(M4CKCR, 0, /* it needs bit[9] control */
m4_parents, ARRAY_SIZE(m4_parents), 6, 1),
[DIV6_HSI] = SH_CLK_MAP_DIV6_EXT(HSICKCR, 0, /* it needs bit[9] control */
hsi_parents, ARRAY_SIZE(hsi_parents), 6, 2),
[DIV6_SPUV] = SH_CLK_MAP_DIV6_EXT(SPUVCKCR, 0,
mp_parents, ARRAY_SIZE(mp_parents), 6, 2),
};
/* MSTP */
enum {
MSTP218, MSTP217, MSTP216, MSTP207, MSTP206, MSTP204, MSTP203,
MSTP329, MSTP323, MSTP318, MSTP317, MSTP316,
MSTP315, MSTP314, MSTP313, MSTP312, MSTP305, MSTP300,
MSTP411, MSTP410, MSTP409,
MSTP522, MSTP515,
MSTP_NR
};
static struct clk mstp_clks[MSTP_NR] = {
[MSTP204] = SH_CLK_MSTP32(&div6_clks[DIV6_MP], SMSTPCR2, 4, 0), /* SCIFA0 */
[MSTP203] = SH_CLK_MSTP32(&div6_clks[DIV6_MP], SMSTPCR2, 3, 0), /* SCIFA1 */
[MSTP206] = SH_CLK_MSTP32(&div6_clks[DIV6_MP], SMSTPCR2, 6, 0), /* SCIFB0 */
[MSTP207] = SH_CLK_MSTP32(&div6_clks[DIV6_MP], SMSTPCR2, 7, 0), /* SCIFB1 */
[MSTP216] = SH_CLK_MSTP32(&div6_clks[DIV6_MP], SMSTPCR2, 16, 0), /* SCIFB2 */
[MSTP217] = SH_CLK_MSTP32(&div6_clks[DIV6_MP], SMSTPCR2, 17, 0), /* SCIFB3 */
[MSTP218] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR2, 18, 0), /* DMAC */
[MSTP300] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR3, 0, 0), /* IIC2 */
[MSTP305] = SH_CLK_MSTP32(&div6_clks[DIV6_MMC1],SMSTPCR3, 5, 0), /* MMCIF1 */
[MSTP312] = SH_CLK_MSTP32(&div6_clks[DIV6_SDHI2],SMSTPCR3, 12, 0), /* SDHI2 */
[MSTP313] = SH_CLK_MSTP32(&div6_clks[DIV6_SDHI1],SMSTPCR3, 13, 0), /* SDHI1 */
[MSTP314] = SH_CLK_MSTP32(&div6_clks[DIV6_SDHI0],SMSTPCR3, 14, 0), /* SDHI0 */
[MSTP315] = SH_CLK_MSTP32(&div6_clks[DIV6_MMC0],SMSTPCR3, 15, 0), /* MMCIF0 */
[MSTP316] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR3, 16, 0), /* IIC6 */
[MSTP317] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR3, 17, 0), /* IIC7 */
[MSTP318] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR3, 18, 0), /* IIC0 */
[MSTP323] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR3, 23, 0), /* IIC1 */
[MSTP329] = SH_CLK_MSTP32(&extalr_clk, SMSTPCR3, 29, 0), /* CMT10 */
[MSTP409] = SH_CLK_MSTP32(&main_div2_clk, SMSTPCR4, 9, 0), /* IIC5 */
[MSTP410] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR4, 10, 0), /* IIC4 */
[MSTP411] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR4, 11, 0), /* IIC3 */
[MSTP522] = SH_CLK_MSTP32(&extal2_clk, SMSTPCR5, 22, 0), /* Thermal */
[MSTP515] = SH_CLK_MSTP32(&div4_clks[DIV4_HP], SMSTPCR5, 15, 0), /* IIC8 */
};
static struct clk_lookup lookups[] = {
/* main clock */
CLKDEV_CON_ID("extal1", &extal1_clk),
CLKDEV_CON_ID("extal1_div2", &extal1_div2_clk),
CLKDEV_CON_ID("extal2", &extal2_clk),
CLKDEV_CON_ID("extal2_div2", &extal2_div2_clk),
CLKDEV_CON_ID("extal2_div4", &extal2_div4_clk),
CLKDEV_CON_ID("fsiack", &fsiack_clk),
CLKDEV_CON_ID("fsibck", &fsibck_clk),
/* pll clock */
CLKDEV_CON_ID("pll1", &pll1_clk),
CLKDEV_CON_ID("pll1_div2", &pll1_div2_clk),
CLKDEV_CON_ID("pll2", &pll2_clk),
CLKDEV_CON_ID("pll2s", &pll2s_clk),
CLKDEV_CON_ID("pll2h", &pll2h_clk),
/* CPU clock */
CLKDEV_DEV_ID("cpu0", &z_clk),
