2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-23 04:54:01 +08:00
linux-next/sound/ppc/tumbler.c
Takashi Iwai 5e246b850d ALSA: Kill snd_assert() in other places
Kill snd_assert() in other places, either removed or replaced with
if () with snd_BUG_ON().

Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Jaroslav Kysela <perex@perex.cz>
2008-08-13 11:46:40 +02:00

1484 lines
38 KiB
C

/*
* PMac Tumbler/Snapper lowlevel functions
*
* Copyright (c) by Takashi Iwai <tiwai@suse.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Rene Rebe <rene.rebe@gmx.net>:
* * update from shadow registers on wakeup and headphone plug
* * automatically toggle DRC on headphone plug
*
*/
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/kmod.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <sound/core.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#include "pmac.h"
#include "tumbler_volume.h"
#undef DEBUG
#ifdef DEBUG
#define DBG(fmt...) printk(fmt)
#else
#define DBG(fmt...)
#endif
/* i2c address for tumbler */
#define TAS_I2C_ADDR 0x34
/* registers */
#define TAS_REG_MCS 0x01 /* main control */
#define TAS_REG_DRC 0x02
#define TAS_REG_VOL 0x04
#define TAS_REG_TREBLE 0x05
#define TAS_REG_BASS 0x06
#define TAS_REG_INPUT1 0x07
#define TAS_REG_INPUT2 0x08
/* tas3001c */
#define TAS_REG_PCM TAS_REG_INPUT1
/* tas3004 */
#define TAS_REG_LMIX TAS_REG_INPUT1
#define TAS_REG_RMIX TAS_REG_INPUT2
#define TAS_REG_MCS2 0x43 /* main control 2 */
#define TAS_REG_ACS 0x40 /* analog control */
/* mono volumes for tas3001c/tas3004 */
enum {
VOL_IDX_PCM_MONO, /* tas3001c only */
VOL_IDX_BASS, VOL_IDX_TREBLE,
VOL_IDX_LAST_MONO
};
/* stereo volumes for tas3004 */
enum {
VOL_IDX_PCM, VOL_IDX_PCM2, VOL_IDX_ADC,
VOL_IDX_LAST_MIX
};
struct pmac_gpio {
unsigned int addr;
u8 active_val;
u8 inactive_val;
u8 active_state;
};
struct pmac_tumbler {
struct pmac_keywest i2c;
struct pmac_gpio audio_reset;
struct pmac_gpio amp_mute;
struct pmac_gpio line_mute;
struct pmac_gpio line_detect;
struct pmac_gpio hp_mute;
struct pmac_gpio hp_detect;
int headphone_irq;
int lineout_irq;
unsigned int save_master_vol[2];
unsigned int master_vol[2];
unsigned int save_master_switch[2];
unsigned int master_switch[2];
unsigned int mono_vol[VOL_IDX_LAST_MONO];
unsigned int mix_vol[VOL_IDX_LAST_MIX][2]; /* stereo volumes for tas3004 */
int drc_range;
int drc_enable;
int capture_source;
int anded_reset;
int auto_mute_notify;
int reset_on_sleep;
u8 acs;
};
/*
*/
static int send_init_client(struct pmac_keywest *i2c, unsigned int *regs)
{
while (*regs > 0) {
int err, count = 10;
do {
err = i2c_smbus_write_byte_data(i2c->client,
regs[0], regs[1]);
if (err >= 0)
break;
DBG("(W) i2c error %d\n", err);
mdelay(10);
} while (count--);
if (err < 0)
return -ENXIO;
regs += 2;
}
return 0;
}
static int tumbler_init_client(struct pmac_keywest *i2c)
{
static unsigned int regs[] = {
/* normal operation, SCLK=64fps, i2s output, i2s input, 16bit width */
TAS_REG_MCS, (1<<6)|(2<<4)|(2<<2)|0,
0, /* terminator */
};
DBG("(I) tumbler init client\n");
return send_init_client(i2c, regs);
}
static int snapper_init_client(struct pmac_keywest *i2c)
{
static unsigned int regs[] = {
/* normal operation, SCLK=64fps, i2s output, 16bit width */
TAS_REG_MCS, (1<<6)|(2<<4)|0,
/* normal operation, all-pass mode */
TAS_REG_MCS2, (1<<1),
/* normal output, no deemphasis, A input, power-up, line-in */
TAS_REG_ACS, 0,
0, /* terminator */
};
DBG("(I) snapper init client\n");
return send_init_client(i2c, regs);
}
/*
* gpio access
*/
#define do_gpio_write(gp, val) \
pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, (gp)->addr, val)
#define do_gpio_read(gp) \
pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, (gp)->addr, 0)
#define tumbler_gpio_free(gp) /* NOP */
static void write_audio_gpio(struct pmac_gpio *gp, int active)
{
if (! gp->addr)
return;
active = active ? gp->active_val : gp->inactive_val;
do_gpio_write(gp, active);
DBG("(I) gpio %x write %d\n", gp->addr, active);
}
static int check_audio_gpio(struct pmac_gpio *gp)
{
int ret;
if (! gp->addr)
return 0;
ret = do_gpio_read(gp);
return (ret & 0x1) == (gp->active_val & 0x1);
}
static int read_audio_gpio(struct pmac_gpio *gp)
{
int ret;
if (! gp->addr)
return 0;
ret = do_gpio_read(gp);
ret = (ret & 0x02) !=0;
return ret == gp->active_state;
