mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-15 17:14:00 +08:00
b05d59dfce
was a pretty active cycle for KVM. Changes include: - a lot of s390 changes: optimizations, support for migration, GDB support and more - ARM changes are pretty small: support for the PSCI 0.2 hypercall interface on both the guest and the host (the latter acked by Catalin) - initial POWER8 and little-endian host support - support for running u-boot on embedded POWER targets - pretty large changes to MIPS too, completing the userspace interface and improving the handling of virtualized timer hardware - for x86, a larger set of changes is scheduled for 3.17. Still, we have a few emulator bugfixes and support for running nested fully-virtualized Xen guests (para-virtualized Xen guests have always worked). And some optimizations too. The only missing architecture here is ia64. It's not a coincidence that support for KVM on ia64 is scheduled for removal in 3.17. -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQIcBAABAgAGBQJTjtlBAAoJEBvWZb6bTYbyMOUP/2NAePghE3IjG99ikHFdn+BX BfrURsuR6GD0AhYQnBidBmpFbAmN/LwSJxv/M7sV7OBRWLu3qbt69DrPTU2e/FK1 j9q25peu8jRyHzJ1q9rBroo74nD9lQYuVr3uXNxxcg0DRnw14JHGlM3y8LDEknO8 W+gpWTeAQ+2AuOX98MpRbCRMuzziCSv5bP5FhBVnsWHiZfvMbcUrbeJt+zYSiDAZ 0tHm/5dFKzfj/vVrrnjD4EZcRr688Bs5rztG96hY6aoVJryjZGLtLp92wCWkRRmH CCvZwd245NmNthuKHzcs27/duSWfU0uOlu7AMrD44QYhzeDGyB/2nbCxbGqLLoBA nnOviXH4cC65/CnisZ79zfo979HbZcX+Lzg747EjBgCSxJmLlwgiG8yXtDvk5otB TH6GUeGDiEEPj//JD3XtgSz0sF2NvjREWRyemjDMvhz6JC/bLytXKb3sn+NXSj8m ujzF9eQoa4qKDcBL4IQYGTJ4z5nY3Pd68dHFIPHB7n82OxFLSQUBKxXw8/1fb5og VVb8PL4GOcmakQlAKtTMlFPmuy4bbL2r/2iV5xJiOZKmXIu8Hs1JezBE3SFAltbl 3cAGwSM9/dDkKxUbTFblyOE9bkKbg4WYmq0LkdzsPEomb3IZWntOT25rYnX+LrBz bAknaZpPiOrW11Et1htY =j5Od -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm into next Pull KVM updates from Paolo Bonzini: "At over 200 commits, covering almost all supported architectures, this was a pretty active cycle for KVM. Changes include: - a lot of s390 changes: optimizations, support for migration, GDB support and more - ARM changes are pretty small: support for the PSCI 0.2 hypercall interface on both the guest and the host (the latter acked by Catalin) - initial POWER8 and little-endian host support - support for running u-boot on embedded POWER targets - pretty large changes to MIPS too, completing the userspace interface and improving the handling of virtualized timer hardware - for x86, a larger set of changes is scheduled for 3.17. Still, we have a few emulator bugfixes and support for running nested fully-virtualized Xen guests (para-virtualized Xen guests have always worked). And some optimizations too. The only missing architecture here is ia64. It's not a coincidence that support for KVM on ia64 is scheduled for removal in 3.17" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (203 commits) KVM: add missing cleanup_srcu_struct KVM: PPC: Book3S PR: Rework SLB switching code KVM: PPC: Book3S PR: Use SLB entry 0 KVM: PPC: Book3S HV: Fix machine check delivery to guest KVM: PPC: Book3S HV: Work around POWER8 performance monitor bugs KVM: PPC: Book3S HV: Make sure we don't miss dirty pages KVM: PPC: Book3S HV: Fix dirty map for hugepages KVM: PPC: Book3S HV: Put huge-page HPTEs in rmap chain for base address KVM: PPC: Book3S HV: Fix check for running inside guest in global_invalidates() KVM: PPC: Book3S: Move KVM_REG_PPC_WORT to an unused register number KVM: PPC: Book3S: Add ONE_REG register names that were missed KVM: PPC: Add CAP to indicate hcall fixes KVM: PPC: MPIC: Reset IRQ source private members KVM: PPC: Graciously fail broken LE hypercalls PPC: ePAPR: Fix hypercall on LE guest KVM: PPC: BOOK3S: Remove open coded make_dsisr in alignment handler KVM: PPC: BOOK3S: Always use the saved DAR value PPC: KVM: Make NX bit available with magic page KVM: PPC: Disable NX for old magic page using guests KVM: PPC: BOOK3S: HV: Add mixed page-size support for guest ...
7579 lines
190 KiB
C
7579 lines
190 KiB
C
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* derived from drivers/kvm/kvm_main.c
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright (C) 2008 Qumranet, Inc.
|
|
* Copyright IBM Corporation, 2008
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@qumranet.com>
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
* Amit Shah <amit.shah@qumranet.com>
|
|
* Ben-Ami Yassour <benami@il.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include "irq.h"
|
|
#include "mmu.h"
|
|
#include "i8254.h"
|
|
#include "tss.h"
|
|
#include "kvm_cache_regs.h"
|
|
#include "x86.h"
|
|
#include "cpuid.h"
|
|
|
|
#include <linux/clocksource.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/intel-iommu.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/user-return-notifier.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/timekeeper_internal.h>
|
|
#include <linux/pvclock_gtod.h>
|
|
#include <trace/events/kvm.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace.h"
|
|
|
|
#include <asm/debugreg.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/i387.h>
|
|
#include <asm/fpu-internal.h> /* Ugh! */
|
|
#include <asm/xcr.h>
|
|
#include <asm/pvclock.h>
|
|
#include <asm/div64.h>
|
|
|
|
#define MAX_IO_MSRS 256
|
|
#define KVM_MAX_MCE_BANKS 32
|
|
#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
|
|
|
|
#define emul_to_vcpu(ctxt) \
|
|
container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
|
|
|
|
/* EFER defaults:
|
|
* - enable syscall per default because its emulated by KVM
|
|
* - enable LME and LMA per default on 64 bit KVM
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
static
|
|
u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
|
|
#else
|
|
static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
|
|
#endif
|
|
|
|
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
|
|
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
|
|
|
|
static void update_cr8_intercept(struct kvm_vcpu *vcpu);
|
|
static void process_nmi(struct kvm_vcpu *vcpu);
|
|
|
|
struct kvm_x86_ops *kvm_x86_ops;
|
|
EXPORT_SYMBOL_GPL(kvm_x86_ops);
|
|
|
|
static bool ignore_msrs = 0;
|
|
module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
|
|
|
|
unsigned int min_timer_period_us = 500;
|
|
module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
|
|
|
|
bool kvm_has_tsc_control;
|
|
EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
|
|
u32 kvm_max_guest_tsc_khz;
|
|
EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
|
|
|
|
/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
|
|
static u32 tsc_tolerance_ppm = 250;
|
|
module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
|
|
|
|
static bool backwards_tsc_observed = false;
|
|
|
|
#define KVM_NR_SHARED_MSRS 16
|
|
|
|
struct kvm_shared_msrs_global {
|
|
int nr;
|
|
u32 msrs[KVM_NR_SHARED_MSRS];
|
|
};
|
|
|
|
struct kvm_shared_msrs {
|
|
struct user_return_notifier urn;
|
|
bool registered;
|
|
struct kvm_shared_msr_values {
|
|
u64 host;
|
|
u64 curr;
|
|
} values[KVM_NR_SHARED_MSRS];
|
|
};
|
|
|
|
static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
|
|
static struct kvm_shared_msrs __percpu *shared_msrs;
|
|
|
|
struct kvm_stats_debugfs_item debugfs_entries[] = {
|
|
{ "pf_fixed", VCPU_STAT(pf_fixed) },
|
|
{ "pf_guest", VCPU_STAT(pf_guest) },
|
|
{ "tlb_flush", VCPU_STAT(tlb_flush) },
|
|
{ "invlpg", VCPU_STAT(invlpg) },
|
|
{ "exits", VCPU_STAT(exits) },
|
|
{ "io_exits", VCPU_STAT(io_exits) },
|
|
{ "mmio_exits", VCPU_STAT(mmio_exits) },
|
|
{ "signal_exits", VCPU_STAT(signal_exits) },
|
|
{ "irq_window", VCPU_STAT(irq_window_exits) },
|
|
{ "nmi_window", VCPU_STAT(nmi_window_exits) },
|
|
{ "halt_exits", VCPU_STAT(halt_exits) },
|
|
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
|
|
{ "hypercalls", VCPU_STAT(hypercalls) },
|
|
{ "request_irq", VCPU_STAT(request_irq_exits) },
|
|
{ "irq_exits", VCPU_STAT(irq_exits) },
|
|
{ "host_state_reload", VCPU_STAT(host_state_reload) },
|
|
{ "efer_reload", VCPU_STAT(efer_reload) },
|
|
{ "fpu_reload", VCPU_STAT(fpu_reload) },
|
|
{ "insn_emulation", VCPU_STAT(insn_emulation) },
|
|
{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
|
|
{ "irq_injections", VCPU_STAT(irq_injections) },
|
|
{ "nmi_injections", VCPU_STAT(nmi_injections) },
|
|
{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
|
|
{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
|
|
{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
|
|
{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
|
|
{ "mmu_flooded", VM_STAT(mmu_flooded) },
|
|
{ "mmu_recycled", VM_STAT(mmu_recycled) },
|
|
{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
|
|
{ "mmu_unsync", VM_STAT(mmu_unsync) },
|
|
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
|
|
{ "largepages", VM_STAT(lpages) },
|
|
{ NULL }
|
|
};
|
|
|
|
u64 __read_mostly host_xcr0;
|
|
|
|
static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
|
|
|
|
static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
|
|
vcpu->arch.apf.gfns[i] = ~0;
|
|
}
|
|
|
|
static void kvm_on_user_return(struct user_return_notifier *urn)
|
|
{
|
|
unsigned slot;
|
|
struct kvm_shared_msrs *locals
|
|
= container_of(urn, struct kvm_shared_msrs, urn);
|
|
struct kvm_shared_msr_values *values;
|
|
|
|
for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
|
|
values = &locals->values[slot];
|
|
if (values->host != values->curr) {
|
|
wrmsrl(shared_msrs_global.msrs[slot], values->host);
|
|
values->curr = values->host;
|
|
}
|
|
}
|
|
locals->registered = false;
|
|
user_return_notifier_unregister(urn);
|
|
}
|
|
|
|
static void shared_msr_update(unsigned slot, u32 msr)
|
|
{
|
|
u64 value;
|
|
unsigned int cpu = smp_processor_id();
|
|
struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
|
|
|
|
/* only read, and nobody should modify it at this time,
|
|
* so don't need lock */
|
|
if (slot >= shared_msrs_global.nr) {
|
|
printk(KERN_ERR "kvm: invalid MSR slot!");
|
|
return;
|
|
}
|
|
rdmsrl_safe(msr, &value);
|
|
smsr->values[slot].host = value;
|
|
smsr->values[slot].curr = value;
|
|
}
|
|
|
|
void kvm_define_shared_msr(unsigned slot, u32 msr)
|
|
{
|
|
if (slot >= shared_msrs_global.nr)
|
|
shared_msrs_global.nr = slot + 1;
|
|
shared_msrs_global.msrs[slot] = msr;
|
|
/* we need ensured the shared_msr_global have been updated */
|
|
smp_wmb();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
|
|
|
|
static void kvm_shared_msr_cpu_online(void)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < shared_msrs_global.nr; ++i)
|
|
shared_msr_update(i, shared_msrs_global.msrs[i]);
|
|
}
|
|
|
|
void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
|
|
|
|
if (((value ^ smsr->values[slot].curr) & mask) == 0)
|
|
return;
|
|
smsr->values[slot].curr = value;
|
|
wrmsrl(shared_msrs_global.msrs[slot], value);
|
|
if (!smsr->registered) {
|
|
smsr->urn.on_user_return = kvm_on_user_return;
|
|
user_return_notifier_register(&smsr->urn);
|
|
smsr->registered = true;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
|
|
|
|
static void drop_user_return_notifiers(void *ignore)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
|
|
|
|
if (smsr->registered)
|
|
kvm_on_user_return(&smsr->urn);
|
|
}
|
|
|
|
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->arch.apic_base;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_apic_base);
|
|
|
|
int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
u64 old_state = vcpu->arch.apic_base &
|
|
(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
|
|
u64 new_state = msr_info->data &
|
|
(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
|
|
u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
|
|
0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
|
|
|
|
if (!msr_info->host_initiated &&
|
|
((msr_info->data & reserved_bits) != 0 ||
|
|
new_state == X2APIC_ENABLE ||
|
|
(new_state == MSR_IA32_APICBASE_ENABLE &&
|
|
old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
|
|
(new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
|
|
old_state == 0)))
|
|
return 1;
|
|
|
|
kvm_lapic_set_base(vcpu, msr_info->data);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_apic_base);
|
|
|
|
asmlinkage __visible void kvm_spurious_fault(void)
|
|
{
|
|
/* Fault while not rebooting. We want the trace. */
|
|
BUG();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_spurious_fault);
|
|
|
|
#define EXCPT_BENIGN 0
|
|
#define EXCPT_CONTRIBUTORY 1
|
|
#define EXCPT_PF 2
|
|
|
|
static int exception_class(int vector)
|
|
{
|
|
switch (vector) {
|
|
case PF_VECTOR:
|
|
return EXCPT_PF;
|
|
case DE_VECTOR:
|
|
case TS_VECTOR:
|
|
case NP_VECTOR:
|
|
case SS_VECTOR:
|
|
case GP_VECTOR:
|
|
return EXCPT_CONTRIBUTORY;
|
|
default:
|
|
break;
|
|
}
|
|
return EXCPT_BENIGN;
|
|
}
|
|
|
|
static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
|
|
unsigned nr, bool has_error, u32 error_code,
|
|
bool reinject)
|
|
{
|
|
u32 prev_nr;
|
|
int class1, class2;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
if (!vcpu->arch.exception.pending) {
|
|
queue:
|
|
vcpu->arch.exception.pending = true;
|
|
vcpu->arch.exception.has_error_code = has_error;
|
|
vcpu->arch.exception.nr = nr;
|
|
vcpu->arch.exception.error_code = error_code;
|
|
vcpu->arch.exception.reinject = reinject;
|
|
return;
|
|
}
|
|
|
|
/* to check exception */
|
|
prev_nr = vcpu->arch.exception.nr;
|
|
if (prev_nr == DF_VECTOR) {
|
|
/* triple fault -> shutdown */
|
|
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
|
|
return;
|
|
}
|
|
class1 = exception_class(prev_nr);
|
|
class2 = exception_class(nr);
|
|
if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
|
|
|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
|
|
/* generate double fault per SDM Table 5-5 */
|
|
vcpu->arch.exception.pending = true;
|
|
vcpu->arch.exception.has_error_code = true;
|
|
vcpu->arch.exception.nr = DF_VECTOR;
|
|
vcpu->arch.exception.error_code = 0;
|
|
} else
|
|
/* replace previous exception with a new one in a hope
|
|
that instruction re-execution will regenerate lost
|
|
exception */
|
|
goto queue;
|
|
}
|
|
|
|
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
|
|
{
|
|
kvm_multiple_exception(vcpu, nr, false, 0, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_queue_exception);
|
|
|
|
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
|
|
{
|
|
kvm_multiple_exception(vcpu, nr, false, 0, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_requeue_exception);
|
|
|
|
void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
|
|
{
|
|
if (err)
|
|
kvm_inject_gp(vcpu, 0);
|
|
else
|
|
kvm_x86_ops->skip_emulated_instruction(vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
|
|
|
|
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
|
|
{
|
|
++vcpu->stat.pf_guest;
|
|
vcpu->arch.cr2 = fault->address;
|
|
kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
|
|
|
|
void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
|
|
{
|
|
if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
|
|
vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
|
|
else
|
|
vcpu->arch.mmu.inject_page_fault(vcpu, fault);
|
|
}
|
|
|
|
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
atomic_inc(&vcpu->arch.nmi_queued);
|
|
kvm_make_request(KVM_REQ_NMI, vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_inject_nmi);
|
|
|
|
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
|
|
{
|
|
kvm_multiple_exception(vcpu, nr, true, error_code, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
|
|
|
|
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
|
|
{
|
|
kvm_multiple_exception(vcpu, nr, true, error_code, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
|
|
|
|
/*
|
|
* Checks if cpl <= required_cpl; if true, return true. Otherwise queue
|
|
* a #GP and return false.