/* DIV6 */
CLKDEV_CON_ID("zb", &div6_clks[DIV6_ZB]),
CLKDEV_CON_ID("vck1", &div6_clks[DIV6_VCK1]),
CLKDEV_CON_ID("vck2", &div6_clks[DIV6_VCK2]),
CLKDEV_CON_ID("vck3", &div6_clks[DIV6_VCK3]),
CLKDEV_CON_ID("vck4", &div6_clks[DIV6_VCK4]),
CLKDEV_CON_ID("vck5", &div6_clks[DIV6_VCK5]),
CLKDEV_CON_ID("fsia", &div6_clks[DIV6_FSIA]),
CLKDEV_CON_ID("fsib", &div6_clks[DIV6_FSIB]),
CLKDEV_CON_ID("mp", &div6_clks[DIV6_MP]),
CLKDEV_CON_ID("m4", &div6_clks[DIV6_M4]),
CLKDEV_CON_ID("hsi", &div6_clks[DIV6_HSI]),
CLKDEV_CON_ID("spuv", &div6_clks[DIV6_SPUV]),
/* MSTP */
CLKDEV_DEV_ID("sh-sci.0", &mstp_clks[MSTP204]),
CLKDEV_DEV_ID("sh-sci.1", &mstp_clks[MSTP203]),
CLKDEV_DEV_ID("sh-sci.2", &mstp_clks[MSTP206]),
CLKDEV_DEV_ID("sh-sci.3", &mstp_clks[MSTP207]),
CLKDEV_DEV_ID("sh-sci.4", &mstp_clks[MSTP216]),
CLKDEV_DEV_ID("sh-sci.5", &mstp_clks[MSTP217]),
CLKDEV_DEV_ID("sh-dma-engine.0", &mstp_clks[MSTP218]),
CLKDEV_DEV_ID("e6700020.dma-controller", &mstp_clks[MSTP218]),
CLKDEV_DEV_ID("rcar_thermal", &mstp_clks[MSTP522]),
CLKDEV_DEV_ID("e6520000.i2c", &mstp_clks[MSTP300]),
CLKDEV_DEV_ID("sh_mmcif.1", &mstp_clks[MSTP305]),
CLKDEV_DEV_ID("ee220000.mmc", &mstp_clks[MSTP305]),
CLKDEV_DEV_ID("sh_mobile_sdhi.2", &mstp_clks[MSTP312]),
CLKDEV_DEV_ID("ee140000.sd", &mstp_clks[MSTP312]),
CLKDEV_DEV_ID("sh_mobile_sdhi.1", &mstp_clks[MSTP313]),
CLKDEV_DEV_ID("ee120000.sd", &mstp_clks[MSTP313]),
CLKDEV_DEV_ID("sh_mobile_sdhi.0", &mstp_clks[MSTP314]),
CLKDEV_DEV_ID("ee100000.sd", &mstp_clks[MSTP314]),
CLKDEV_DEV_ID("sh_mmcif.0", &mstp_clks[MSTP315]),
CLKDEV_DEV_ID("ee200000.mmc", &mstp_clks[MSTP315]),
CLKDEV_DEV_ID("e6550000.i2c", &mstp_clks[MSTP316]),
CLKDEV_DEV_ID("e6560000.i2c", &mstp_clks[MSTP317]),
CLKDEV_DEV_ID("e6500000.i2c", &mstp_clks[MSTP318]),
CLKDEV_DEV_ID("e6510000.i2c", &mstp_clks[MSTP323]),
CLKDEV_ICK_ID("fck", "sh-cmt-48-gen2.1", &mstp_clks[MSTP329]),
CLKDEV_DEV_ID("e60b0000.i2c", &mstp_clks[MSTP409]),
CLKDEV_DEV_ID("e6540000.i2c", &mstp_clks[MSTP410]),
CLKDEV_DEV_ID("e6530000.i2c", &mstp_clks[MSTP411]),
CLKDEV_DEV_ID("e6570000.i2c", &mstp_clks[MSTP515]),
/* for DT */
CLKDEV_DEV_ID("e61f0000.thermal", &mstp_clks[MSTP522]),
};
void __init r8a73a4_clock_init(void)
{
void __iomem *reg;
int k, ret = 0;
u32 ckscr;
atomic_set(&frqcr_lock, -1);
reg = ioremap_nocache(CKSCR, PAGE_SIZE);
BUG_ON(!reg);
ckscr = ioread32(reg);
iounmap(reg);
switch ((ckscr >> 28) & 0x3) {
case 0:
main_clk.parent = &extal1_clk;
break;
case 1:
main_clk.parent = &extal1_div2_clk;
break;
case 2:
main_clk.parent = &extal2_clk;
break;
case 3:
main_clk.parent = &extal2_div2_clk;
break;
}
for (k = 0; !ret && (k < ARRAY_SIZE(main_clks)); k++)
ret = clk_register(main_clks[k]);
if (!ret)
ret = sh_clk_div4_register(div4_clks, DIV4_NR, &div4_table);
if (!ret)
ret = sh_clk_div6_reparent_register(div6_clks, DIV6_NR);
if (!ret)
ret = sh_clk_mstp_register(mstp_clks, MSTP_NR);
clkdev_add_table(lookups, ARRAY_SIZE(lookups));
if (!ret)
shmobile_clk_init();
else
panic("failed to setup r8a73a4 clocks\n");
}