}
/*
* update master volume
*/
static int tumbler_set_master_volume(struct pmac_tumbler *mix)
{
unsigned char block[6];
unsigned int left_vol, right_vol;
if (! mix->i2c.client)
return -ENODEV;
if (! mix->master_switch[0])
left_vol = 0;
else {
left_vol = mix->master_vol[0];
if (left_vol >= ARRAY_SIZE(master_volume_table))
left_vol = ARRAY_SIZE(master_volume_table) - 1;
left_vol = master_volume_table[left_vol];
}
if (! mix->master_switch[1])
right_vol = 0;
else {
right_vol = mix->master_vol[1];
if (right_vol >= ARRAY_SIZE(master_volume_table))
right_vol = ARRAY_SIZE(master_volume_table) - 1;
right_vol = master_volume_table[right_vol];
}
block[0] = (left_vol >> 16) & 0xff;
block[1] = (left_vol >> 8) & 0xff;
block[2] = (left_vol >> 0) & 0xff;
block[3] = (right_vol >> 16) & 0xff;
block[4] = (right_vol >> 8) & 0xff;
block[5] = (right_vol >> 0) & 0xff;
if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_VOL, 6,
block) < 0) {
snd_printk("failed to set volume \n");
return -EINVAL;
}
return 0;
}
/* output volume */
static int tumbler_info_master_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = ARRAY_SIZE(master_volume_table) - 1;
return 0;
}
static int tumbler_get_master_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix = chip->mixer_data;
ucontrol->value.integer.value[0] = mix->master_vol[0];
ucontrol->value.integer.value[1] = mix->master_vol[1];
return 0;
}
static int tumbler_put_master_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix = chip->mixer_data;
unsigned int vol[2];
int change;
vol[0] = ucontrol->value.integer.value[0];
vol[1] = ucontrol->value.integer.value[1];
if (vol[0] >= ARRAY_SIZE(master_volume_table) ||
vol[1] >= ARRAY_SIZE(master_volume_table))
return -EINVAL;
change = mix->master_vol[0] != vol[0] ||
mix->master_vol[1] != vol[1];
if (change) {
mix->master_vol[0] = vol[0];
mix->master_vol[1] = vol[1];
tumbler_set_master_volume(mix);
}
return change;
}
/* output switch */
static int tumbler_get_master_switch(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix = chip->mixer_data;
ucontrol->value.integer.value[0] = mix->master_switch[0];
ucontrol->value.integer.value[1] = mix->master_switch[1];
return 0;
}
static int tumbler_put_master_switch(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix = chip->mixer_data;
int change;
change = mix->master_switch[0] != ucontrol->value.integer.value[0] ||
mix->master_switch[1] != ucontrol->value.integer.value[1];
if (change) {
mix->master_switch[0] = !!ucontrol->value.integer.value[0];
mix->master_switch[1] = !!ucontrol->value.integer.value[1];
tumbler_set_master_volume(mix);
}
return change;
}
/*
* TAS3001c dynamic range compression
*/
#define TAS3001_DRC_MAX 0x5f
static int tumbler_set_drc(struct pmac_tumbler *mix)
{
unsigned char val[2];
if (! mix->i2c.client)
return -ENODEV;
if (mix->drc_enable) {
val[0] = 0xc1; /* enable, 3:1 compression */
if (mix->drc_range > TAS3001_DRC_MAX)
val[1] = 0xf0;
else if (mix->drc_range < 0)
val[1] = 0x91;
else
val[1] = mix->drc_range + 0x91;
} else {
val[0] = 0;
val[1] = 0;
}
if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_DRC,
2, val) < 0) {
snd_printk("failed to set DRC\n");
return -EINVAL;
}
return 0;
}
/*
* TAS3004
*/
#define TAS3004_DRC_MAX 0xef
static int snapper_set_drc(struct pmac_tumbler *mix)
{
unsigned char val[6];
if (! mix->i2c.client)
return -ENODEV;
if (mix->drc_enable)
val[0] = 0x50; /* 3:1 above threshold */
else
val[0] = 0x51; /* disabled */
val[1] = 0x02; /* 1:1 below threshold */
if (mix->drc_range > 0xef)
val[2] = 0xef;
else if (mix->drc_range < 0)
val[2] = 0x00;
else
val[2] = mix->drc_range;
val[3] = 0xb0;
val[4] = 0x60;
val[5] = 0xa0;
if (i2c_smbus_write_i2c_block_data(mix->i2c.client, TAS_REG_DRC,
6, val) < 0) {
snd_printk("failed to set DRC\n");
return -EINVAL;
}
return 0;
}
static int tumbler_info_drc_value(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max =
chip->model == PMAC_TUMBLER ? TAS3001_DRC_MAX : TAS3004_DRC_MAX;
return 0;
}
static int tumbler_get_drc_value(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
if (! (mix = chip->mixer_data))
return -ENODEV;
ucontrol->value.integer.value[0] = mix->drc_range;
return 0;
}
static int tumbler_put_drc_value(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
unsigned int val;
int change;