|
|
*/
|
|
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
|
|
{
|
|
if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
|
|
return true;
|
|
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_require_cpl);
|
|
|
|
/*
|
|
* This function will be used to read from the physical memory of the currently
|
|
* running guest. The difference to kvm_read_guest_page is that this function
|
|
* can read from guest physical or from the guest's guest physical memory.
|
|
*/
|
|
int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
|
|
gfn_t ngfn, void *data, int offset, int len,
|
|
u32 access)
|
|
{
|
|
gfn_t real_gfn;
|
|
gpa_t ngpa;
|
|
|
|
ngpa = gfn_to_gpa(ngfn);
|
|
real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
|
|
if (real_gfn == UNMAPPED_GVA)
|
|
return -EFAULT;
|
|
|
|
real_gfn = gpa_to_gfn(real_gfn);
|
|
|
|
return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
|
|
|
|
int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
|
|
void *data, int offset, int len, u32 access)
|
|
{
|
|
return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
|
|
data, offset, len, access);
|
|
}
|
|
|
|
/*
|
|
* Load the pae pdptrs. Return true is they are all valid.
|
|
*/
|
|
int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
|
|
{
|
|
gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
|
|
unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
|
|
int i;
|
|
int ret;
|
|
u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
|
|
|
|
ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
|
|
offset * sizeof(u64), sizeof(pdpte),
|
|
PFERR_USER_MASK|PFERR_WRITE_MASK);
|
|
if (ret < 0) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
|
|
if (is_present_gpte(pdpte[i]) &&
|
|
(pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
ret = 1;
|
|
|
|
memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
|
|
__set_bit(VCPU_EXREG_PDPTR,
|
|
(unsigned long *)&vcpu->arch.regs_avail);
|
|
__set_bit(VCPU_EXREG_PDPTR,
|
|
(unsigned long *)&vcpu->arch.regs_dirty);
|
|
out:
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(load_pdptrs);
|
|
|
|
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
|
|
bool changed = true;
|
|
int offset;
|
|
gfn_t gfn;
|
|
int r;
|
|
|
|
if (is_long_mode(vcpu) || !is_pae(vcpu))
|
|
return false;
|
|
|
|
if (!test_bit(VCPU_EXREG_PDPTR,
|
|
(unsigned long *)&vcpu->arch.regs_avail))
|
|
return true;
|
|
|
|
gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
|
|
offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
|
|
r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
|
|
PFERR_USER_MASK | PFERR_WRITE_MASK);
|
|
if (r < 0)
|
|
goto out;
|
|
changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
|
|
out:
|
|
|
|
return changed;
|
|
}
|
|
|
|
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
|
|
{
|
|
unsigned long old_cr0 = kvm_read_cr0(vcpu);
|
|
unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
|
|
X86_CR0_CD | X86_CR0_NW;
|
|
|
|
cr0 |= X86_CR0_ET;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (cr0 & 0xffffffff00000000UL)
|
|
return 1;
|
|
#endif
|
|
|
|
cr0 &= ~CR0_RESERVED_BITS;
|
|
|
|
if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
|
|
return 1;
|
|
|
|
if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
|
|
return 1;
|
|
|
|
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
|
|
#ifdef CONFIG_X86_64
|
|
if ((vcpu->arch.efer & EFER_LME)) {
|
|
int cs_db, cs_l;
|
|
|
|
if (!is_pae(vcpu))
|
|
return 1;
|
|
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
|
|
if (cs_l)
|
|
return 1;
|
|
} else
|
|
#endif
|
|
if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
|
|
kvm_read_cr3(vcpu)))
|
|
return 1;
|
|
}
|
|
|
|
if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
|
|
return 1;
|
|
|
|
kvm_x86_ops->set_cr0(vcpu, cr0);
|
|
|
|
if ((cr0 ^ old_cr0) & X86_CR0_PG) {
|
|
kvm_clear_async_pf_completion_queue(vcpu);
|
|
kvm_async_pf_hash_reset(vcpu);
|
|
}
|
|
|
|
if ((cr0 ^ old_cr0) & update_bits)
|
|
kvm_mmu_reset_context(vcpu);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cr0);
|
|
|
|
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
|
|
{
|
|
(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_lmsw);
|
|
|
|
static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
|
|
!vcpu->guest_xcr0_loaded) {
|
|
/* kvm_set_xcr() also depends on this */
|
|
xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
|
|
vcpu->guest_xcr0_loaded = 1;
|
|
}
|
|
}
|
|
|
|
static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->guest_xcr0_loaded) {
|
|
if (vcpu->arch.xcr0 != host_xcr0)
|
|
xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
|
|
vcpu->guest_xcr0_loaded = 0;
|
|
}
|
|
}
|
|
|
|
int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
|
|
{
|
|
u64 xcr0 = xcr;
|
|
u64 old_xcr0 = vcpu->arch.xcr0;
|
|
u64 valid_bits;
|
|
|
|
/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
|
|
if (index != XCR_XFEATURE_ENABLED_MASK)
|
|
return 1;
|
|
if (!(xcr0 & XSTATE_FP))
|
|
return 1;
|
|
if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
|
|
return 1;
|
|
|
|
/*
|
|
* Do not allow the guest to set bits that we do not support
|
|
* saving. However, xcr0 bit 0 is always set, even if the
|
|
* emulated CPU does not support XSAVE (see fx_init).
|
|
*/
|
|
valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
|
|
if (xcr0 & ~valid_bits)
|
|
return 1;
|
|
|
|
if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
|
|
return 1;
|
|
|
|
kvm_put_guest_xcr0(vcpu);
|
|
vcpu->arch.xcr0 = xcr0;
|
|
|
|
if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
|
|
kvm_update_cpuid(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
|
|
{
|
|
if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
|
|
__kvm_set_xcr(vcpu, index, xcr)) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_xcr);
|
|
|
|
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
unsigned long old_cr4 = kvm_read_cr4(vcpu);
|
|
unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
|
|
X86_CR4_PAE | X86_CR4_SMEP;
|
|
if (cr4 & CR4_RESERVED_BITS)
|
|
return 1;
|
|
|
|
if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
|
|
return 1;
|
|
|
|
if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
|
|
return 1;
|
|
|
|
if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
|
|
return 1;
|
|
|
|
if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
|
|
return 1;
|
|
|
|
if (is_long_mode(vcpu)) {
|
|
if (!(cr4 & X86_CR4_PAE))
|
|
return 1;
|
|
} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
|
|
&& ((cr4 ^ old_cr4) & pdptr_bits)
|
|
&& !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
|
|
kvm_read_cr3(vcpu)))
|
|
return 1;
|
|
|
|
if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
|
|
if (!guest_cpuid_has_pcid(vcpu))
|
|
return 1;
|
|
|
|
/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
|
|
if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
|
|
return 1;
|
|
}
|
|
|
|
if (kvm_x86_ops->set_cr4(vcpu, cr4))
|
|
return 1;
|
|
|
|
if (((cr4 ^ old_cr4) & pdptr_bits) ||
|
|
(!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
|
|
kvm_mmu_reset_context(vcpu);
|
|
|
|
if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
|
|
update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
|
|
|
|
if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
|
|
kvm_update_cpuid(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cr4);
|
|
|
|
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
|
|
{
|
|
if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
|
|
kvm_mmu_sync_roots(vcpu);
|
|
kvm_mmu_flush_tlb(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
if (is_long_mode(vcpu)) {
|
|
if (cr3 & CR3_L_MODE_RESERVED_BITS)
|
|
return 1;
|
|
} else if (is_pae(vcpu) && is_paging(vcpu) &&
|
|
!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
|
|
return 1;
|
|
|
|
vcpu->arch.cr3 = cr3;
|
|
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
|
|
kvm_mmu_new_cr3(vcpu);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cr3);
|
|
|
|
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
|
|
{
|
|
if (cr8 & CR8_RESERVED_BITS)
|
|
return 1;
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
kvm_lapic_set_tpr(vcpu, cr8);
|
|
else
|
|
vcpu->arch.cr8 = cr8;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cr8);
|
|
|
|
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
return kvm_lapic_get_cr8(vcpu);
|
|
else
|
|
return vcpu->arch.cr8;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_cr8);
|
|
|
|
static void kvm_update_dr6(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
|
|
kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
|
|
}
|
|
|
|
static void kvm_update_dr7(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long dr7;
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
|
|
dr7 = vcpu->arch.guest_debug_dr7;
|
|
else
|
|
dr7 = vcpu->arch.dr7;
|
|
kvm_x86_ops->set_dr7(vcpu, dr7);
|
|
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
|
|
if (dr7 & DR7_BP_EN_MASK)
|
|
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
|
|
}
|
|
|
|
static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
|
|
{
|
|
switch (dr) {
|
|
case 0 ... 3:
|
|
vcpu->arch.db[dr] = val;
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
|
|
vcpu->arch.eff_db[dr] = val;
|
|
break;
|
|
case 4:
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
|
|
return 1; /* #UD */
|
|
/* fall through */
|
|
case 6:
|
|
if (val & 0xffffffff00000000ULL)
|
|
return -1; /* #GP */
|
|
vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
|
|
kvm_update_dr6(vcpu);
|
|
break;
|
|
case 5:
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
|
|
return 1; /* #UD */
|
|
/* fall through */
|
|
default: /* 7 */
|
|
if (val & 0xffffffff00000000ULL)
|
|
return -1; /* #GP */
|
|
vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
|
|
kvm_update_dr7(vcpu);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
|
|
{
|
|
int res;
|
|
|
|
res = __kvm_set_dr(vcpu, dr, val);
|
|
if (res > 0)
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
else if (res < 0)
|
|
kvm_inject_gp(vcpu, 0);
|
|
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_dr);
|
|
|
|
static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
|
|
{
|
|
switch (dr) {
|
|
case 0 ... 3:
|
|
*val = vcpu->arch.db[dr];
|
|
break;
|
|
case 4:
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
|
|
return 1;
|
|
/* fall through */
|
|
case 6:
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
|
|
*val = vcpu->arch.dr6;
|
|
else
|
|
*val = kvm_x86_ops->get_dr6(vcpu);
|
|
break;
|
|
case 5:
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
|
|
return 1;
|
|
/* fall through */
|
|
default: /* 7 */
|
|
*val = vcpu->arch.dr7;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
|
|
{
|
|
if (_kvm_get_dr(vcpu, dr, val)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_dr);
|
|
|
|
bool kvm_rdpmc(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
|
|
u64 data;
|
|
int err;
|
|
|
|
err = kvm_pmu_read_pmc(vcpu, ecx, &data);
|
|
if (err)
|
|
return err;
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
|
|
kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_rdpmc);
|
|
|
|
/*
|
|
* List of msr numbers which we expose to userspace through KVM_GET_MSRS
|
|
* and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
|
|
*
|
|
* This list is modified at module load time to reflect the
|
|
* capabilities of the host cpu. This capabilities test skips MSRs that are
|
|
* kvm-specific. Those are put in the beginning of the list.
|
|
*/
|
|
|
|
#define KVM_SAVE_MSRS_BEGIN 12
|
|
static u32 msrs_to_save[] = {
|
|
MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
|
|
MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
|
|
HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
|
|
HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
|
|
HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
|
|
MSR_KVM_PV_EOI_EN,
|
|
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
|
|
MSR_STAR,
|
|
#ifdef CONFIG_X86_64
|
|
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
|
|
#endif
|
|
MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
|
|
MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
|
|
};
|
|
|
|
static unsigned num_msrs_to_save;
|
|
|
|
static const u32 emulated_msrs[] = {
|
|
MSR_IA32_TSC_ADJUST,
|
|
MSR_IA32_TSCDEADLINE,
|
|
MSR_IA32_MISC_ENABLE,
|
|
MSR_IA32_MCG_STATUS,
|
|
MSR_IA32_MCG_CTL,
|
|
};
|
|
|
|
bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
if (efer & efer_reserved_bits)
|
|
return false;
|
|
|
|
if (efer & EFER_FFXSR) {
|
|
struct kvm_cpuid_entry2 *feat;
|
|
|
|
feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
|
|
if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
|
|
return false;
|
|
}
|
|
|
|
if (efer & EFER_SVME) {
|
|
struct kvm_cpuid_entry2 *feat;
|
|
|
|
feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
|
|
if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_valid_efer);
|
|
|
|
static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
u64 old_efer = vcpu->arch.efer;
|
|
|
|
if (!kvm_valid_efer(vcpu, efer))
|
|
return 1;
|
|
|
|
if (is_paging(vcpu)
|
|
&& (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
|
|
return 1;
|
|
|
|
efer &= ~EFER_LMA;
|
|
efer |= vcpu->arch.efer & EFER_LMA;
|
|
|
|
kvm_x86_ops->set_efer(vcpu, efer);
|
|
|
|
/* Update reserved bits */
|
|
if ((efer ^ old_efer) & EFER_NX)
|
|
kvm_mmu_reset_context(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_enable_efer_bits(u64 mask)
|
|
{
|
|
efer_reserved_bits &= ~mask;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
|
|
|
|
|
|
/*
|
|
* Writes msr value into into the appropriate "register".
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
|
|
{
|
|
return kvm_x86_ops->set_msr(vcpu, msr);
|
|
}
|
|
|
|
/*
|
|
* Adapt set_msr() to msr_io()'s calling convention
|
|
*/
|
|
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
|
|
{
|
|
struct msr_data msr;
|
|
|
|
msr.data = *data;
|
|
msr.index = index;
|
|
msr.host_initiated = true;
|
|
return kvm_set_msr(vcpu, &msr);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
struct pvclock_gtod_data {
|
|
seqcount_t seq;
|
|
|
|
struct { /* extract of a clocksource struct */
|
|
int vclock_mode;
|
|
cycle_t cycle_last;
|
|
cycle_t mask;
|
|
u32 mult;
|
|
u32 shift;
|
|
} clock;
|
|
|
|
/* open coded 'struct timespec' */
|
|
u64 monotonic_time_snsec;
|
|
time_t monotonic_time_sec;
|
|
};
|
|
|
|
static struct pvclock_gtod_data pvclock_gtod_data;
|
|
|
|
static void update_pvclock_gtod(struct timekeeper *tk)
|
|
{
|
|
struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
|
|
|
|
write_seqcount_begin(&vdata->seq);
|
|
|
|
/* copy pvclock gtod data */
|
|
vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode;
|
|
vdata->clock.cycle_last = tk->clock->cycle_last;
|
|
vdata->clock.mask = tk->clock->mask;
|
|
vdata->clock.mult = tk->mult;
|
|
vdata->clock.shift = tk->shift;
|
|
|
|
vdata->monotonic_time_sec = tk->xtime_sec
|
|
+ tk->wall_to_monotonic.tv_sec;
|
|
vdata->monotonic_time_snsec = tk->xtime_nsec
|
|
+ (tk->wall_to_monotonic.tv_nsec
|
|
<< tk->shift);
|
|
while (vdata->monotonic_time_snsec >=
|
|
(((u64)NSEC_PER_SEC) << tk->shift)) {
|
|
vdata->monotonic_time_snsec -=
|
|
((u64)NSEC_PER_SEC) << tk->shift;
|
|
vdata->monotonic_time_sec++;
|
|
}
|
|
|
|
write_seqcount_end(&vdata->seq);
|
|
}
|
|
#endif
|
|
|
|
|
|
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
|
|
{
|
|
int version;
|
|
int r;
|
|
struct pvclock_wall_clock wc;
|
|
struct timespec boot;
|
|
|
|
if (!wall_clock)
|
|
return;
|
|
|
|
r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
|
|
if (r)
|
|
return;
|
|
|
|
if (version & 1)
|
|
++version; /* first time write, random junk */
|
|
|
|
++version;
|
|
|
|
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
|
|
|
|
/*
|
|
* The guest calculates current wall clock time by adding
|
|
* system time (updated by kvm_guest_time_update below) to the
|
|
* wall clock specified here. guest system time equals host
|
|
* system time for us, thus we must fill in host boot time here.