if (! (mix = chip->mixer_data))
return -ENODEV;
val = ucontrol->value.integer.value[0];
if (chip->model == PMAC_TUMBLER) {
if (val > TAS3001_DRC_MAX)
return -EINVAL;
} else {
if (val > TAS3004_DRC_MAX)
return -EINVAL;
}
change = mix->drc_range != val;
if (change) {
mix->drc_range = val;
if (chip->model == PMAC_TUMBLER)
tumbler_set_drc(mix);
else
snapper_set_drc(mix);
}
return change;
}
static int tumbler_get_drc_switch(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
if (! (mix = chip->mixer_data))
return -ENODEV;
ucontrol->value.integer.value[0] = mix->drc_enable;
return 0;
}
static int tumbler_put_drc_switch(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
int change;
if (! (mix = chip->mixer_data))
return -ENODEV;
change = mix->drc_enable != ucontrol->value.integer.value[0];
if (change) {
mix->drc_enable = !!ucontrol->value.integer.value[0];
if (chip->model == PMAC_TUMBLER)
tumbler_set_drc(mix);
else
snapper_set_drc(mix);
}
return change;
}
/*
* mono volumes
*/
struct tumbler_mono_vol {
int index;
int reg;
int bytes;
unsigned int max;
unsigned int *table;
};
static int tumbler_set_mono_volume(struct pmac_tumbler *mix,
struct tumbler_mono_vol *info)
{
unsigned char block[4];
unsigned int vol;
int i;
if (! mix->i2c.client)
return -ENODEV;
vol = mix->mono_vol[info->index];
if (vol >= info->max)
vol = info->max - 1;
vol = info->table[vol];
for (i = 0; i < info->bytes; i++)
block[i] = (vol >> ((info->bytes - i - 1) * 8)) & 0xff;
if (i2c_smbus_write_i2c_block_data(mix->i2c.client, info->reg,
info->bytes, block) < 0) {
snd_printk("failed to set mono volume %d\n", info->index);
return -EINVAL;
}
return 0;
}
static int tumbler_info_mono(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = info->max - 1;
return 0;
}
static int tumbler_get_mono(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
if (! (mix = chip->mixer_data))
return -ENODEV;
ucontrol->value.integer.value[0] = mix->mono_vol[info->index];
return 0;
}
static int tumbler_put_mono(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tumbler_mono_vol *info = (struct tumbler_mono_vol *)kcontrol->private_value;
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
unsigned int vol;
int change;
if (! (mix = chip->mixer_data))
return -ENODEV;
vol = ucontrol->value.integer.value[0];
if (vol >= info->max)
return -EINVAL;
change = mix->mono_vol[info->index] != vol;
if (change) {
mix->mono_vol[info->index] = vol;
tumbler_set_mono_volume(mix, info);
}
return change;
}
/* TAS3001c mono volumes */
static struct tumbler_mono_vol tumbler_pcm_vol_info = {
.index = VOL_IDX_PCM_MONO,
.reg = TAS_REG_PCM,
.bytes = 3,
.max = ARRAY_SIZE(mixer_volume_table),
.table = mixer_volume_table,
};
static struct tumbler_mono_vol tumbler_bass_vol_info = {
.index = VOL_IDX_BASS,
.reg = TAS_REG_BASS,
.bytes = 1,
.max = ARRAY_SIZE(bass_volume_table),
.table = bass_volume_table,
};
static struct tumbler_mono_vol tumbler_treble_vol_info = {
.index = VOL_IDX_TREBLE,
.reg = TAS_REG_TREBLE,
.bytes = 1,
.max = ARRAY_SIZE(treble_volume_table),
.table = treble_volume_table,
};
/* TAS3004 mono volumes */
static struct tumbler_mono_vol snapper_bass_vol_info = {
.index = VOL_IDX_BASS,
.reg = TAS_REG_BASS,
.bytes = 1,
.max = ARRAY_SIZE(snapper_bass_volume_table),
.table = snapper_bass_volume_table,
};
static struct tumbler_mono_vol snapper_treble_vol_info = {
.index = VOL_IDX_TREBLE,
.reg = TAS_REG_TREBLE,
.bytes = 1,
.max = ARRAY_SIZE(snapper_treble_volume_table),
.table = snapper_treble_volume_table,
};
#define DEFINE_MONO(xname,type) { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
.name = xname, \
.info = tumbler_info_mono, \
.get = tumbler_get_mono, \
.put = tumbler_put_mono, \
.private_value = (unsigned long)(&tumbler_##type##_vol_info), \
}
#define DEFINE_SNAPPER_MONO(xname,type) { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
.name = xname, \
.info = tumbler_info_mono, \
.get = tumbler_get_mono, \
.put = tumbler_put_mono, \
.private_value = (unsigned long)(&snapper_##type##_vol_info), \
}
/*
* snapper mixer volumes
*/
static int snapper_set_mix_vol1(struct pmac_tumbler *mix, int idx, int ch, int reg)
{
int i, j, vol;
unsigned char block[9];
vol = mix->mix_vol[idx][ch];
if (vol >= ARRAY_SIZE(mixer_volume_table)) {
vol = ARRAY_SIZE(mixer_volume_table) - 1;
mix->mix_vol[idx][ch] = vol;