|
|
*/
|
|
getboottime(&boot);
|
|
|
|
if (kvm->arch.kvmclock_offset) {
|
|
struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
|
|
boot = timespec_sub(boot, ts);
|
|
}
|
|
wc.sec = boot.tv_sec;
|
|
wc.nsec = boot.tv_nsec;
|
|
wc.version = version;
|
|
|
|
kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
|
|
|
|
version++;
|
|
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
|
|
}
|
|
|
|
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
|
|
{
|
|
uint32_t quotient, remainder;
|
|
|
|
/* Don't try to replace with do_div(), this one calculates
|
|
* "(dividend << 32) / divisor" */
|
|
__asm__ ( "divl %4"
|
|
: "=a" (quotient), "=d" (remainder)
|
|
: "0" (0), "1" (dividend), "r" (divisor) );
|
|
return quotient;
|
|
}
|
|
|
|
static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
|
|
s8 *pshift, u32 *pmultiplier)
|
|
{
|
|
uint64_t scaled64;
|
|
int32_t shift = 0;
|
|
uint64_t tps64;
|
|
uint32_t tps32;
|
|
|
|
tps64 = base_khz * 1000LL;
|
|
scaled64 = scaled_khz * 1000LL;
|
|
while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
|
|
tps64 >>= 1;
|
|
shift--;
|
|
}
|
|
|
|
tps32 = (uint32_t)tps64;
|
|
while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
|
|
if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
|
|
scaled64 >>= 1;
|
|
else
|
|
tps32 <<= 1;
|
|
shift++;
|
|
}
|
|
|
|
*pshift = shift;
|
|
*pmultiplier = div_frac(scaled64, tps32);
|
|
|
|
pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
|
|
__func__, base_khz, scaled_khz, shift, *pmultiplier);
|
|
}
|
|
|
|
static inline u64 get_kernel_ns(void)
|
|
{
|
|
struct timespec ts;
|
|
|
|
ktime_get_ts(&ts);
|
|
monotonic_to_bootbased(&ts);
|
|
return timespec_to_ns(&ts);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
|
|
#endif
|
|
|
|
static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
|
|
unsigned long max_tsc_khz;
|
|
|
|
static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
|
|
{
|
|
return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
|
|
vcpu->arch.virtual_tsc_shift);
|
|
}
|
|
|
|
static u32 adjust_tsc_khz(u32 khz, s32 ppm)
|
|
{
|
|
u64 v = (u64)khz * (1000000 + ppm);
|
|
do_div(v, 1000000);
|
|
return v;
|
|
}
|
|
|
|
static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
|
|
{
|
|
u32 thresh_lo, thresh_hi;
|
|
int use_scaling = 0;
|
|
|
|
/* tsc_khz can be zero if TSC calibration fails */
|
|
if (this_tsc_khz == 0)
|
|
return;
|
|
|
|
/* Compute a scale to convert nanoseconds in TSC cycles */
|
|
kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
|
|
&vcpu->arch.virtual_tsc_shift,
|
|
&vcpu->arch.virtual_tsc_mult);
|
|
vcpu->arch.virtual_tsc_khz = this_tsc_khz;
|
|
|
|
/*
|
|
* Compute the variation in TSC rate which is acceptable
|
|
* within the range of tolerance and decide if the
|
|
* rate being applied is within that bounds of the hardware
|
|
* rate. If so, no scaling or compensation need be done.
|
|
*/
|
|
thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
|
|
thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
|
|
if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
|
|
pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
|
|
use_scaling = 1;
|
|
}
|
|
kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
|
|
}
|
|
|
|
static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
|
|
{
|
|
u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
|
|
vcpu->arch.virtual_tsc_mult,
|
|
vcpu->arch.virtual_tsc_shift);
|
|
tsc += vcpu->arch.this_tsc_write;
|
|
return tsc;
|
|
}
|
|
|
|
void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
bool vcpus_matched;
|
|
bool do_request = false;
|
|
struct kvm_arch *ka = &vcpu->kvm->arch;
|
|
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
|
|
|
|
vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
|
|
atomic_read(&vcpu->kvm->online_vcpus));
|
|
|
|
if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
|
|
if (!ka->use_master_clock)
|
|
do_request = 1;
|
|
|
|
if (!vcpus_matched && ka->use_master_clock)
|
|
do_request = 1;
|
|
|
|
if (do_request)
|
|
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
|
|
|
|
trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
|
|
atomic_read(&vcpu->kvm->online_vcpus),
|
|
ka->use_master_clock, gtod->clock.vclock_mode);
|
|
#endif
|
|
}
|
|
|
|
static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
|
|
{
|
|
u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
|
|
vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
|
|
}
|
|
|
|
void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
u64 offset, ns, elapsed;
|
|
unsigned long flags;
|
|
s64 usdiff;
|
|
bool matched;
|
|
u64 data = msr->data;
|
|
|
|
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
|
|
offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
|
|
ns = get_kernel_ns();
|
|
elapsed = ns - kvm->arch.last_tsc_nsec;
|
|
|
|
if (vcpu->arch.virtual_tsc_khz) {
|
|
int faulted = 0;
|
|
|
|
/* n.b - signed multiplication and division required */
|
|
usdiff = data - kvm->arch.last_tsc_write;
|
|
#ifdef CONFIG_X86_64
|
|
usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
|
|
#else
|
|
/* do_div() only does unsigned */
|
|
asm("1: idivl %[divisor]\n"
|
|
"2: xor %%edx, %%edx\n"
|
|
" movl $0, %[faulted]\n"
|
|
"3:\n"
|
|
".section .fixup,\"ax\"\n"
|
|
"4: movl $1, %[faulted]\n"
|
|
" jmp 3b\n"
|
|
".previous\n"
|
|
|
|
_ASM_EXTABLE(1b, 4b)
|
|
|
|
: "=A"(usdiff), [faulted] "=r" (faulted)
|
|
: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
|
|
|
|
#endif
|
|
do_div(elapsed, 1000);
|
|
usdiff -= elapsed;
|
|
if (usdiff < 0)
|
|
usdiff = -usdiff;
|
|
|
|
/* idivl overflow => difference is larger than USEC_PER_SEC */
|
|
if (faulted)
|
|
usdiff = USEC_PER_SEC;
|
|
} else
|
|
usdiff = USEC_PER_SEC; /* disable TSC match window below */
|
|
|
|
/*
|
|
* Special case: TSC write with a small delta (1 second) of virtual
|
|
* cycle time against real time is interpreted as an attempt to
|
|
* synchronize the CPU.
|
|
*
|
|
* For a reliable TSC, we can match TSC offsets, and for an unstable
|
|
* TSC, we add elapsed time in this computation. We could let the
|
|
* compensation code attempt to catch up if we fall behind, but
|
|
* it's better to try to match offsets from the beginning.
|
|
*/
|
|
if (usdiff < USEC_PER_SEC &&
|
|
vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
|
|
if (!check_tsc_unstable()) {
|
|
offset = kvm->arch.cur_tsc_offset;
|
|
pr_debug("kvm: matched tsc offset for %llu\n", data);
|
|
} else {
|
|
u64 delta = nsec_to_cycles(vcpu, elapsed);
|
|
data += delta;
|
|
offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
|
|
pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
|
|
}
|
|
matched = true;
|
|
} else {
|
|
/*
|
|
* We split periods of matched TSC writes into generations.
|
|
* For each generation, we track the original measured
|
|
* nanosecond time, offset, and write, so if TSCs are in
|
|
* sync, we can match exact offset, and if not, we can match
|
|
* exact software computation in compute_guest_tsc()
|
|
*
|
|
* These values are tracked in kvm->arch.cur_xxx variables.
|
|
*/
|
|
kvm->arch.cur_tsc_generation++;
|
|
kvm->arch.cur_tsc_nsec = ns;
|
|
kvm->arch.cur_tsc_write = data;
|
|
kvm->arch.cur_tsc_offset = offset;
|
|
matched = false;
|
|
pr_debug("kvm: new tsc generation %u, clock %llu\n",
|
|
kvm->arch.cur_tsc_generation, data);
|
|
}
|
|
|
|
/*
|
|
* We also track th most recent recorded KHZ, write and time to
|
|
* allow the matching interval to be extended at each write.
|
|
*/
|
|
kvm->arch.last_tsc_nsec = ns;
|
|
kvm->arch.last_tsc_write = data;
|
|
kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
|
|
|
|
vcpu->arch.last_guest_tsc = data;
|
|
|
|
/* Keep track of which generation this VCPU has synchronized to */
|
|
vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
|
|
vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
|
|
vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
|
|
|
|
if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
|
|
update_ia32_tsc_adjust_msr(vcpu, offset);
|
|
kvm_x86_ops->write_tsc_offset(vcpu, offset);
|
|
raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
|
|
|
|
spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
|
|
if (matched)
|
|
kvm->arch.nr_vcpus_matched_tsc++;
|
|
else
|
|
kvm->arch.nr_vcpus_matched_tsc = 0;
|
|
|
|
kvm_track_tsc_matching(vcpu);
|
|
spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvm_write_tsc);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
static cycle_t read_tsc(void)
|
|
{
|
|
cycle_t ret;
|
|
u64 last;
|
|
|
|
/*
|
|
* Empirically, a fence (of type that depends on the CPU)
|
|
* before rdtsc is enough to ensure that rdtsc is ordered
|
|
* with respect to loads. The various CPU manuals are unclear
|
|
* as to whether rdtsc can be reordered with later loads,
|
|
* but no one has ever seen it happen.
|
|
*/
|
|
rdtsc_barrier();
|
|
ret = (cycle_t)vget_cycles();
|
|
|
|
last = pvclock_gtod_data.clock.cycle_last;
|
|
|
|
if (likely(ret >= last))
|
|
return ret;
|
|
|
|
/*
|
|
* GCC likes to generate cmov here, but this branch is extremely
|
|
* predictable (it's just a funciton of time and the likely is
|
|
* very likely) and there's a data dependence, so force GCC
|
|
* to generate a branch instead. I don't barrier() because
|
|
* we don't actually need a barrier, and if this function
|
|
* ever gets inlined it will generate worse code.
|
|
*/
|
|
asm volatile ("");
|
|
return last;
|
|
}
|
|
|
|
static inline u64 vgettsc(cycle_t *cycle_now)
|
|
{
|
|
long v;
|
|
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
|
|
|
|
*cycle_now = read_tsc();
|
|
|
|
v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
|
|
return v * gtod->clock.mult;
|
|
}
|
|
|
|
static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
|
|
{
|
|
unsigned long seq;
|
|
u64 ns;
|
|
int mode;
|
|
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
|
|
|
|
ts->tv_nsec = 0;
|
|
do {
|
|
seq = read_seqcount_begin(>od->seq);
|
|
mode = gtod->clock.vclock_mode;
|
|
ts->tv_sec = gtod->monotonic_time_sec;
|
|
ns = gtod->monotonic_time_snsec;
|
|
ns += vgettsc(cycle_now);
|
|
ns >>= gtod->clock.shift;
|
|
} while (unlikely(read_seqcount_retry(>od->seq, seq)));
|
|
timespec_add_ns(ts, ns);
|
|
|
|
return mode;
|
|
}
|
|
|
|
/* returns true if host is using tsc clocksource */
|
|
static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
|
|
{
|
|
struct timespec ts;
|
|
|
|
/* checked again under seqlock below */
|
|
if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
|
|
return false;
|
|
|
|
if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
|
|
return false;
|
|
|
|
monotonic_to_bootbased(&ts);
|
|
*kernel_ns = timespec_to_ns(&ts);
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
*
|
|
* Assuming a stable TSC across physical CPUS, and a stable TSC
|
|
* across virtual CPUs, the following condition is possible.
|
|
* Each numbered line represents an event visible to both
|
|
* CPUs at the next numbered event.
|
|
*
|
|
* "timespecX" represents host monotonic time. "tscX" represents
|
|
* RDTSC value.
|
|
*
|
|
* VCPU0 on CPU0 | VCPU1 on CPU1
|
|
*
|
|
* 1. read timespec0,tsc0
|
|
* 2. | timespec1 = timespec0 + N
|
|
* | tsc1 = tsc0 + M
|
|
* 3. transition to guest | transition to guest
|
|
* 4. ret0 = timespec0 + (rdtsc - tsc0) |
|
|
* 5. | ret1 = timespec1 + (rdtsc - tsc1)
|
|
* | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
|
|
*
|
|
* Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
|
|
*
|
|
* - ret0 < ret1
|
|
* - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
|
|
* ...
|
|
* - 0 < N - M => M < N
|
|
*
|
|
* That is, when timespec0 != timespec1, M < N. Unfortunately that is not
|
|
* always the case (the difference between two distinct xtime instances
|
|
* might be smaller then the difference between corresponding TSC reads,
|
|
* when updating guest vcpus pvclock areas).
|
|
*
|
|
* To avoid that problem, do not allow visibility of distinct
|
|
* system_timestamp/tsc_timestamp values simultaneously: use a master
|
|
* copy of host monotonic time values. Update that master copy
|
|
* in lockstep.
|
|
*
|
|
* Rely on synchronization of host TSCs and guest TSCs for monotonicity.
|
|
*
|
|
*/
|
|
|
|
static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
struct kvm_arch *ka = &kvm->arch;
|
|
int vclock_mode;
|
|
bool host_tsc_clocksource, vcpus_matched;
|
|
|
|
vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
|
|
atomic_read(&kvm->online_vcpus));
|
|
|
|
/*
|
|
* If the host uses TSC clock, then passthrough TSC as stable
|
|
* to the guest.
|
|
*/
|
|
host_tsc_clocksource = kvm_get_time_and_clockread(
|
|
&ka->master_kernel_ns,
|
|
&ka->master_cycle_now);
|
|
|
|
ka->use_master_clock = host_tsc_clocksource && vcpus_matched
|
|
&& !backwards_tsc_observed;
|
|
|
|
if (ka->use_master_clock)
|
|
atomic_set(&kvm_guest_has_master_clock, 1);
|
|
|
|
vclock_mode = pvclock_gtod_data.clock.vclock_mode;
|
|
trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
|
|
vcpus_matched);
|
|
#endif
|
|
}
|
|
|
|
static void kvm_gen_update_masterclock(struct kvm *kvm)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
int i;
|
|
struct kvm_vcpu *vcpu;
|
|
struct kvm_arch *ka = &kvm->arch;
|
|
|
|
spin_lock(&ka->pvclock_gtod_sync_lock);
|
|
kvm_make_mclock_inprogress_request(kvm);
|
|
/* no guest entries from this point */
|
|
pvclock_update_vm_gtod_copy(kvm);
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
|
|
|
|
/* guest entries allowed */
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
|
|
|
|
spin_unlock(&ka->pvclock_gtod_sync_lock);
|
|
#endif
|
|
}
|
|
|
|
static int kvm_guest_time_update(struct kvm_vcpu *v)
|
|
{
|
|
unsigned long flags, this_tsc_khz;
|
|
struct kvm_vcpu_arch *vcpu = &v->arch;
|
|
struct kvm_arch *ka = &v->kvm->arch;
|
|
s64 kernel_ns;
|
|
u64 tsc_timestamp, host_tsc;
|
|
struct pvclock_vcpu_time_info guest_hv_clock;
|
|
u8 pvclock_flags;
|
|
bool use_master_clock;
|
|
|
|
kernel_ns = 0;
|
|
host_tsc = 0;
|
|
|
|
/*
|
|
* If the host uses TSC clock, then passthrough TSC as stable
|
|
* to the guest.
|
|
*/
|
|
spin_lock(&ka->pvclock_gtod_sync_lock);
|
|
use_master_clock = ka->use_master_clock;
|
|
if (use_master_clock) {
|
|
host_tsc = ka->master_cycle_now;
|
|
kernel_ns = ka->master_kernel_ns;
|
|
}
|
|
spin_unlock(&ka->pvclock_gtod_sync_lock);
|
|
|
|
/* Keep irq disabled to prevent changes to the clock */
|
|
local_irq_save(flags);
|
|
this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
|
|
if (unlikely(this_tsc_khz == 0)) {
|
|
local_irq_restore(flags);
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
|
|
return 1;
|
|
}
|
|
if (!use_master_clock) {
|
|
host_tsc = native_read_tsc();
|
|
kernel_ns = get_kernel_ns();
|
|
}
|
|
|
|
tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
|
|
|
|
/*
|
|
* We may have to catch up the TSC to match elapsed wall clock
|
|
* time for two reasons, even if kvmclock is used.
|
|
* 1) CPU could have been running below the maximum TSC rate
|
|
* 2) Broken TSC compensation resets the base at each VCPU
|
|
* entry to avoid unknown leaps of TSC even when running
|
|
* again on the same CPU. This may cause apparent elapsed
|
|
* time to disappear, and the guest to stand still or run
|
|
* very slowly.
|
|
*/
|
|
if (vcpu->tsc_catchup) {
|
|
u64 tsc = compute_guest_tsc(v, kernel_ns);
|
|
if (tsc > tsc_timestamp) {
|
|
adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
|
|
tsc_timestamp = tsc;
|
|
}
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
|
|
if (!vcpu->pv_time_enabled)
|
|
return 0;
|
|
|
|
if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
|
|
kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
|
|
&vcpu->hv_clock.tsc_shift,
|
|
&vcpu->hv_clock.tsc_to_system_mul);
|
|
vcpu->hw_tsc_khz = this_tsc_khz;
|
|
}
|
|
|
|
/* With all the info we got, fill in the values */
|
|
vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
|
|
vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
|
|
vcpu->last_guest_tsc = tsc_timestamp;
|
|
|
|
/*
|
|
* The interface expects us to write an even number signaling that the
|
|
* update is finished. Since the guest won't see the intermediate
|
|
* state, we just increase by 2 at the end.
|
|
*/
|
|
vcpu->hv_clock.version += 2;
|
|
|
|
if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
|
|
&guest_hv_clock, sizeof(guest_hv_clock))))
|
|
return 0;
|
|
|
|
/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
|
|
pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
|
|
|
|
if (vcpu->pvclock_set_guest_stopped_request) {
|
|
pvclock_flags |= PVCLOCK_GUEST_STOPPED;
|
|
vcpu->pvclock_set_guest_stopped_request = false;
|
|
}
|
|
|
|
/* If the host uses TSC clocksource, then it is stable */
|
|
if (use_master_clock)
|
|
pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
|
|
|
|
vcpu->hv_clock.flags = pvclock_flags;
|
|
|
|
kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
|
|
&vcpu->hv_clock,
|
|
sizeof(vcpu->hv_clock));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* kvmclock updates which are isolated to a given vcpu, such as
|
|
* vcpu->cpu migration, should not allow system_timestamp from
|
|
* the rest of the vcpus to remain static. Otherwise ntp frequency
|
|
* correction applies to one vcpu's system_timestamp but not
|
|
* the others.
|
|
*
|
|
* So in those cases, request a kvmclock update for all vcpus.
|
|
* We need to rate-limit these requests though, as they can
|
|
* considerably slow guests that have a large number of vcpus.
|
|
* The time for a remote vcpu to update its kvmclock is bound
|
|
* by the delay we use to rate-limit the updates.
|
|
*/
|
|
|
|
#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
|
|
|
|
static void kvmclock_update_fn(struct work_struct *work)
|
|
{
|
|
int i;
|
|
struct delayed_work *dwork = to_delayed_work(work);
|
|
struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
|
|
kvmclock_update_work);
|
|
struct kvm *kvm = container_of(ka, struct kvm, arch);
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
}
|
|
|
|
static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
|
|
{
|
|
struct kvm *kvm = v->kvm;
|
|
|
|
set_bit(KVM_REQ_CLOCK_UPDATE, &v->requests);
|
|
schedule_delayed_work(&kvm->arch.kvmclock_update_work,
|
|
KVMCLOCK_UPDATE_DELAY);
|
|
}
|
|
|
|
#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
|
|
|
|
static void kvmclock_sync_fn(struct work_struct *work)
|
|
{
|
|
struct delayed_work *dwork = to_delayed_work(work);
|
|
struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
|
|
kvmclock_sync_work);
|
|
struct kvm *kvm = container_of(ka, struct kvm, arch);
|
|
|
|
schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
|
|
schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
|
|
KVMCLOCK_SYNC_PERIOD);
|
|
}
|
|
|
|
static bool msr_mtrr_valid(unsigned msr)
|
|
{
|
|
switch (msr) {
|
|
case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
|
|
case MSR_MTRRfix64K_00000:
|
|
case MSR_MTRRfix16K_80000:
|
|
case MSR_MTRRfix16K_A0000:
|
|
case MSR_MTRRfix4K_C0000:
|
|
case MSR_MTRRfix4K_C8000:
|
|
case MSR_MTRRfix4K_D0000:
|
|
case MSR_MTRRfix4K_D8000:
|
|
case MSR_MTRRfix4K_E0000:
|
|
case MSR_MTRRfix4K_E8000:
|
|
case MSR_MTRRfix4K_F0000:
|
|
case MSR_MTRRfix4K_F8000:
|
|
case MSR_MTRRdefType:
|
|
case MSR_IA32_CR_PAT:
|
|
return true;
|
|
case 0x2f8:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool valid_pat_type(unsigned t)
|
|
{
|
|
return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
|
|
}
|
|
|
|
static bool valid_mtrr_type(unsigned t)
|
|
{
|
|
return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
|
|
}
|
|
|
|
static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
int i;
|
|
|
|
if (!msr_mtrr_valid(msr))
|
|
return false;
|
|
|
|
if (msr == MSR_IA32_CR_PAT) {
|
|
for (i = 0; i < 8; i++)
|
|
if (!valid_pat_type((data >> (i * 8)) & 0xff))
|
|
return false;
|
|
return true;
|
|
} else if (msr == MSR_MTRRdefType) {
|
|
if (data & ~0xcff)
|
|
return false;
|
|
return valid_mtrr_type(data & 0xff);
|
|
} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
|
|
for (i = 0; i < 8 ; i++)
|
|
if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* variable MTRRs */
|
|
return valid_mtrr_type(data & 0xff);
|
|
}
|
|
|
|
static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
|
|
|
|
if (!mtrr_valid(vcpu, msr, data))
|
|
return 1;
|
|
|
|
if (msr == MSR_MTRRdefType) {
|
|
vcpu->arch.mtrr_state.def_type = data;
|
|
vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
|
|
} else if (msr == MSR_MTRRfix64K_00000)
|
|
p[0] = data;
|
|
else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
|
|
p[1 + msr - MSR_MTRRfix16K_80000] = data;
|
|
else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
|
|
p[3 + msr - MSR_MTRRfix4K_C0000] = data;
|
|
else if (msr == MSR_IA32_CR_PAT)
|
|
vcpu->arch.pat = data;
|
|
else { /* Variable MTRRs */
|
|
int idx, is_mtrr_mask;
|
|
u64 *pt;
|
|
|
|
idx = (msr - 0x200) / 2;
|
|
is_mtrr_mask = msr - 0x200 - 2 * idx;
|
|
if (!is_mtrr_mask)
|
|
pt =
|
|
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
|
|
else
|
|
pt =
|
|
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
|
|
*pt = data;
|
|
}
|
|
|
|
kvm_mmu_reset_context(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
u64 mcg_cap = vcpu->arch.mcg_cap;
|
|
unsigned bank_num = mcg_cap & 0xff;
|
|
|
|
switch (msr) {
|
|
case MSR_IA32_MCG_STATUS:
|
|
vcpu->arch.mcg_status = data;
|
|
break;
|
|
case MSR_IA32_MCG_CTL:
|
|
if (!(mcg_cap & MCG_CTL_P))
|
|
return 1;
|
|
if (data != 0 && data != ~(u64)0)
|
|
return -1;
|
|
vcpu->arch.mcg_ctl = data;
|
|
break;
|
|
default:
|
|
if (msr >= MSR_IA32_MC0_CTL &&
|
|
msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
|
|
u32 offset = msr - MSR_IA32_MC0_CTL;
|
|
/* only 0 or all 1s can be written to IA32_MCi_CTL
|
|
* some Linux kernels though clear bit 10 in bank 4 to
|
|
* workaround a BIOS/GART TBL issue on AMD K8s, ignore
|
|
* this to avoid an uncatched #GP in the guest
|
|
*/
|
|
if ((offset & 0x3) == 0 &&
|
|
data != 0 && (data | (1 << 10)) != ~(u64)0)
|
|
return -1;
|
|
vcpu->arch.mce_banks[offset] = data;
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
int lm = is_long_mode(vcpu);
|
|
u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
|
|
: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
|
|
u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
|
|
: kvm->arch.xen_hvm_config.blob_size_32;
|
|
u32 page_num = data & ~PAGE_MASK;
|
|
u64 page_addr = data & PAGE_MASK;
|
|
u8 *page;
|
|
int r;
|
|
|
|
r = -E2BIG;
|
|
if (page_num >= blob_size)
|
|
goto out;
|
|
r = -ENOMEM;
|
|
page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
|
|
if (IS_ERR(page)) {
|
|
r = PTR_ERR(page);
|
|
goto out;
|
|
}
|
|
if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
|
|
goto out_free;
|
|
r = 0;
|
|
out_free:
|
|
kfree(page);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
|
|
{
|
|
return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
|
|
}
|
|
|
|
static bool kvm_hv_msr_partition_wide(u32 msr)
|
|
{
|
|
bool r = false;
|
|
switch (msr) {
|
|
case HV_X64_MSR_GUEST_OS_ID:
|
|
case HV_X64_MSR_HYPERCALL:
|
|
case HV_X64_MSR_REFERENCE_TSC:
|
|
case HV_X64_MSR_TIME_REF_COUNT:
|
|
r = true;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
switch (msr) {
|
|
case HV_X64_MSR_GUEST_OS_ID:
|
|
kvm->arch.hv_guest_os_id = data;
|
|
/* setting guest os id to zero disables hypercall page */
|
|
if (!kvm->arch.hv_guest_os_id)
|
|
kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
|
|
break;
|
|
case HV_X64_MSR_HYPERCALL: {
|
|
u64 gfn;
|
|
unsigned long addr;
|
|
u8 instructions[4];
|
|
|
|
/* if guest os id is not set hypercall should remain disabled */
|
|
if (!kvm->arch.hv_guest_os_id)
|
|
break;
|
|
if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
|
|
kvm->arch.hv_hypercall = data;
|
|
break;
|
|
}
|
|
gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
|
|
addr = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(addr))
|
|
return 1;
|
|
kvm_x86_ops->patch_hypercall(vcpu, instructions);
|
|
((unsigned char *)instructions)[3] = 0xc3; /* ret */
|
|
if (__copy_to_user((void __user *)addr, instructions, 4))
|
|
return 1;
|
|
kvm->arch.hv_hypercall = data;
|
|
mark_page_dirty(kvm, gfn);
|
|
break;
|
|
}
|
|
case HV_X64_MSR_REFERENCE_TSC: {
|
|
u64 gfn;
|
|
HV_REFERENCE_TSC_PAGE tsc_ref;
|
|
memset(&tsc_ref, 0, sizeof(tsc_ref));
|
|
kvm->arch.hv_tsc_page = data;
|
|
if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
|
|
break;
|
|
gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
|
|
if (kvm_write_guest(kvm, data,
|
|
&tsc_ref, sizeof(tsc_ref)))
|
|
return 1;
|
|
mark_page_dirty(kvm, gfn);
|
|
break;
|
|
}
|
|
default:
|
|
vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
|
|
"data 0x%llx\n", msr, data);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
switch (msr) {
|
|
case HV_X64_MSR_APIC_ASSIST_PAGE: {
|
|
u64 gfn;
|
|
unsigned long addr;
|
|
|
|
if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
|
|
vcpu->arch.hv_vapic = data;
|
|
if (kvm_lapic_enable_pv_eoi(vcpu, 0))
|
|
return 1;
|
|
break;
|
|
}
|
|
gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
|
|
addr = gfn_to_hva(vcpu->kvm, gfn);
|
|
if (kvm_is_error_hva(addr))
|
|
return 1;
|
|
if (__clear_user((void __user *)addr, PAGE_SIZE))
|
|
return 1;
|
|
vcpu->arch.hv_vapic = data;
|
|
mark_page_dirty(vcpu->kvm, gfn);
|
|
if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
|
|
return 1;
|
|
break;
|
|
}
|
|
case HV_X64_MSR_EOI:
|
|
return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
|
|
case HV_X64_MSR_ICR:
|
|
return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
|
|
case HV_X64_MSR_TPR:
|
|
return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
|
|
default:
|
|
vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
|
|
"data 0x%llx\n", msr, data);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
|
|
{
|
|
gpa_t gpa = data & ~0x3f;
|
|
|
|
/* Bits 2:5 are reserved, Should be zero */
|
|
if (data & 0x3c)
|
|
return 1;
|
|
|
|
vcpu->arch.apf.msr_val = data;
|
|
|
|
if (!(data & KVM_ASYNC_PF_ENABLED)) {
|
|
kvm_clear_async_pf_completion_queue(vcpu);
|
|
kvm_async_pf_hash_reset(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
|
|
sizeof(u32)))
|
|
return 1;
|
|
|
|
vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
|
|
kvm_async_pf_wakeup_all(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static void kvmclock_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.pv_time_enabled = false;
|
|
}
|
|
|
|
static void accumulate_steal_time(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 delta;
|
|
|
|
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
|
|
return;
|
|
|
|
delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
|
|
vcpu->arch.st.last_steal = current->sched_info.run_delay;
|
|
vcpu->arch.st.accum_steal = delta;
|
|
}
|
|
|
|
static void record_steal_time(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
|
|
return;
|
|
|
|
if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
|
|
&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
|
|
return;
|
|
|
|
vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
|
|
vcpu->arch.st.steal.version += 2;
|
|
vcpu->arch.st.accum_steal = 0;
|
|
|
|
kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
|
|
&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
|
|
}
|
|
|
|
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
bool pr = false;
|
|
u32 msr = msr_info->index;
|
|
u64 data = msr_info->data;
|
|
|
|
switch (msr) {
|
|
case MSR_AMD64_NB_CFG:
|
|
case MSR_IA32_UCODE_REV:
|
|
case MSR_IA32_UCODE_WRITE:
|
|
case MSR_VM_HSAVE_PA:
|
|
case MSR_AMD64_PATCH_LOADER:
|
|
case MSR_AMD64_BU_CFG2:
|
|
break;
|
|
|
|
case MSR_EFER:
|
|
return set_efer(vcpu, data);
|
|
case MSR_K7_HWCR:
|
|
data &= ~(u64)0x40; /* ignore flush filter disable */
|
|
data &= ~(u64)0x100; /* ignore ignne emulation enable */
|
|
data &= ~(u64)0x8; /* ignore TLB cache disable */
|
|
if (data != 0) {
|
|
vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
|
|
data);
|
|
return 1;
|
|
}
|
|
break;
|
|
case MSR_FAM10H_MMIO_CONF_BASE:
|
|
if (data != 0) {
|
|
vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
|
|
"0x%llx\n", data);
|
|
return 1;
|
|
}
|
|
break;
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
if (!data) {
|
|
/* We support the non-activated case already */
|
|
break;
|
|
} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
|
|
/* Values other than LBR and BTF are vendor-specific,
|
|
thus reserved and should throw a #GP */
|
|
return 1;
|
|
}
|
|
vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
|
|
__func__, data);
|
|
break;
|
|
case 0x200 ... 0x2ff:
|
|
return set_msr_mtrr(vcpu, msr, data);
|
|
case MSR_IA32_APICBASE:
|
|
return kvm_set_apic_base(vcpu, msr_info);
|
|
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
|
|
return kvm_x2apic_msr_write(vcpu, msr, data);
|
|
case MSR_IA32_TSCDEADLINE:
|
|
kvm_set_lapic_tscdeadline_msr(vcpu, data);
|
|
break;
|
|
case MSR_IA32_TSC_ADJUST:
|
|
if (guest_cpuid_has_tsc_adjust(vcpu)) {
|
|
if (!msr_info->host_initiated) {
|
|
u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
|
|
kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
|
|
}
|
|
vcpu->arch.ia32_tsc_adjust_msr = data;
|
|
}
|
|
break;
|
|
case MSR_IA32_MISC_ENABLE:
|
|
vcpu->arch.ia32_misc_enable_msr = data;
|
|
break;
|
|
case MSR_KVM_WALL_CLOCK_NEW:
|
|
case MSR_KVM_WALL_CLOCK:
|
|
vcpu->kvm->arch.wall_clock = data;
|
|
kvm_write_wall_clock(vcpu->kvm, data);
|
|
break;
|
|
case MSR_KVM_SYSTEM_TIME_NEW:
|
|
case MSR_KVM_SYSTEM_TIME: {
|
|
u64 gpa_offset;
|
|
kvmclock_reset(vcpu);
|
|
|
|
vcpu->arch.time = data;
|
|
kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
|
|
|
|
/* we verify if the enable bit is set... */
|
|
if (!(data & 1))
|
|
break;
|
|
|
|
gpa_offset = data & ~(PAGE_MASK | 1);
|
|
|
|
if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
|
|
&vcpu->arch.pv_time, data & ~1ULL,
|
|
sizeof(struct pvclock_vcpu_time_info)))
|
|
vcpu->arch.pv_time_enabled = false;
|
|
else
|
|
vcpu->arch.pv_time_enabled = true;
|
|
|
|
break;
|
|
}
|
|
case MSR_KVM_ASYNC_PF_EN:
|
|
if (kvm_pv_enable_async_pf(vcpu, data))
|
|
return 1;
|
|
break;
|
|
case MSR_KVM_STEAL_TIME:
|
|
|
|
if (unlikely(!sched_info_on()))
|
|
return 1;
|
|
|
|
if (data & KVM_STEAL_RESERVED_MASK)
|
|
return 1;
|
|
|
|
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
|
|
data & KVM_STEAL_VALID_BITS,
|
|
sizeof(struct kvm_steal_time)))
|
|
return 1;
|
|
|
|
vcpu->arch.st.msr_val = data;
|
|
|
|
if (!(data & KVM_MSR_ENABLED))
|
|
break;
|
|
|
|
vcpu->arch.st.last_steal = current->sched_info.run_delay;
|
|
|
|
preempt_disable();
|
|
accumulate_steal_time(vcpu);
|
|
preempt_enable();
|
|
|
|
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
|
|
|
|
break;
|
|
case MSR_KVM_PV_EOI_EN:
|
|
if (kvm_lapic_enable_pv_eoi(vcpu, data))
|
|
return 1;
|
|
break;
|
|
|
|
case MSR_IA32_MCG_CTL:
|
|
case MSR_IA32_MCG_STATUS:
|
|
case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
|
|
return set_msr_mce(vcpu, msr, data);
|
|
|
|
/* Performance counters are not protected by a CPUID bit,
|
|
* so we should check all of them in the generic path for the sake of
|
|
* cross vendor migration.