}
for (i = 0; i < 3; i++) {
vol = mix->mix_vol[i][ch];
vol = mixer_volume_table[vol];
for (j = 0; j < 3; j++)
block[i * 3 + j] = (vol >> ((2 - j) * 8)) & 0xff;
}
if (i2c_smbus_write_i2c_block_data(mix->i2c.client, reg,
9, block) < 0) {
snd_printk("failed to set mono volume %d\n", reg);
return -EINVAL;
}
return 0;
}
static int snapper_set_mix_vol(struct pmac_tumbler *mix, int idx)
{
if (! mix->i2c.client)
return -ENODEV;
if (snapper_set_mix_vol1(mix, idx, 0, TAS_REG_LMIX) < 0 ||
snapper_set_mix_vol1(mix, idx, 1, TAS_REG_RMIX) < 0)
return -EINVAL;
return 0;
}
static int snapper_info_mix(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = ARRAY_SIZE(mixer_volume_table) - 1;
return 0;
}
static int snapper_get_mix(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = (int)kcontrol->private_value;
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
if (! (mix = chip->mixer_data))
return -ENODEV;
ucontrol->value.integer.value[0] = mix->mix_vol[idx][0];
ucontrol->value.integer.value[1] = mix->mix_vol[idx][1];
return 0;
}
static int snapper_put_mix(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int idx = (int)kcontrol->private_value;
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
unsigned int vol[2];
int change;
if (! (mix = chip->mixer_data))
return -ENODEV;
vol[0] = ucontrol->value.integer.value[0];
vol[1] = ucontrol->value.integer.value[1];
if (vol[0] >= ARRAY_SIZE(mixer_volume_table) ||
vol[1] >= ARRAY_SIZE(mixer_volume_table))
return -EINVAL;
change = mix->mix_vol[idx][0] != vol[0] ||
mix->mix_vol[idx][1] != vol[1];
if (change) {
mix->mix_vol[idx][0] = vol[0];
mix->mix_vol[idx][1] = vol[1];
snapper_set_mix_vol(mix, idx);
}
return change;
}
/*
* mute switches. FIXME: Turn that into software mute when both outputs are muted
* to avoid codec reset on ibook M7
*/
enum { TUMBLER_MUTE_HP, TUMBLER_MUTE_AMP, TUMBLER_MUTE_LINE };
static int tumbler_get_mute_switch(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
struct pmac_gpio *gp;
if (! (mix = chip->mixer_data))
return -ENODEV;
switch(kcontrol->private_value) {
case TUMBLER_MUTE_HP:
gp = &mix->hp_mute; break;
case TUMBLER_MUTE_AMP:
gp = &mix->amp_mute; break;
case TUMBLER_MUTE_LINE:
gp = &mix->line_mute; break;
default:
gp = NULL;
}
if (gp == NULL)
return -EINVAL;
ucontrol->value.integer.value[0] = !check_audio_gpio(gp);
return 0;
}
static int tumbler_put_mute_switch(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix;
struct pmac_gpio *gp;
int val;
#ifdef PMAC_SUPPORT_AUTOMUTE
if (chip->update_automute && chip->auto_mute)
return 0; /* don't touch in the auto-mute mode */
#endif
if (! (mix = chip->mixer_data))
return -ENODEV;
switch(kcontrol->private_value) {
case TUMBLER_MUTE_HP:
gp = &mix->hp_mute; break;
case TUMBLER_MUTE_AMP:
gp = &mix->amp_mute; break;
case TUMBLER_MUTE_LINE:
gp = &mix->line_mute; break;
default:
gp = NULL;
}
if (gp == NULL)
return -EINVAL;
val = ! check_audio_gpio(gp);
if (val != ucontrol->value.integer.value[0]) {
write_audio_gpio(gp, ! ucontrol->value.integer.value[0]);
return 1;
}
return 0;
}
static int snapper_set_capture_source(struct pmac_tumbler *mix)
{
if (! mix->i2c.client)
return -ENODEV;
if (mix->capture_source)
mix->acs = mix->acs |= 2;
else
mix->acs &= ~2;
return i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs);
}
static int snapper_info_capture_source(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static char *texts[2] = {
"Line", "Mic"
};
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 2;
if (uinfo->value.enumerated.item > 1)
uinfo->value.enumerated.item = 1;
strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
return 0;
}
static int snapper_get_capture_source(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix = chip->mixer_data;
ucontrol->value.enumerated.item[0] = mix->capture_source;
return 0;
}
static int snapper_put_capture_source(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
struct pmac_tumbler *mix = chip->mixer_data;
int change;
change = ucontrol->value.enumerated.item[0] != mix->capture_source;
if (change) {
mix->capture_source = !!ucontrol->value.enumerated.item[0];
snapper_set_capture_source(mix);
}
return change;
}
#define DEFINE_SNAPPER_MIX(xname,idx,ofs) { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
.name = xname, \
.info = snapper_info_mix, \