|
|
* Writing a zero into the event select MSRs disables them,
|
|
* which we perfectly emulate ;-). Any other value should be at least
|
|
* reported, some guests depend on them.
|
|
*/
|
|
case MSR_K7_EVNTSEL0:
|
|
case MSR_K7_EVNTSEL1:
|
|
case MSR_K7_EVNTSEL2:
|
|
case MSR_K7_EVNTSEL3:
|
|
if (data != 0)
|
|
vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
|
|
"0x%x data 0x%llx\n", msr, data);
|
|
break;
|
|
/* at least RHEL 4 unconditionally writes to the perfctr registers,
|
|
* so we ignore writes to make it happy.
|
|
*/
|
|
case MSR_K7_PERFCTR0:
|
|
case MSR_K7_PERFCTR1:
|
|
case MSR_K7_PERFCTR2:
|
|
case MSR_K7_PERFCTR3:
|
|
vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
|
|
"0x%x data 0x%llx\n", msr, data);
|
|
break;
|
|
case MSR_P6_PERFCTR0:
|
|
case MSR_P6_PERFCTR1:
|
|
pr = true;
|
|
case MSR_P6_EVNTSEL0:
|
|
case MSR_P6_EVNTSEL1:
|
|
if (kvm_pmu_msr(vcpu, msr))
|
|
return kvm_pmu_set_msr(vcpu, msr_info);
|
|
|
|
if (pr || data != 0)
|
|
vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
|
|
"0x%x data 0x%llx\n", msr, data);
|
|
break;
|
|
case MSR_K7_CLK_CTL:
|
|
/*
|
|
* Ignore all writes to this no longer documented MSR.
|
|
* Writes are only relevant for old K7 processors,
|
|
* all pre-dating SVM, but a recommended workaround from
|
|
* AMD for these chips. It is possible to specify the
|
|
* affected processor models on the command line, hence
|
|
* the need to ignore the workaround.
|
|
*/
|
|
break;
|
|
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
|
|
if (kvm_hv_msr_partition_wide(msr)) {
|
|
int r;
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
r = set_msr_hyperv_pw(vcpu, msr, data);
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
return r;
|
|
} else
|
|
return set_msr_hyperv(vcpu, msr, data);
|
|
break;
|
|
case MSR_IA32_BBL_CR_CTL3:
|
|
/* Drop writes to this legacy MSR -- see rdmsr
|
|
* counterpart for further detail.
|
|
*/
|
|
vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
|
|
break;
|
|
case MSR_AMD64_OSVW_ID_LENGTH:
|
|
if (!guest_cpuid_has_osvw(vcpu))
|
|
return 1;
|
|
vcpu->arch.osvw.length = data;
|
|
break;
|
|
case MSR_AMD64_OSVW_STATUS:
|
|
if (!guest_cpuid_has_osvw(vcpu))
|
|
return 1;
|
|
vcpu->arch.osvw.status = data;
|
|
break;
|
|
default:
|
|
if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
|
|
return xen_hvm_config(vcpu, data);
|
|
if (kvm_pmu_msr(vcpu, msr))
|
|
return kvm_pmu_set_msr(vcpu, msr_info);
|
|
if (!ignore_msrs) {
|
|
vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
|
|
msr, data);
|
|
return 1;
|
|
} else {
|
|
vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
|
|
msr, data);
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_msr_common);
|
|
|
|
|
|
/*
|
|
* Reads an msr value (of 'msr_index') into 'pdata'.
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
|
|
{
|
|
return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
|
|
}
|
|
|
|
static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
|
|
{
|
|
u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
|
|
|
|
if (!msr_mtrr_valid(msr))
|
|
return 1;
|
|
|
|
if (msr == MSR_MTRRdefType)
|
|
*pdata = vcpu->arch.mtrr_state.def_type +
|
|
(vcpu->arch.mtrr_state.enabled << 10);
|
|
else if (msr == MSR_MTRRfix64K_00000)
|
|
*pdata = p[0];
|
|
else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
|
|
*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
|
|
else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
|
|
*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
|
|
else if (msr == MSR_IA32_CR_PAT)
|
|
*pdata = vcpu->arch.pat;
|
|
else { /* Variable MTRRs */
|
|
int idx, is_mtrr_mask;
|
|
u64 *pt;
|
|
|
|
idx = (msr - 0x200) / 2;
|
|
is_mtrr_mask = msr - 0x200 - 2 * idx;
|
|
if (!is_mtrr_mask)
|
|
pt =
|
|
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
|
|
else
|
|
pt =
|
|
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
|
|
*pdata = *pt;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
|
|
{
|
|
u64 data;
|
|
u64 mcg_cap = vcpu->arch.mcg_cap;
|
|
unsigned bank_num = mcg_cap & 0xff;
|
|
|
|
switch (msr) {
|
|
case MSR_IA32_P5_MC_ADDR:
|
|
case MSR_IA32_P5_MC_TYPE:
|
|
data = 0;
|
|
break;
|
|
case MSR_IA32_MCG_CAP:
|
|
data = vcpu->arch.mcg_cap;
|
|
break;
|
|
case MSR_IA32_MCG_CTL:
|
|
if (!(mcg_cap & MCG_CTL_P))
|
|
return 1;
|
|
data = vcpu->arch.mcg_ctl;
|
|
break;
|
|
case MSR_IA32_MCG_STATUS:
|
|
data = vcpu->arch.mcg_status;
|
|
break;
|
|
default:
|
|
if (msr >= MSR_IA32_MC0_CTL &&
|
|
msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
|
|
u32 offset = msr - MSR_IA32_MC0_CTL;
|
|
data = vcpu->arch.mce_banks[offset];
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
|
|
static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
|
|
{
|
|
u64 data = 0;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
switch (msr) {
|
|
case HV_X64_MSR_GUEST_OS_ID:
|
|
data = kvm->arch.hv_guest_os_id;
|
|
break;
|
|
case HV_X64_MSR_HYPERCALL:
|
|
data = kvm->arch.hv_hypercall;
|
|
break;
|
|
case HV_X64_MSR_TIME_REF_COUNT: {
|
|
data =
|
|
div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
|
|
break;
|
|
}
|
|
case HV_X64_MSR_REFERENCE_TSC:
|
|
data = kvm->arch.hv_tsc_page;
|
|
break;
|
|
default:
|
|
vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
|
|
return 1;
|
|
}
|
|
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
|
|
static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
|
|
{
|
|
u64 data = 0;
|
|
|
|
switch (msr) {
|
|
case HV_X64_MSR_VP_INDEX: {
|
|
int r;
|
|
struct kvm_vcpu *v;
|
|
kvm_for_each_vcpu(r, v, vcpu->kvm) {
|
|
if (v == vcpu) {
|
|
data = r;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case HV_X64_MSR_EOI:
|
|
return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
|
|
case HV_X64_MSR_ICR:
|
|
return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
|
|
case HV_X64_MSR_TPR:
|
|
return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
|
|
case HV_X64_MSR_APIC_ASSIST_PAGE:
|
|
data = vcpu->arch.hv_vapic;
|
|
break;
|
|
default:
|
|
vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
|
|
return 1;
|
|
}
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
|
|
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
|
|
{
|
|
u64 data;
|
|
|
|
switch (msr) {
|
|
case MSR_IA32_PLATFORM_ID:
|
|
case MSR_IA32_EBL_CR_POWERON:
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
case MSR_IA32_LASTBRANCHFROMIP:
|
|
case MSR_IA32_LASTBRANCHTOIP:
|
|
case MSR_IA32_LASTINTFROMIP:
|
|
case MSR_IA32_LASTINTTOIP:
|
|
case MSR_K8_SYSCFG:
|
|
case MSR_K7_HWCR:
|
|
case MSR_VM_HSAVE_PA:
|
|
case MSR_K7_EVNTSEL0:
|
|
case MSR_K7_PERFCTR0:
|
|
case MSR_K8_INT_PENDING_MSG:
|
|
case MSR_AMD64_NB_CFG:
|
|
case MSR_FAM10H_MMIO_CONF_BASE:
|
|
case MSR_AMD64_BU_CFG2:
|
|
data = 0;
|
|
break;
|
|
case MSR_P6_PERFCTR0:
|
|
case MSR_P6_PERFCTR1:
|
|
case MSR_P6_EVNTSEL0:
|
|
case MSR_P6_EVNTSEL1:
|
|
if (kvm_pmu_msr(vcpu, msr))
|
|
return kvm_pmu_get_msr(vcpu, msr, pdata);
|
|
data = 0;
|
|
break;
|
|
case MSR_IA32_UCODE_REV:
|
|
data = 0x100000000ULL;
|
|
break;
|
|
case MSR_MTRRcap:
|
|
data = 0x500 | KVM_NR_VAR_MTRR;
|
|
break;
|
|
case 0x200 ... 0x2ff:
|
|
return get_msr_mtrr(vcpu, msr, pdata);
|
|
case 0xcd: /* fsb frequency */
|
|
data = 3;
|
|
break;
|
|
/*
|
|
* MSR_EBC_FREQUENCY_ID
|
|
* Conservative value valid for even the basic CPU models.
|
|
* Models 0,1: 000 in bits 23:21 indicating a bus speed of
|
|
* 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
|
|
* and 266MHz for model 3, or 4. Set Core Clock
|
|
* Frequency to System Bus Frequency Ratio to 1 (bits
|
|
* 31:24) even though these are only valid for CPU
|
|
* models > 2, however guests may end up dividing or
|
|
* multiplying by zero otherwise.
|
|
*/
|
|
case MSR_EBC_FREQUENCY_ID:
|
|
data = 1 << 24;
|
|
break;
|
|
case MSR_IA32_APICBASE:
|
|
data = kvm_get_apic_base(vcpu);
|
|
break;
|
|
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
|
|
return kvm_x2apic_msr_read(vcpu, msr, pdata);
|
|
break;
|
|
case MSR_IA32_TSCDEADLINE:
|
|
data = kvm_get_lapic_tscdeadline_msr(vcpu);
|
|
break;
|
|
case MSR_IA32_TSC_ADJUST:
|
|
data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
|
|
break;
|
|
case MSR_IA32_MISC_ENABLE:
|
|
data = vcpu->arch.ia32_misc_enable_msr;
|
|
break;
|
|
case MSR_IA32_PERF_STATUS:
|
|
/* TSC increment by tick */
|
|
data = 1000ULL;
|
|
/* CPU multiplier */
|
|
data |= (((uint64_t)4ULL) << 40);
|
|
break;
|
|
case MSR_EFER:
|
|
data = vcpu->arch.efer;
|
|
break;
|
|
case MSR_KVM_WALL_CLOCK:
|
|
case MSR_KVM_WALL_CLOCK_NEW:
|
|
data = vcpu->kvm->arch.wall_clock;
|
|
break;
|
|
case MSR_KVM_SYSTEM_TIME:
|
|
case MSR_KVM_SYSTEM_TIME_NEW:
|
|
data = vcpu->arch.time;
|
|
break;
|
|
case MSR_KVM_ASYNC_PF_EN:
|
|
data = vcpu->arch.apf.msr_val;
|
|
break;
|
|
case MSR_KVM_STEAL_TIME:
|
|
data = vcpu->arch.st.msr_val;
|
|
break;
|
|
case MSR_KVM_PV_EOI_EN:
|
|
data = vcpu->arch.pv_eoi.msr_val;
|
|
break;
|
|
case MSR_IA32_P5_MC_ADDR:
|
|
case MSR_IA32_P5_MC_TYPE:
|
|
case MSR_IA32_MCG_CAP:
|
|
case MSR_IA32_MCG_CTL:
|
|
case MSR_IA32_MCG_STATUS:
|
|
case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
|
|
return get_msr_mce(vcpu, msr, pdata);
|
|
case MSR_K7_CLK_CTL:
|
|
/*
|
|
* Provide expected ramp-up count for K7. All other
|
|
* are set to zero, indicating minimum divisors for
|
|
* every field.
|
|
*
|
|
* This prevents guest kernels on AMD host with CPU
|
|
* type 6, model 8 and higher from exploding due to
|
|
* the rdmsr failing.
|
|
*/
|
|
data = 0x20000000;
|
|
break;
|
|
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
|
|
if (kvm_hv_msr_partition_wide(msr)) {
|
|
int r;
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
r = get_msr_hyperv_pw(vcpu, msr, pdata);
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
return r;
|
|
} else
|
|
return get_msr_hyperv(vcpu, msr, pdata);
|
|
break;
|
|
case MSR_IA32_BBL_CR_CTL3:
|
|
/* This legacy MSR exists but isn't fully documented in current
|
|
* silicon. It is however accessed by winxp in very narrow
|
|
* scenarios where it sets bit #19, itself documented as
|
|
* a "reserved" bit. Best effort attempt to source coherent
|
|
* read data here should the balance of the register be
|
|
* interpreted by the guest:
|
|
*
|
|
* L2 cache control register 3: 64GB range, 256KB size,
|
|
* enabled, latency 0x1, configured
|
|
*/
|
|
data = 0xbe702111;
|
|
break;
|
|
case MSR_AMD64_OSVW_ID_LENGTH:
|
|
if (!guest_cpuid_has_osvw(vcpu))
|
|
return 1;
|
|
data = vcpu->arch.osvw.length;
|
|
break;
|
|
case MSR_AMD64_OSVW_STATUS:
|
|
if (!guest_cpuid_has_osvw(vcpu))
|
|
return 1;
|
|
data = vcpu->arch.osvw.status;
|
|
break;
|
|
default:
|
|
if (kvm_pmu_msr(vcpu, msr))
|
|
return kvm_pmu_get_msr(vcpu, msr, pdata);
|
|
if (!ignore_msrs) {
|
|
vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
|
|
return 1;
|
|
} else {
|
|
vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
|
|
data = 0;
|
|
}
|
|
break;
|
|
}
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_msr_common);
|
|
|
|
/*
|
|
* Read or write a bunch of msrs. All parameters are kernel addresses.
|
|
*
|
|
* @return number of msrs set successfully.
|
|
*/
|
|
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
|
|
struct kvm_msr_entry *entries,
|
|
int (*do_msr)(struct kvm_vcpu *vcpu,
|
|
unsigned index, u64 *data))
|
|
{
|
|
int i, idx;
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
for (i = 0; i < msrs->nmsrs; ++i)
|
|
if (do_msr(vcpu, entries[i].index, &entries[i].data))
|
|
break;
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Read or write a bunch of msrs. Parameters are user addresses.
|
|
*
|
|
* @return number of msrs set successfully.
|
|
*/
|
|
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
|
|
int (*do_msr)(struct kvm_vcpu *vcpu,
|
|
unsigned index, u64 *data),
|
|
int writeback)
|
|
{
|
|
struct kvm_msrs msrs;
|
|
struct kvm_msr_entry *entries;
|
|
int r, n;
|
|
unsigned size;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&msrs, user_msrs, sizeof msrs))
|
|
goto out;
|
|
|
|
r = -E2BIG;
|
|
if (msrs.nmsrs >= MAX_IO_MSRS)
|
|
goto out;
|
|
|
|
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
|
|
entries = memdup_user(user_msrs->entries, size);
|
|
if (IS_ERR(entries)) {
|
|
r = PTR_ERR(entries);
|
|
goto out;
|
|
}
|
|
|
|
r = n = __msr_io(vcpu, &msrs, entries, do_msr);
|
|
if (r < 0)
|
|
goto out_free;
|
|
|
|
r = -EFAULT;
|
|
if (writeback && copy_to_user(user_msrs->entries, entries, size))
|
|
goto out_free;
|
|
|
|
r = n;
|
|
|
|
out_free:
|
|
kfree(entries);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
int kvm_dev_ioctl_check_extension(long ext)
|
|
{
|
|
int r;
|
|
|
|
switch (ext) {
|
|
case KVM_CAP_IRQCHIP:
|
|
case KVM_CAP_HLT:
|
|
case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
|
|
case KVM_CAP_SET_TSS_ADDR:
|
|
case KVM_CAP_EXT_CPUID:
|
|
case KVM_CAP_EXT_EMUL_CPUID:
|
|
case KVM_CAP_CLOCKSOURCE:
|
|
case KVM_CAP_PIT:
|
|
case KVM_CAP_NOP_IO_DELAY:
|
|
case KVM_CAP_MP_STATE:
|
|
case KVM_CAP_SYNC_MMU:
|
|
case KVM_CAP_USER_NMI:
|
|
case KVM_CAP_REINJECT_CONTROL:
|
|
case KVM_CAP_IRQ_INJECT_STATUS:
|
|
case KVM_CAP_IRQFD:
|
|
case KVM_CAP_IOEVENTFD:
|
|
case KVM_CAP_IOEVENTFD_NO_LENGTH:
|
|
case KVM_CAP_PIT2:
|
|
case KVM_CAP_PIT_STATE2:
|
|
case KVM_CAP_SET_IDENTITY_MAP_ADDR:
|
|
case KVM_CAP_XEN_HVM:
|
|
case KVM_CAP_ADJUST_CLOCK:
|
|
case KVM_CAP_VCPU_EVENTS:
|
|
case KVM_CAP_HYPERV:
|
|
case KVM_CAP_HYPERV_VAPIC:
|
|
case KVM_CAP_HYPERV_SPIN:
|
|
case KVM_CAP_PCI_SEGMENT:
|
|
case KVM_CAP_DEBUGREGS:
|
|
case KVM_CAP_X86_ROBUST_SINGLESTEP:
|
|
case KVM_CAP_XSAVE:
|
|
case KVM_CAP_ASYNC_PF:
|
|
case KVM_CAP_GET_TSC_KHZ:
|
|
case KVM_CAP_KVMCLOCK_CTRL:
|
|
case KVM_CAP_READONLY_MEM:
|
|
case KVM_CAP_HYPERV_TIME:
|
|
case KVM_CAP_IOAPIC_POLARITY_IGNORED:
|
|
#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
|
|
case KVM_CAP_ASSIGN_DEV_IRQ:
|
|
case KVM_CAP_PCI_2_3:
|
|
#endif
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_COALESCED_MMIO:
|
|
r = KVM_COALESCED_MMIO_PAGE_OFFSET;
|
|
break;
|
|
case KVM_CAP_VAPIC:
|
|
r = !kvm_x86_ops->cpu_has_accelerated_tpr();
|
|
break;
|
|
case KVM_CAP_NR_VCPUS:
|
|
r = KVM_SOFT_MAX_VCPUS;
|
|
break;
|
|
case KVM_CAP_MAX_VCPUS:
|
|
r = KVM_MAX_VCPUS;
|
|
break;
|
|
case KVM_CAP_NR_MEMSLOTS:
|
|
r = KVM_USER_MEM_SLOTS;
|
|
break;
|
|
case KVM_CAP_PV_MMU: /* obsolete */
|
|
r = 0;
|
|
break;
|
|
#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
|
|
case KVM_CAP_IOMMU:
|
|
r = iommu_present(&pci_bus_type);
|
|
break;
|
|
#endif
|
|
case KVM_CAP_MCE:
|
|
r = KVM_MAX_MCE_BANKS;
|
|
break;
|
|
case KVM_CAP_XCRS:
|
|
r = cpu_has_xsave;
|
|
break;
|
|
case KVM_CAP_TSC_CONTROL:
|
|
r = kvm_has_tsc_control;
|
|
break;
|
|
case KVM_CAP_TSC_DEADLINE_TIMER:
|
|
r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
|
|
break;
|
|
default:
|
|
r = 0;
|
|
break;
|
|
}
|
|
return r;
|
|
|
|
}
|
|
|
|
long kvm_arch_dev_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
void __user *argp = (void __user *)arg;
|
|
long r;
|
|
|
|
switch (ioctl) {
|
|
case KVM_GET_MSR_INDEX_LIST: {
|
|
struct kvm_msr_list __user *user_msr_list = argp;
|
|
struct kvm_msr_list msr_list;
|
|
unsigned n;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
|
|
goto out;
|
|
n = msr_list.nmsrs;
|
|
msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
|
|
if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
|
|
goto out;
|
|
r = -E2BIG;
|
|
if (n < msr_list.nmsrs)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
|
|
num_msrs_to_save * sizeof(u32)))
|
|
goto out;
|
|
if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
|
|
&emulated_msrs,
|
|
ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_GET_SUPPORTED_CPUID:
|
|
case KVM_GET_EMULATED_CPUID: {
|
|
struct kvm_cpuid2 __user *cpuid_arg = argp;
|
|
struct kvm_cpuid2 cpuid;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
|
|
goto out;
|
|
|
|
r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
|
|
ioctl);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_X86_GET_MCE_CAP_SUPPORTED: {
|
|
u64 mce_cap;
|
|
|
|
mce_cap = KVM_MCE_CAP_SUPPORTED;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
default:
|
|
r = -EINVAL;
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static void wbinvd_ipi(void *garbage)
|
|
{
|
|
wbinvd();
|
|
}
|
|
|
|
static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_arch_has_noncoherent_dma(vcpu->kvm);
|
|
}
|
|
|
|
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
/* Address WBINVD may be executed by guest */
|
|
if (need_emulate_wbinvd(vcpu)) {
|
|
if (kvm_x86_ops->has_wbinvd_exit())
|
|
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
|
|
else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
|
|
smp_call_function_single(vcpu->cpu,
|
|
wbinvd_ipi, NULL, 1);
|
|
}
|
|
|
|
kvm_x86_ops->vcpu_load(vcpu, cpu);
|
|
|
|
/* Apply any externally detected TSC adjustments (due to suspend) */
|
|
if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
|
|
adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
|
|
vcpu->arch.tsc_offset_adjustment = 0;
|
|
set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
|
|
}
|
|
|
|
if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
|
|
s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
|
|
native_read_tsc() - vcpu->arch.last_host_tsc;
|
|
if (tsc_delta < 0)
|
|
mark_tsc_unstable("KVM discovered backwards TSC");
|
|
if (check_tsc_unstable()) {
|
|
u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
|
|
vcpu->arch.last_guest_tsc);
|
|
kvm_x86_ops->write_tsc_offset(vcpu, offset);
|
|
vcpu->arch.tsc_catchup = 1;
|
|
}
|
|
/*
|
|
* On a host with synchronized TSC, there is no need to update
|
|
* kvmclock on vcpu->cpu migration
|
|
*/
|
|
if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
|
|
kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
|
|
if (vcpu->cpu != cpu)
|
|
kvm_migrate_timers(vcpu);
|
|
vcpu->cpu = cpu;
|
|
}
|
|
|
|
accumulate_steal_time(vcpu);
|
|
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_x86_ops->vcpu_put(vcpu);
|
|
kvm_put_guest_fpu(vcpu);
|
|
vcpu->arch.last_host_tsc = native_read_tsc();
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
|
|
struct kvm_lapic_state *s)
|
|
{
|
|
kvm_x86_ops->sync_pir_to_irr(vcpu);
|
|
memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
|
|
struct kvm_lapic_state *s)
|
|
{
|
|
kvm_apic_post_state_restore(vcpu, s);
|
|
update_cr8_intercept(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
|
|
struct kvm_interrupt *irq)
|
|
{
|
|
if (irq->irq >= KVM_NR_INTERRUPTS)
|
|
return -EINVAL;
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
return -ENXIO;
|
|
|
|
kvm_queue_interrupt(vcpu, irq->irq, false);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_inject_nmi(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
|
|
struct kvm_tpr_access_ctl *tac)
|
|
{
|
|
if (tac->flags)
|
|
return -EINVAL;
|
|
vcpu->arch.tpr_access_reporting = !!tac->enabled;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
|
|
u64 mcg_cap)
|
|
{
|
|
int r;
|
|
unsigned bank_num = mcg_cap & 0xff, bank;
|
|
|
|
r = -EINVAL;
|
|
if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
|
|
goto out;
|
|
if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
|
|
goto out;
|
|
r = 0;
|
|
vcpu->arch.mcg_cap = mcg_cap;
|
|
/* Init IA32_MCG_CTL to all 1s */
|
|
if (mcg_cap & MCG_CTL_P)
|
|
vcpu->arch.mcg_ctl = ~(u64)0;
|
|
/* Init IA32_MCi_CTL to all 1s */
|
|
for (bank = 0; bank < bank_num; bank++)
|
|
vcpu->arch.mce_banks[bank*4] = ~(u64)0;
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
|
|
struct kvm_x86_mce *mce)
|
|
{
|
|
u64 mcg_cap = vcpu->arch.mcg_cap;
|
|
unsigned bank_num = mcg_cap & 0xff;
|
|
u64 *banks = vcpu->arch.mce_banks;
|
|
|
|
if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
|
|
return -EINVAL;
|
|
/*
|
|
* if IA32_MCG_CTL is not all 1s, the uncorrected error
|
|
* reporting is disabled
|
|
*/
|
|
if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
|
|
vcpu->arch.mcg_ctl != ~(u64)0)
|
|
return 0;
|
|
banks += 4 * mce->bank;
|
|
/*
|
|
* if IA32_MCi_CTL is not all 1s, the uncorrected error
|
|
* reporting is disabled for the bank
|
|
*/
|
|
if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
|
|
return 0;
|
|
if (mce->status & MCI_STATUS_UC) {
|
|
if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
|
|
!kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
|
|
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
|
|
return 0;
|
|
}
|
|
if (banks[1] & MCI_STATUS_VAL)
|
|
mce->status |= MCI_STATUS_OVER;
|
|
banks[2] = mce->addr;
|
|
banks[3] = mce->misc;
|
|
vcpu->arch.mcg_status = mce->mcg_status;
|
|
banks[1] = mce->status;
|
|
kvm_queue_exception(vcpu, MC_VECTOR);
|
|
} else if (!(banks[1] & MCI_STATUS_VAL)
|
|
|| !(banks[1] & MCI_STATUS_UC)) {
|
|
if (banks[1] & MCI_STATUS_VAL)
|
|
mce->status |= MCI_STATUS_OVER;
|
|
banks[2] = mce->addr;
|
|
banks[3] = mce->misc;
|
|
banks[1] = mce->status;
|
|
} else
|
|
banks[1] |= MCI_STATUS_OVER;
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
process_nmi(vcpu);
|
|
events->exception.injected =
|
|
vcpu->arch.exception.pending &&
|
|
!kvm_exception_is_soft(vcpu->arch.exception.nr);
|
|
events->exception.nr = vcpu->arch.exception.nr;
|
|
events->exception.has_error_code = vcpu->arch.exception.has_error_code;
|
|
events->exception.pad = 0;
|
|
events->exception.error_code = vcpu->arch.exception.error_code;
|
|
|
|
events->interrupt.injected =
|
|
vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
|
|
events->interrupt.nr = vcpu->arch.interrupt.nr;
|
|
events->interrupt.soft = 0;
|
|
events->interrupt.shadow =
|
|
kvm_x86_ops->get_interrupt_shadow(vcpu,
|
|
KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
|
|
|
|
events->nmi.injected = vcpu->arch.nmi_injected;
|
|
events->nmi.pending = vcpu->arch.nmi_pending != 0;
|
|
events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
|
|
events->nmi.pad = 0;
|
|
|
|
events->sipi_vector = 0; /* never valid when reporting to user space */
|
|
|
|
events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
|
|
| KVM_VCPUEVENT_VALID_SHADOW);
|
|
memset(&events->reserved, 0, sizeof(events->reserved));
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
|
|
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
|
|
| KVM_VCPUEVENT_VALID_SHADOW))
|
|
return -EINVAL;
|
|
|
|
process_nmi(vcpu);
|
|
vcpu->arch.exception.pending = events->exception.injected;
|
|
vcpu->arch.exception.nr = events->exception.nr;
|
|
vcpu->arch.exception.has_error_code = events->exception.has_error_code;
|
|
vcpu->arch.exception.error_code = events->exception.error_code;
|
|
|
|
vcpu->arch.interrupt.pending = events->interrupt.injected;
|
|
vcpu->arch.interrupt.nr = events->interrupt.nr;
|
|
vcpu->arch.interrupt.soft = events->interrupt.soft;
|
|
if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
|
|
kvm_x86_ops->set_interrupt_shadow(vcpu,
|
|
events->interrupt.shadow);
|
|
|
|
vcpu->arch.nmi_injected = events->nmi.injected;
|
|
if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
|
|
vcpu->arch.nmi_pending = events->nmi.pending;
|
|
kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
|
|
|
|
if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
|
|
kvm_vcpu_has_lapic(vcpu))
|
|
vcpu->arch.apic->sipi_vector = events->sipi_vector;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_debugregs *dbgregs)
|
|
{
|
|
unsigned long val;
|
|
|
|
memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
|
|
_kvm_get_dr(vcpu, 6, &val);
|
|
dbgregs->dr6 = val;
|
|
dbgregs->dr7 = vcpu->arch.dr7;
|
|
dbgregs->flags = 0;
|
|
memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_debugregs *dbgregs)
|
|
{
|
|
if (dbgregs->flags)
|
|
return -EINVAL;
|
|
|
|
memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
|
|
vcpu->arch.dr6 = dbgregs->dr6;
|
|
kvm_update_dr6(vcpu);
|
|
vcpu->arch.dr7 = dbgregs->dr7;
|
|
kvm_update_dr7(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
|
|
struct kvm_xsave *guest_xsave)
|
|
{
|
|
if (cpu_has_xsave) {
|
|
memcpy(guest_xsave->region,
|
|
&vcpu->arch.guest_fpu.state->xsave,
|
|
vcpu->arch.guest_xstate_size);
|
|
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
|
|
vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
|
|
} else {
|
|
memcpy(guest_xsave->region,
|
|
&vcpu->arch.guest_fpu.state->fxsave,
|
|
sizeof(struct i387_fxsave_struct));
|
|
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
|
|
XSTATE_FPSSE;
|
|
}
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
|
|
struct kvm_xsave *guest_xsave)
|
|
{
|
|
u64 xstate_bv =
|
|
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
|
|
|
|
if (cpu_has_xsave) {
|
|
/*
|
|
* Here we allow setting states that are not present in
|
|
* CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
|
|
* with old userspace.