.get = snapper_get_mix, \
.put = snapper_put_mix, \
.index = idx,\
.private_value = ofs, \
}
/*
*/
static struct snd_kcontrol_new tumbler_mixers[] __initdata = {
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Volume",
.info = tumbler_info_master_volume,
.get = tumbler_get_master_volume,
.put = tumbler_put_master_volume
},
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Switch",
.info = snd_pmac_boolean_stereo_info,
.get = tumbler_get_master_switch,
.put = tumbler_put_master_switch
},
DEFINE_MONO("Tone Control - Bass", bass),
DEFINE_MONO("Tone Control - Treble", treble),
DEFINE_MONO("PCM Playback Volume", pcm),
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "DRC Range",
.info = tumbler_info_drc_value,
.get = tumbler_get_drc_value,
.put = tumbler_put_drc_value
},
};
static struct snd_kcontrol_new snapper_mixers[] __initdata = {
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Volume",
.info = tumbler_info_master_volume,
.get = tumbler_get_master_volume,
.put = tumbler_put_master_volume
},
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Switch",
.info = snd_pmac_boolean_stereo_info,
.get = tumbler_get_master_switch,
.put = tumbler_put_master_switch
},
DEFINE_SNAPPER_MIX("PCM Playback Volume", 0, VOL_IDX_PCM),
DEFINE_SNAPPER_MIX("PCM Playback Volume", 1, VOL_IDX_PCM2),
DEFINE_SNAPPER_MIX("Monitor Mix Volume", 0, VOL_IDX_ADC),
DEFINE_SNAPPER_MONO("Tone Control - Bass", bass),
DEFINE_SNAPPER_MONO("Tone Control - Treble", treble),
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "DRC Range",
.info = tumbler_info_drc_value,
.get = tumbler_get_drc_value,
.put = tumbler_put_drc_value
},
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Input Source", /* FIXME: "Capture Source" doesn't work properly */
.info = snapper_info_capture_source,
.get = snapper_get_capture_source,
.put = snapper_put_capture_source
},
};
static struct snd_kcontrol_new tumbler_hp_sw __initdata = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphone Playback Switch",
.info = snd_pmac_boolean_mono_info,
.get = tumbler_get_mute_switch,
.put = tumbler_put_mute_switch,
.private_value = TUMBLER_MUTE_HP,
};
static struct snd_kcontrol_new tumbler_speaker_sw __initdata = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PC Speaker Playback Switch",
.info = snd_pmac_boolean_mono_info,
.get = tumbler_get_mute_switch,
.put = tumbler_put_mute_switch,
.private_value = TUMBLER_MUTE_AMP,
};
static struct snd_kcontrol_new tumbler_lineout_sw __initdata = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Line Out Playback Switch",
.info = snd_pmac_boolean_mono_info,
.get = tumbler_get_mute_switch,
.put = tumbler_put_mute_switch,
.private_value = TUMBLER_MUTE_LINE,
};
static struct snd_kcontrol_new tumbler_drc_sw __initdata = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "DRC Switch",
.info = snd_pmac_boolean_mono_info,
.get = tumbler_get_drc_switch,
.put = tumbler_put_drc_switch
};
#ifdef PMAC_SUPPORT_AUTOMUTE
/*
* auto-mute stuffs
*/
static int tumbler_detect_headphone(struct snd_pmac *chip)
{
struct pmac_tumbler *mix = chip->mixer_data;
int detect = 0;
if (mix->hp_detect.addr)
detect |= read_audio_gpio(&mix->hp_detect);
return detect;
}
static int tumbler_detect_lineout(struct snd_pmac *chip)
{
struct pmac_tumbler *mix = chip->mixer_data;
int detect = 0;
if (mix->line_detect.addr)
detect |= read_audio_gpio(&mix->line_detect);
return detect;
}
static void check_mute(struct snd_pmac *chip, struct pmac_gpio *gp, int val, int do_notify,
struct snd_kcontrol *sw)
{
if (check_audio_gpio(gp) != val) {
write_audio_gpio(gp, val);
if (do_notify)
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&sw->id);
}
}
static struct work_struct device_change;
static struct snd_pmac *device_change_chip;
static void device_change_handler(struct work_struct *work)
{
struct snd_pmac *chip = device_change_chip;
struct pmac_tumbler *mix;
int headphone, lineout;
if (!chip)
return;
mix = chip->mixer_data;
if (snd_BUG_ON(!mix))
return;
headphone = tumbler_detect_headphone(chip);
lineout = tumbler_detect_lineout(chip);
DBG("headphone: %d, lineout: %d\n", headphone, lineout);
if (headphone || lineout) {
/* unmute headphone/lineout & mute speaker */
if (headphone)
check_mute(chip, &mix->hp_mute, 0, mix->auto_mute_notify,
chip->master_sw_ctl);