|
|
*/
|
|
if (xstate_bv & ~kvm_supported_xcr0())
|
|
return -EINVAL;
|
|
memcpy(&vcpu->arch.guest_fpu.state->xsave,
|
|
guest_xsave->region, vcpu->arch.guest_xstate_size);
|
|
} else {
|
|
if (xstate_bv & ~XSTATE_FPSSE)
|
|
return -EINVAL;
|
|
memcpy(&vcpu->arch.guest_fpu.state->fxsave,
|
|
guest_xsave->region, sizeof(struct i387_fxsave_struct));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
|
|
struct kvm_xcrs *guest_xcrs)
|
|
{
|
|
if (!cpu_has_xsave) {
|
|
guest_xcrs->nr_xcrs = 0;
|
|
return;
|
|
}
|
|
|
|
guest_xcrs->nr_xcrs = 1;
|
|
guest_xcrs->flags = 0;
|
|
guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
|
|
guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
|
|
struct kvm_xcrs *guest_xcrs)
|
|
{
|
|
int i, r = 0;
|
|
|
|
if (!cpu_has_xsave)
|
|
return -EINVAL;
|
|
|
|
if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < guest_xcrs->nr_xcrs; i++)
|
|
/* Only support XCR0 currently */
|
|
if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
|
|
r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
|
|
guest_xcrs->xcrs[i].value);
|
|
break;
|
|
}
|
|
if (r)
|
|
r = -EINVAL;
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* kvm_set_guest_paused() indicates to the guest kernel that it has been
|
|
* stopped by the hypervisor. This function will be called from the host only.
|
|
* EINVAL is returned when the host attempts to set the flag for a guest that
|
|
* does not support pv clocks.
|
|
*/
|
|
static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu->arch.pv_time_enabled)
|
|
return -EINVAL;
|
|
vcpu->arch.pvclock_set_guest_stopped_request = true;
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
return 0;
|
|
}
|
|
|
|
long kvm_arch_vcpu_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r;
|
|
union {
|
|
struct kvm_lapic_state *lapic;
|
|
struct kvm_xsave *xsave;
|
|
struct kvm_xcrs *xcrs;
|
|
void *buffer;
|
|
} u;
|
|
|
|
u.buffer = NULL;
|
|
switch (ioctl) {
|
|
case KVM_GET_LAPIC: {
|
|
r = -EINVAL;
|
|
if (!vcpu->arch.apic)
|
|
goto out;
|
|
u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
|
|
|
|
r = -ENOMEM;
|
|
if (!u.lapic)
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_LAPIC: {
|
|
r = -EINVAL;
|
|
if (!vcpu->arch.apic)
|
|
goto out;
|
|
u.lapic = memdup_user(argp, sizeof(*u.lapic));
|
|
if (IS_ERR(u.lapic))
|
|
return PTR_ERR(u.lapic);
|
|
|
|
r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
|
|
break;
|
|
}
|
|
case KVM_INTERRUPT: {
|
|
struct kvm_interrupt irq;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&irq, argp, sizeof irq))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
|
|
break;
|
|
}
|
|
case KVM_NMI: {
|
|
r = kvm_vcpu_ioctl_nmi(vcpu);
|
|
break;
|
|
}
|
|
case KVM_SET_CPUID: {
|
|
struct kvm_cpuid __user *cpuid_arg = argp;
|
|
struct kvm_cpuid cpuid;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
|
|
break;
|
|
}
|
|
case KVM_SET_CPUID2: {
|
|
struct kvm_cpuid2 __user *cpuid_arg = argp;
|
|
struct kvm_cpuid2 cpuid;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
|
|
cpuid_arg->entries);
|
|
break;
|
|
}
|
|
case KVM_GET_CPUID2: {
|
|
struct kvm_cpuid2 __user *cpuid_arg = argp;
|
|
struct kvm_cpuid2 cpuid;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
|
|
cpuid_arg->entries);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_GET_MSRS:
|
|
r = msr_io(vcpu, argp, kvm_get_msr, 1);
|
|
break;
|
|
case KVM_SET_MSRS:
|
|
r = msr_io(vcpu, argp, do_set_msr, 0);
|
|
break;
|
|
case KVM_TPR_ACCESS_REPORTING: {
|
|
struct kvm_tpr_access_ctl tac;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&tac, argp, sizeof tac))
|
|
goto out;
|
|
r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &tac, sizeof tac))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
};
|
|
case KVM_SET_VAPIC_ADDR: {
|
|
struct kvm_vapic_addr va;
|
|
|
|
r = -EINVAL;
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&va, argp, sizeof va))
|
|
goto out;
|
|
r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
|
|
break;
|
|
}
|
|
case KVM_X86_SETUP_MCE: {
|
|
u64 mcg_cap;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
|
|
break;
|
|
}
|
|
case KVM_X86_SET_MCE: {
|
|
struct kvm_x86_mce mce;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&mce, argp, sizeof mce))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
|
|
break;
|
|
}
|
|
case KVM_GET_VCPU_EVENTS: {
|
|
struct kvm_vcpu_events events;
|
|
|
|
kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_VCPU_EVENTS: {
|
|
struct kvm_vcpu_events events;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
|
|
break;
|
|
|
|
r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
|
|
break;
|
|
}
|
|
case KVM_GET_DEBUGREGS: {
|
|
struct kvm_debugregs dbgregs;
|
|
|
|
kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &dbgregs,
|
|
sizeof(struct kvm_debugregs)))
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_DEBUGREGS: {
|
|
struct kvm_debugregs dbgregs;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&dbgregs, argp,
|
|
sizeof(struct kvm_debugregs)))
|
|
break;
|
|
|
|
r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
|
|
break;
|
|
}
|
|
case KVM_GET_XSAVE: {
|
|
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!u.xsave)
|
|
break;
|
|
|
|
kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_XSAVE: {
|
|
u.xsave = memdup_user(argp, sizeof(*u.xsave));
|
|
if (IS_ERR(u.xsave))
|
|
return PTR_ERR(u.xsave);
|
|
|
|
r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
|
|
break;
|
|
}
|
|
case KVM_GET_XCRS: {
|
|
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!u.xcrs)
|
|
break;
|
|
|
|
kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, u.xcrs,
|
|
sizeof(struct kvm_xcrs)))
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_XCRS: {
|
|
u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
|
|
if (IS_ERR(u.xcrs))
|
|
return PTR_ERR(u.xcrs);
|
|
|
|
r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
|
|
break;
|
|
}
|
|
case KVM_SET_TSC_KHZ: {
|
|
u32 user_tsc_khz;
|
|
|
|
r = -EINVAL;
|
|
user_tsc_khz = (u32)arg;
|
|
|
|
if (user_tsc_khz >= kvm_max_guest_tsc_khz)
|
|
goto out;
|
|
|
|
if (user_tsc_khz == 0)
|
|
user_tsc_khz = tsc_khz;
|
|
|
|
kvm_set_tsc_khz(vcpu, user_tsc_khz);
|
|
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
case KVM_GET_TSC_KHZ: {
|
|
r = vcpu->arch.virtual_tsc_khz;
|
|
goto out;
|
|
}
|
|
case KVM_KVMCLOCK_CTRL: {
|
|
r = kvm_set_guest_paused(vcpu);
|
|
goto out;
|
|
}
|
|
default:
|
|
r = -EINVAL;
|
|
}
|
|
out:
|
|
kfree(u.buffer);
|
|
return r;
|
|
}
|
|
|
|
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
|
|
{
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
|
|
{
|
|
int ret;
|
|
|
|
if (addr > (unsigned int)(-3 * PAGE_SIZE))
|
|
return -EINVAL;
|
|
ret = kvm_x86_ops->set_tss_addr(kvm, addr);
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
|
|
u64 ident_addr)
|
|
{
|
|
kvm->arch.ept_identity_map_addr = ident_addr;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
|
|
u32 kvm_nr_mmu_pages)
|
|
{
|
|
if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
|
|
kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
|
|
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
|
|
{
|
|
return kvm->arch.n_max_mmu_pages;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
|
|
{
|
|
int r;
|
|
|
|
r = 0;
|
|
switch (chip->chip_id) {
|
|
case KVM_IRQCHIP_PIC_MASTER:
|
|
memcpy(&chip->chip.pic,
|
|
&pic_irqchip(kvm)->pics[0],
|
|
sizeof(struct kvm_pic_state));
|
|
break;
|
|
case KVM_IRQCHIP_PIC_SLAVE:
|
|
memcpy(&chip->chip.pic,
|
|
&pic_irqchip(kvm)->pics[1],
|
|
sizeof(struct kvm_pic_state));
|
|
break;
|
|
case KVM_IRQCHIP_IOAPIC:
|
|
r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
|
|
{
|
|
int r;
|
|
|
|
r = 0;
|
|
switch (chip->chip_id) {
|
|
case KVM_IRQCHIP_PIC_MASTER:
|
|
spin_lock(&pic_irqchip(kvm)->lock);
|
|
memcpy(&pic_irqchip(kvm)->pics[0],
|
|
&chip->chip.pic,
|
|
sizeof(struct kvm_pic_state));
|
|
spin_unlock(&pic_irqchip(kvm)->lock);
|
|
break;
|
|
case KVM_IRQCHIP_PIC_SLAVE:
|
|
spin_lock(&pic_irqchip(kvm)->lock);
|
|
memcpy(&pic_irqchip(kvm)->pics[1],
|
|
&chip->chip.pic,
|
|
sizeof(struct kvm_pic_state));
|
|
spin_unlock(&pic_irqchip(kvm)->lock);
|
|
break;
|
|
case KVM_IRQCHIP_IOAPIC:
|
|
r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
kvm_pic_update_irq(pic_irqchip(kvm));
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
|
|
{
|
|
int r = 0;
|
|
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
|
|
{
|
|
int r = 0;
|
|
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
|
|
kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
|
|
{
|
|
int r = 0;
|
|
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
|
|
sizeof(ps->channels));
|
|
ps->flags = kvm->arch.vpit->pit_state.flags;
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
memset(&ps->reserved, 0, sizeof(ps->reserved));
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
|
|
{
|
|
int r = 0, start = 0;
|
|
u32 prev_legacy, cur_legacy;
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
|
|
cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
|
|
if (!prev_legacy && cur_legacy)
|
|
start = 1;
|
|
memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
|
|
sizeof(kvm->arch.vpit->pit_state.channels));
|
|
kvm->arch.vpit->pit_state.flags = ps->flags;
|
|
kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_reinject(struct kvm *kvm,
|
|
struct kvm_reinject_control *control)
|
|
{
|
|
if (!kvm->arch.vpit)
|
|
return -ENXIO;
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
|
|
* @kvm: kvm instance
|
|
* @log: slot id and address to which we copy the log
|
|
*
|
|
* We need to keep it in mind that VCPU threads can write to the bitmap
|
|
* concurrently. So, to avoid losing data, we keep the following order for
|
|
* each bit:
|
|
*
|
|
* 1. Take a snapshot of the bit and clear it if needed.
|
|
* 2. Write protect the corresponding page.
|
|
* 3. Flush TLB's if needed.
|
|
* 4. Copy the snapshot to the userspace.
|
|
*
|
|
* Between 2 and 3, the guest may write to the page using the remaining TLB
|
|
* entry. This is not a problem because the page will be reported dirty at
|
|
* step 4 using the snapshot taken before and step 3 ensures that successive
|
|
* writes will be logged for the next call.
|
|
*/
|
|
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
|
|
{
|
|
int r;
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long n, i;
|
|
unsigned long *dirty_bitmap;
|
|
unsigned long *dirty_bitmap_buffer;
|
|
bool is_dirty = false;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
r = -EINVAL;
|
|
if (log->slot >= KVM_USER_MEM_SLOTS)
|
|
goto out;
|
|
|
|
memslot = id_to_memslot(kvm->memslots, log->slot);
|
|
|
|
dirty_bitmap = memslot->dirty_bitmap;
|
|
r = -ENOENT;
|
|
if (!dirty_bitmap)
|
|
goto out;
|
|
|
|
n = kvm_dirty_bitmap_bytes(memslot);
|
|
|
|
dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
|
|
memset(dirty_bitmap_buffer, 0, n);
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
for (i = 0; i < n / sizeof(long); i++) {
|
|
unsigned long mask;
|
|
gfn_t offset;
|
|
|
|
if (!dirty_bitmap[i])
|
|
continue;
|
|
|
|
is_dirty = true;
|
|
|
|
mask = xchg(&dirty_bitmap[i], 0);
|
|
dirty_bitmap_buffer[i] = mask;
|
|
|
|
offset = i * BITS_PER_LONG;
|
|
kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
|
|
}
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
/* See the comments in kvm_mmu_slot_remove_write_access(). */
|
|
lockdep_assert_held(&kvm->slots_lock);
|
|
|
|
/*
|
|
* All the TLBs can be flushed out of mmu lock, see the comments in
|
|
* kvm_mmu_slot_remove_write_access().
|
|
*/
|
|
if (is_dirty)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
|
|
goto out;
|
|
|
|
r = 0;
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
|
|
bool line_status)
|
|
{
|
|
if (!irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
|
|
irq_event->irq, irq_event->level,
|
|
line_status);
|
|
return 0;
|
|
}
|
|
|
|
long kvm_arch_vm_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r = -ENOTTY;
|
|
/*
|
|
* This union makes it completely explicit to gcc-3.x
|
|
* that these two variables' stack usage should be
|
|
* combined, not added together.