if (lineout && mix->line_mute.addr != 0)
check_mute(chip, &mix->line_mute, 0, mix->auto_mute_notify,
chip->lineout_sw_ctl);
if (mix->anded_reset)
msleep(10);
check_mute(chip, &mix->amp_mute, 1, mix->auto_mute_notify,
chip->speaker_sw_ctl);
} else {
/* unmute speaker, mute others */
check_mute(chip, &mix->amp_mute, 0, mix->auto_mute_notify,
chip->speaker_sw_ctl);
if (mix->anded_reset)
msleep(10);
check_mute(chip, &mix->hp_mute, 1, mix->auto_mute_notify,
chip->master_sw_ctl);
if (mix->line_mute.addr != 0)
check_mute(chip, &mix->line_mute, 1, mix->auto_mute_notify,
chip->lineout_sw_ctl);
}
if (mix->auto_mute_notify)
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->hp_detect_ctl->id);
#ifdef CONFIG_SND_POWERMAC_AUTO_DRC
mix->drc_enable = ! (headphone || lineout);
if (mix->auto_mute_notify)
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->drc_sw_ctl->id);
if (chip->model == PMAC_TUMBLER)
tumbler_set_drc(mix);
else
snapper_set_drc(mix);
#endif
/* reset the master volume so the correct amplification is applied */
tumbler_set_master_volume(mix);
}
static void tumbler_update_automute(struct snd_pmac *chip, int do_notify)
{
if (chip->auto_mute) {
struct pmac_tumbler *mix;
mix = chip->mixer_data;
if (snd_BUG_ON(!mix))
return;
mix->auto_mute_notify = do_notify;
schedule_work(&device_change);
}
}
#endif /* PMAC_SUPPORT_AUTOMUTE */
/* interrupt - headphone plug changed */
static irqreturn_t headphone_intr(int irq, void *devid)
{
struct snd_pmac *chip = devid;
if (chip->update_automute && chip->initialized) {
chip->update_automute(chip, 1);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
/* look for audio-gpio device */
static struct device_node *find_audio_device(const char *name)
{
struct device_node *gpiop;
struct device_node *np;
gpiop = of_find_node_by_name(NULL, "gpio");
if (! gpiop)
return NULL;
for (np = of_get_next_child(gpiop, NULL); np;
np = of_get_next_child(gpiop, np)) {
const char *property = of_get_property(np, "audio-gpio", NULL);
if (property && strcmp(property, name) == 0)
break;
}
of_node_put(gpiop);
return np;
}
/* look for audio-gpio device */
static struct device_node *find_compatible_audio_device(const char *name)
{
struct device_node *gpiop;
struct device_node *np;
gpiop = of_find_node_by_name(NULL, "gpio");
if (!gpiop)
return NULL;
for (np = of_get_next_child(gpiop, NULL); np;
np = of_get_next_child(gpiop, np)) {
if (of_device_is_compatible(np, name))
break;
}
of_node_put(gpiop);
return np;
}
/* find an audio device and get its address */
static long tumbler_find_device(const char *device, const char *platform,
struct pmac_gpio *gp, int is_compatible)
{
struct device_node *node;
const u32 *base;
u32 addr;
long ret;
if (is_compatible)
node = find_compatible_audio_device(device);
else
node = find_audio_device(device);
if (! node) {
DBG("(W) cannot find audio device %s !\n", device);
snd_printdd("cannot find device %s\n", device);
return -ENODEV;
}
base = of_get_property(node, "AAPL,address", NULL);
if (! base) {
base = of_get_property(node, "reg", NULL);
if (!base) {
DBG("(E) cannot find address for device %s !\n", device);
snd_printd("cannot find address for device %s\n", device);
of_node_put(node);
return -ENODEV;
}
addr = *base;
if (addr < 0x50)
addr += 0x50;
} else
addr = *base;
gp->addr = addr & 0x0000ffff;
/* Try to find the active state, default to 0 ! */
base = of_get_property(node, "audio-gpio-active-state", NULL);
if (base) {
gp->active_state = *base;
gp->active_val = (*base) ? 0x5 : 0x4;
gp->inactive_val = (*base) ? 0x4 : 0x5;
} else {
const u32 *prop = NULL;
gp->active_state = 0;
gp->active_val = 0x4;
gp->inactive_val = 0x5;
/* Here are some crude hacks to extract the GPIO polarity and
* open collector informations out of the do-platform script
* as we don't yet have an interpreter for these things
*/
if (platform)
prop = of_get_property(node, platform, NULL);
if (prop) {
if (prop[3] == 0x9 && prop[4] == 0x9) {
gp->active_val = 0xd;
gp->inactive_val = 0xc;
}
if (prop[3] == 0x1 && prop[4] == 0x1) {
gp->active_val = 0x5;
gp->inactive_val = 0x4;
}
}
}
DBG("(I) GPIO device %s found, offset: %x, active state: %d !\n",
device, gp->addr, gp->active_state);
ret = irq_of_parse_and_map(node, 0);
of_node_put(node);
return ret;
}
/* reset audio */
static void tumbler_reset_audio(struct snd_pmac *chip)
{
struct pmac_tumbler *mix = chip->mixer_data;
if (mix->anded_reset) {
DBG("(I) codec anded reset !\n");
write_audio_gpio(&mix->hp_mute, 0);
write_audio_gpio(&mix->amp_mute, 0);
msleep(200);
write_audio_gpio(&mix->hp_mute, 1);
write_audio_gpio(&mix->amp_mute, 1);
msleep(100);
write_audio_gpio(&mix->hp_mute, 0);
write_audio_gpio(&mix->amp_mute, 0);
msleep(100);
} else {
DBG("(I) codec normal reset !\n");
write_audio_gpio(&mix->audio_reset, 0);
msleep(200);
write_audio_gpio(&mix->audio_reset, 1);
msleep(100);
write_audio_gpio(&mix->audio_reset, 0);
msleep(100);
}
}
#ifdef CONFIG_PM
/* suspend mixer */
static void tumbler_suspend(struct snd_pmac *chip)
{
struct pmac_tumbler *mix = chip->mixer_data;
if (mix->headphone_irq >= 0)
disable_irq(mix->headphone_irq);
if (mix->lineout_irq >= 0)
disable_irq(mix->lineout_irq);
mix->save_master_switch[0] = mix->master_switch[0];
mix->save_master_switch[1] = mix->master_switch[1];
mix->save_master_vol[0] = mix->master_vol[0];
mix->save_master_vol[1] = mix->master_vol[1];
mix->master_switch[0] = mix->master_switch[1] = 0;
tumbler_set_master_volume(mix);
if (!mix->anded_reset) {
write_audio_gpio(&mix->amp_mute, 1);
write_audio_gpio(&mix->hp_mute, 1);
}
if (chip->model == PMAC_SNAPPER) {
mix->acs |= 1;
i2c_smbus_write_byte_data(mix->i2c.client, TAS_REG_ACS, mix->acs);
}
if (mix->anded_reset) {
write_audio_gpio(&mix->amp_mute, 1);
write_audio_gpio(&mix->hp_mute, 1);
} else
write_audio_gpio(&mix->audio_reset, 1);
}
/* resume mixer */
static void tumbler_resume(struct snd_pmac *chip)
{
struct pmac_tumbler *mix = chip->mixer_data;
mix->acs &= ~1;
mix->master_switch[0] = mix->save_master_switch[0];
mix->master_switch[1] = mix->save_master_switch[1];
mix->master_vol[0] = mix->save_master_vol[0];
mix->master_vol[1] = mix->save_master_vol[1];
tumbler_reset_audio(chip);
if (mix->i2c.client && mix->i2c.init_client) {
if (mix->i2c.init_client(&mix->i2c) < 0)
printk(KERN_ERR "tumbler_init_client error\n");
} else
printk(KERN_ERR "tumbler: i2c is not initialized\n");
if (chip->model == PMAC_TUMBLER) {
tumbler_set_mono_volume(mix, &tumbler_pcm_vol_info);
tumbler_set_mono_volume(mix, &tumbler_bass_vol_info);
tumbler_set_mono_volume(mix, &tumbler_treble_vol_info);
tumbler_set_drc(mix);
} else {
snapper_set_mix_vol(mix, VOL_IDX_PCM);
snapper_set_mix_vol(mix, VOL_IDX_PCM2);
snapper_set_mix_vol(mix, VOL_IDX_ADC);
tumbler_set_mono_volume(mix, &snapper_bass_vol_info);
tumbler_set_mono_volume(mix, &snapper_treble_vol_info);
snapper_set_drc(mix);
snapper_set_capture_source(mix);
}
tumbler_set_master_volume(mix);
if (chip->update_automute)
chip->update_automute(chip, 0);
if (mix->headphone_irq >= 0) {
unsigned char val;
enable_irq(mix->headphone_irq);
/* activate headphone status interrupts */
val = do_gpio_read(&mix->hp_detect);
do_gpio_write(&mix->hp_detect, val | 0x80);
}
if (mix->lineout_irq >= 0)
enable_irq(mix->lineout_irq);
}
#endif
/* initialize tumbler */
static int __init tumbler_init(struct snd_pmac *chip)
{
int irq;
struct pmac_tumbler *mix = chip->mixer_data;
if (tumbler_find_device("audio-hw-reset",
"platform-do-hw-reset",
&mix->audio_reset, 0) < 0)
tumbler_find_device("hw-reset",
"platform-do-hw-reset",
&mix->audio_reset, 1);
if (tumbler_find_device("amp-mute",
"platform-do-amp-mute",
&mix->amp_mute, 0) < 0)
tumbler_find_device("amp-mute",
"platform-do-amp-mute",
&mix->amp_mute, 1);
if (tumbler_find_device("headphone-mute",
"platform-do-headphone-mute",
&mix->hp_mute, 0) < 0)
tumbler_find_device("headphone-mute",
"platform-do-headphone-mute",
&mix->hp_mute, 1);
if (tumbler_find_device("line-output-mute",
"platform-do-lineout-mute",
&mix->line_mute, 0) < 0)
tumbler_find_device("line-output-mute",
"platform-do-lineout-mute",
&mix->line_mute, 1);
irq = tumbler_find_device("headphone-detect",
NULL, &mix->hp_detect, 0);
if (irq <= NO_IRQ)
irq = tumbler_find_device("headphone-detect",
NULL, &mix->hp_detect, 1);
if (irq <= NO_IRQ)
irq = tumbler_find_device("keywest-gpio15",
NULL, &mix->hp_detect, 1);
mix->headphone_irq = irq;
irq = tumbler_find_device("line-output-detect",
NULL, &mix->line_detect, 0);
if (irq <= NO_IRQ)
irq = tumbler_find_device("line-output-detect",
NULL, &mix->line_detect, 1);
mix->lineout_irq = irq;
tumbler_reset_audio(chip);
return 0;
}
static void tumbler_cleanup(struct snd_pmac *chip)
{
struct pmac_tumbler *mix = chip->mixer_data;
if (! mix)
return;
if (mix->headphone_irq >= 0)
free_irq(mix->headphone_irq, chip);
if (mix->lineout_irq >= 0)
free_irq(mix->lineout_irq, chip);
tumbler_gpio_free(&mix->audio_reset);
tumbler_gpio_free(&mix->amp_mute);
tumbler_gpio_free(&mix->hp_mute);
tumbler_gpio_free(&mix->hp_detect);
snd_pmac_keywest_cleanup(&mix->i2c);
kfree(mix);
chip->mixer_data = NULL;
}
/* exported */
int __init snd_pmac_tumbler_init(struct snd_pmac *chip)
{
int i, err;
struct pmac_tumbler *mix;
const u32 *paddr;
struct device_node *tas_node, *np;
char *chipname;
request_module("i2c-powermac");
mix = kzalloc(sizeof(*mix), GFP_KERNEL);
if (! mix)
return -ENOMEM;
mix->headphone_irq = -1;
chip->mixer_data = mix;
chip->mixer_free = tumbler_cleanup;
mix->anded_reset = 0;
mix->reset_on_sleep = 1;
for (np = chip->node->child; np; np = np->sibling) {
if (!strcmp(np->name, "sound")) {
if (of_get_property(np, "has-anded-reset", NULL))
mix->anded_reset = 1;
if (of_get_property(np, "layout-id", NULL))
mix->reset_on_sleep = 0;
break;
}
}
if ((err = tumbler_init(chip)) < 0)
return err;
/* set up TAS */
tas_node = of_find_node_by_name(NULL, "deq");
if (tas_node == NULL)
tas_node = of_find_node_by_name(NULL, "codec");
if (tas_node == NULL)
return -ENODEV;
paddr = of_get_property(tas_node, "i2c-address", NULL);
if (paddr == NULL)
paddr = of_get_property(tas_node, "reg", NULL);
if (paddr)
mix->i2c.addr = (*paddr) >> 1;
else
mix->i2c.addr = TAS_I2C_ADDR;
of_node_put(tas_node);
DBG("(I) TAS i2c address is: %x\n", mix->i2c.addr);
if (chip->model == PMAC_TUMBLER) {
mix->i2c.init_client = tumbler_init_client;
mix->i2c.name = "TAS3001c";
chipname = "Tumbler";
} else {
mix->i2c.init_client = snapper_init_client;
mix->i2c.name = "TAS3004";
chipname = "Snapper";
}
if ((err = snd_pmac_keywest_init(&mix->i2c)) < 0)
return err;
/*
* build mixers
*/
sprintf(chip->card->mixername, "PowerMac %s", chipname);
if (chip->model == PMAC_TUMBLER) {
for (i = 0; i < ARRAY_SIZE(tumbler_mixers); i++) {
if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&tumbler_mixers[i], chip))) < 0)
return err;
}
} else {
for (i = 0; i < ARRAY_SIZE(snapper_mixers); i++) {
if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snapper_mixers[i], chip))) < 0)
return err;
}
}
chip->master_sw_ctl = snd_ctl_new1(&tumbler_hp_sw, chip);
if ((err = snd_ctl_add(chip->card, chip->master_sw_ctl)) < 0)
return err;
chip->speaker_sw_ctl = snd_ctl_new1(&tumbler_speaker_sw, chip);
if ((err = snd_ctl_add(chip->card, chip->speaker_sw_ctl)) < 0)
return err;
if (mix->line_mute.addr != 0) {
chip->lineout_sw_ctl = snd_ctl_new1(&tumbler_lineout_sw, chip);
if ((err = snd_ctl_add(chip->card, chip->lineout_sw_ctl)) < 0)
return err;
}
chip->drc_sw_ctl = snd_ctl_new1(&tumbler_drc_sw, chip);
if ((err = snd_ctl_add(chip->card, chip->drc_sw_ctl)) < 0)
return err;
/* set initial DRC range to 60% */
if (chip->model == PMAC_TUMBLER)
mix->drc_range = (TAS3001_DRC_MAX * 6) / 10;
else
mix->drc_range = (TAS3004_DRC_MAX * 6) / 10;
mix->drc_enable = 1; /* will be changed later if AUTO_DRC is set */
if (chip->model == PMAC_TUMBLER)
tumbler_set_drc(mix);
else
snapper_set_drc(mix);
#ifdef CONFIG_PM
chip->suspend = tumbler_suspend;
chip->resume = tumbler_resume;
#endif
INIT_WORK(&device_change, device_change_handler);
device_change_chip = chip;
#ifdef PMAC_SUPPORT_AUTOMUTE
if ((mix->headphone_irq >=0 || mix->lineout_irq >= 0)
&& (err = snd_pmac_add_automute(chip)) < 0)
return err;
chip->detect_headphone = tumbler_detect_headphone;
chip->update_automute = tumbler_update_automute;
tumbler_update_automute(chip, 0); /* update the status only */
/* activate headphone status interrupts */
if (mix->headphone_irq >= 0) {
unsigned char val;
if ((err = request_irq(mix->headphone_irq, headphone_intr, 0,
"Sound Headphone Detection", chip)) < 0)
return 0;
/* activate headphone status interrupts */
val = do_gpio_read(&mix->hp_detect);
do_gpio_write(&mix->hp_detect, val | 0x80);
}
if (mix->lineout_irq >= 0) {
unsigned char val;
if ((err = request_irq(mix->lineout_irq, headphone_intr, 0,
"Sound Lineout Detection", chip)) < 0)
return 0;
/* activate headphone status interrupts */
val = do_gpio_read(&mix->line_detect);
do_gpio_write(&mix->line_detect, val | 0x80);
}
#endif
return 0;
}