|
|
*/
|
|
union {
|
|
struct kvm_pit_state ps;
|
|
struct kvm_pit_state2 ps2;
|
|
struct kvm_pit_config pit_config;
|
|
} u;
|
|
|
|
switch (ioctl) {
|
|
case KVM_SET_TSS_ADDR:
|
|
r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
|
|
break;
|
|
case KVM_SET_IDENTITY_MAP_ADDR: {
|
|
u64 ident_addr;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
|
|
goto out;
|
|
r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
|
|
break;
|
|
}
|
|
case KVM_SET_NR_MMU_PAGES:
|
|
r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
|
|
break;
|
|
case KVM_GET_NR_MMU_PAGES:
|
|
r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
|
|
break;
|
|
case KVM_CREATE_IRQCHIP: {
|
|
struct kvm_pic *vpic;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
r = -EEXIST;
|
|
if (kvm->arch.vpic)
|
|
goto create_irqchip_unlock;
|
|
r = -EINVAL;
|
|
if (atomic_read(&kvm->online_vcpus))
|
|
goto create_irqchip_unlock;
|
|
r = -ENOMEM;
|
|
vpic = kvm_create_pic(kvm);
|
|
if (vpic) {
|
|
r = kvm_ioapic_init(kvm);
|
|
if (r) {
|
|
mutex_lock(&kvm->slots_lock);
|
|
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
|
|
&vpic->dev_master);
|
|
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
|
|
&vpic->dev_slave);
|
|
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
|
|
&vpic->dev_eclr);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
kfree(vpic);
|
|
goto create_irqchip_unlock;
|
|
}
|
|
} else
|
|
goto create_irqchip_unlock;
|
|
smp_wmb();
|
|
kvm->arch.vpic = vpic;
|
|
smp_wmb();
|
|
r = kvm_setup_default_irq_routing(kvm);
|
|
if (r) {
|
|
mutex_lock(&kvm->slots_lock);
|
|
mutex_lock(&kvm->irq_lock);
|
|
kvm_ioapic_destroy(kvm);
|
|
kvm_destroy_pic(kvm);
|
|
mutex_unlock(&kvm->irq_lock);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
}
|
|
create_irqchip_unlock:
|
|
mutex_unlock(&kvm->lock);
|
|
break;
|
|
}
|
|
case KVM_CREATE_PIT:
|
|
u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
|
|
goto create_pit;
|
|
case KVM_CREATE_PIT2:
|
|
r = -EFAULT;
|
|
if (copy_from_user(&u.pit_config, argp,
|
|
sizeof(struct kvm_pit_config)))
|
|
goto out;
|
|
create_pit:
|
|
mutex_lock(&kvm->slots_lock);
|
|
r = -EEXIST;
|
|
if (kvm->arch.vpit)
|
|
goto create_pit_unlock;
|
|
r = -ENOMEM;
|
|
kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
|
|
if (kvm->arch.vpit)
|
|
r = 0;
|
|
create_pit_unlock:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
break;
|
|
case KVM_GET_IRQCHIP: {
|
|
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
|
|
struct kvm_irqchip *chip;
|
|
|
|
chip = memdup_user(argp, sizeof(*chip));
|
|
if (IS_ERR(chip)) {
|
|
r = PTR_ERR(chip);
|
|
goto out;
|
|
}
|
|
|
|
r = -ENXIO;
|
|
if (!irqchip_in_kernel(kvm))
|
|
goto get_irqchip_out;
|
|
r = kvm_vm_ioctl_get_irqchip(kvm, chip);
|
|
if (r)
|
|
goto get_irqchip_out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, chip, sizeof *chip))
|
|
goto get_irqchip_out;
|
|
r = 0;
|
|
get_irqchip_out:
|
|
kfree(chip);
|
|
break;
|
|
}
|
|
case KVM_SET_IRQCHIP: {
|
|
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
|
|
struct kvm_irqchip *chip;
|
|
|
|
chip = memdup_user(argp, sizeof(*chip));
|
|
if (IS_ERR(chip)) {
|
|
r = PTR_ERR(chip);
|
|
goto out;
|
|
}
|
|
|
|
r = -ENXIO;
|
|
if (!irqchip_in_kernel(kvm))
|
|
goto set_irqchip_out;
|
|
r = kvm_vm_ioctl_set_irqchip(kvm, chip);
|
|
if (r)
|
|
goto set_irqchip_out;
|
|
r = 0;
|
|
set_irqchip_out:
|
|
kfree(chip);
|
|
break;
|
|
}
|
|
case KVM_GET_PIT: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
|
|
goto out;
|
|
r = -ENXIO;
|
|
if (!kvm->arch.vpit)
|
|
goto out;
|
|
r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_PIT: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&u.ps, argp, sizeof u.ps))
|
|
goto out;
|
|
r = -ENXIO;
|
|
if (!kvm->arch.vpit)
|
|
goto out;
|
|
r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
|
|
break;
|
|
}
|
|
case KVM_GET_PIT2: {
|
|
r = -ENXIO;
|
|
if (!kvm->arch.vpit)
|
|
goto out;
|
|
r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_PIT2: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
|
|
goto out;
|
|
r = -ENXIO;
|
|
if (!kvm->arch.vpit)
|
|
goto out;
|
|
r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
|
|
break;
|
|
}
|
|
case KVM_REINJECT_CONTROL: {
|
|
struct kvm_reinject_control control;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&control, argp, sizeof(control)))
|
|
goto out;
|
|
r = kvm_vm_ioctl_reinject(kvm, &control);
|
|
break;
|
|
}
|
|
case KVM_XEN_HVM_CONFIG: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
|
|
sizeof(struct kvm_xen_hvm_config)))
|
|
goto out;
|
|
r = -EINVAL;
|
|
if (kvm->arch.xen_hvm_config.flags)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_CLOCK: {
|
|
struct kvm_clock_data user_ns;
|
|
u64 now_ns;
|
|
s64 delta;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
|
|
goto out;
|
|
|
|
r = -EINVAL;
|
|
if (user_ns.flags)
|
|
goto out;
|
|
|
|
r = 0;
|
|
local_irq_disable();
|
|
now_ns = get_kernel_ns();
|
|
delta = user_ns.clock - now_ns;
|
|
local_irq_enable();
|
|
kvm->arch.kvmclock_offset = delta;
|
|
kvm_gen_update_masterclock(kvm);
|
|
break;
|
|
}
|
|
case KVM_GET_CLOCK: {
|
|
struct kvm_clock_data user_ns;
|
|
u64 now_ns;
|
|
|
|
local_irq_disable();
|
|
now_ns = get_kernel_ns();
|
|
user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
|
|
local_irq_enable();
|
|
user_ns.flags = 0;
|
|
memset(&user_ns.pad, 0, sizeof(user_ns.pad));
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
;
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static void kvm_init_msr_list(void)
|
|
{
|
|
u32 dummy[2];
|
|
unsigned i, j;
|
|
|
|
/* skip the first msrs in the list. KVM-specific */
|
|
for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
|
|
if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
|
|
continue;
|
|
|
|
/*
|
|
* Even MSRs that are valid in the host may not be exposed
|
|
* to the guests in some cases. We could work around this
|
|
* in VMX with the generic MSR save/load machinery, but it
|
|
* is not really worthwhile since it will really only
|
|
* happen with nested virtualization.
|
|
*/
|
|
switch (msrs_to_save[i]) {
|
|
case MSR_IA32_BNDCFGS:
|
|
if (!kvm_x86_ops->mpx_supported())
|
|
continue;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (j < i)
|
|
msrs_to_save[j] = msrs_to_save[i];
|
|
j++;
|
|
}
|
|
num_msrs_to_save = j;
|
|
}
|
|
|
|
static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
|
|
const void *v)
|
|
{
|
|
int handled = 0;
|
|
int n;
|
|
|
|
do {
|
|
n = min(len, 8);
|
|
if (!(vcpu->arch.apic &&
|
|
!kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
|
|
&& kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
|
|
break;
|
|
handled += n;
|
|
addr += n;
|
|
len -= n;
|
|
v += n;
|
|
} while (len);
|
|
|
|
return handled;
|
|
}
|
|
|
|
static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
|
|
{
|
|
int handled = 0;
|
|
int n;
|
|
|
|
do {
|
|
n = min(len, 8);
|
|
if (!(vcpu->arch.apic &&
|
|
!kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
|
|
&& kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
|
|
break;
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
|
|
handled += n;
|
|
addr += n;
|
|
len -= n;
|
|
v += n;
|
|
} while (len);
|
|
|
|
return handled;
|
|
}
|
|
|
|
static void kvm_set_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
kvm_x86_ops->set_segment(vcpu, var, seg);
|
|
}
|
|
|
|
void kvm_get_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
kvm_x86_ops->get_segment(vcpu, var, seg);
|
|
}
|
|
|
|
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
|
|
{
|
|
gpa_t t_gpa;
|
|
struct x86_exception exception;
|
|
|
|
BUG_ON(!mmu_is_nested(vcpu));
|
|
|
|
/* NPT walks are always user-walks */
|
|
access |= PFERR_USER_MASK;
|
|
t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
|
|
|
|
return t_gpa;
|
|
}
|
|
|
|
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception)
|
|
{
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
|
|
}
|
|
|
|
gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception)
|
|
{
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
access |= PFERR_FETCH_MASK;
|
|
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
|
|
}
|
|
|
|
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception)
|
|
{
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
access |= PFERR_WRITE_MASK;
|
|
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
|
|
}
|
|
|
|
/* uses this to access any guest's mapped memory without checking CPL */
|
|
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception)
|
|
{
|
|
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
|
|
}
|
|
|
|
static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
|
|
struct kvm_vcpu *vcpu, u32 access,
|
|
struct x86_exception *exception)
|
|
{
|
|
void *data = val;
|
|
int r = X86EMUL_CONTINUE;
|
|
|
|
while (bytes) {
|
|
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
|
|
exception);
|
|
unsigned offset = addr & (PAGE_SIZE-1);
|
|
unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
|
|
int ret;
|
|
|
|
if (gpa == UNMAPPED_GVA)
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
|
|
if (ret < 0) {
|
|
r = X86EMUL_IO_NEEDED;
|
|
goto out;
|
|
}
|
|
|
|
bytes -= toread;
|
|
data += toread;
|
|
addr += toread;
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
/* used for instruction fetching */
|
|
static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
|
|
gva_t addr, void *val, unsigned int bytes,
|
|
struct x86_exception *exception)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
|
|
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
|
|
access | PFERR_FETCH_MASK,
|
|
exception);
|
|
}
|
|
|
|
int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
|
|
gva_t addr, void *val, unsigned int bytes,
|
|
struct x86_exception *exception)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
|
|
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
|
|
exception);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
|
|
|
|
static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
|
|
gva_t addr, void *val, unsigned int bytes,
|
|
struct x86_exception *exception)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
|
|
}
|
|
|
|
int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
|
|
gva_t addr, void *val,
|
|
unsigned int bytes,
|
|
struct x86_exception *exception)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
void *data = val;
|
|
int r = X86EMUL_CONTINUE;
|
|
|
|
while (bytes) {
|
|
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
|
|
PFERR_WRITE_MASK,
|
|
exception);
|
|
unsigned offset = addr & (PAGE_SIZE-1);
|
|
unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
|
|
int ret;
|
|
|
|
if (gpa == UNMAPPED_GVA)
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
|
|
if (ret < 0) {
|
|
r = X86EMUL_IO_NEEDED;
|
|
goto out;
|
|
}
|
|
|
|
bytes -= towrite;
|
|
data += towrite;
|
|
addr += towrite;
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
|
|
|
|
static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
|
|
gpa_t *gpa, struct x86_exception *exception,
|
|
bool write)
|
|
{
|
|
u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
|
|
| (write ? PFERR_WRITE_MASK : 0);
|
|
|
|
if (vcpu_match_mmio_gva(vcpu, gva)
|
|
&& !permission_fault(vcpu, vcpu->arch.walk_mmu,
|
|
vcpu->arch.access, access)) {
|
|
*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
|
|
(gva & (PAGE_SIZE - 1));
|
|
trace_vcpu_match_mmio(gva, *gpa, write, false);
|
|
return 1;
|
|
}
|
|
|
|
*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
|
|
|
|
if (*gpa == UNMAPPED_GVA)
|
|
return -1;
|
|
|
|
/* For APIC access vmexit */
|
|
if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
|
|
return 1;
|
|
|
|
if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
|
|
trace_vcpu_match_mmio(gva, *gpa, write, true);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
const void *val, int bytes)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
|
|
if (ret < 0)
|
|
return 0;
|
|
kvm_mmu_pte_write(vcpu, gpa, val, bytes);
|
|
return 1;
|
|
}
|
|
|
|
struct read_write_emulator_ops {
|
|
int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
|
|
int bytes);
|
|
int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
void *val, int bytes);
|
|
int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
int bytes, void *val);
|
|
int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
void *val, int bytes);
|
|
bool write;
|
|
};
|
|
|
|
static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
|
|
{
|
|
if (vcpu->mmio_read_completed) {
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
|
|
vcpu->mmio_fragments[0].gpa, *(u64 *)val);
|
|
vcpu->mmio_read_completed = 0;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
void *val, int bytes)
|
|
{
|
|
return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
|
|
}
|
|
|
|
static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
void *val, int bytes)
|
|
{
|
|
return emulator_write_phys(vcpu, gpa, val, bytes);
|
|
}
|
|
|
|
static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
|
|
{
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
|
|
return vcpu_mmio_write(vcpu, gpa, bytes, val);
|
|
}
|
|
|
|
static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
void *val, int bytes)
|
|
{
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
|
|
return X86EMUL_IO_NEEDED;
|
|
}
|
|
|
|
static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
void *val, int bytes)
|
|
{
|
|
struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
|
|
|
|
memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
static const struct read_write_emulator_ops read_emultor = {
|
|
.read_write_prepare = read_prepare,
|
|
.read_write_emulate = read_emulate,
|
|
.read_write_mmio = vcpu_mmio_read,
|
|
.read_write_exit_mmio = read_exit_mmio,
|
|
};
|
|
|
|
static const struct read_write_emulator_ops write_emultor = {
|
|
.read_write_emulate = write_emulate,
|
|
.read_write_mmio = write_mmio,
|
|
.read_write_exit_mmio = write_exit_mmio,
|
|
.write = true,
|
|
};
|
|
|
|
static int emulator_read_write_onepage(unsigned long addr, void *val,
|
|
unsigned int bytes,
|
|
struct x86_exception *exception,
|
|
struct kvm_vcpu *vcpu,
|
|
const struct read_write_emulator_ops *ops)
|
|
{
|
|
gpa_t gpa;
|
|
int handled, ret;
|
|
bool write = ops->write;
|
|
struct kvm_mmio_fragment *frag;
|
|
|
|
ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
|
|
|
|
if (ret < 0)
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
|
|
/* For APIC access vmexit */
|
|
if (ret)
|
|
goto mmio;
|
|
|
|
if (ops->read_write_emulate(vcpu, gpa, val, bytes))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
mmio:
|
|
/*
|
|
* Is this MMIO handled locally?
|
|
*/
|
|
handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
|
|
if (handled == bytes)
|
|
return X86EMUL_CONTINUE;
|
|
|
|
gpa += handled;
|
|
bytes -= handled;
|
|
val += handled;
|
|
|
|
WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
|
|
frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
|
|
frag->gpa = gpa;
|
|
frag->data = val;
|
|
frag->len = bytes;
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
|
|
void *val, unsigned int bytes,
|
|
struct x86_exception *exception,
|
|
const struct read_write_emulator_ops *ops)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
gpa_t gpa;
|
|
int rc;
|
|
|
|
if (ops->read_write_prepare &&
|
|
ops->read_write_prepare(vcpu, val, bytes))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
vcpu->mmio_nr_fragments = 0;
|
|
|
|
/* Crossing a page boundary? */
|
|
if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
|
|
int now;
|
|
|
|
now = -addr & ~PAGE_MASK;
|
|
rc = emulator_read_write_onepage(addr, val, now, exception,
|
|
vcpu, ops);
|
|
|
|
if (rc != X86EMUL_CONTINUE)
|
|
return rc;
|
|
addr += now;
|
|
val += now;
|
|
bytes -= now;
|
|
}
|
|
|
|
rc = emulator_read_write_onepage(addr, val, bytes, exception,
|
|
vcpu, ops);
|
|
if (rc != X86EMUL_CONTINUE)
|
|
return rc;
|
|
|
|
if (!vcpu->mmio_nr_fragments)
|
|
return rc;
|
|
|
|
gpa = vcpu->mmio_fragments[0].gpa;
|
|
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->mmio_cur_fragment = 0;
|
|
|
|
vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
|
|
vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
|
|
vcpu->run->exit_reason = KVM_EXIT_MMIO;
|
|
vcpu->run->mmio.phys_addr = gpa;
|
|
|
|
return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
|
|
}
|
|
|
|
static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
|
|
unsigned long addr,
|
|
void *val,
|
|
unsigned int bytes,
|
|
struct x86_exception *exception)
|
|
{
|
|
return emulator_read_write(ctxt, addr, val, bytes,
|
|
exception, &read_emultor);
|
|
}
|
|
|
|
int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
|
|
unsigned long addr,
|
|
const void *val,
|
|
unsigned int bytes,
|
|
struct x86_exception *exception)
|
|
{
|
|
return emulator_read_write(ctxt, addr, (void *)val, bytes,
|
|
exception, &write_emultor);
|
|
}
|
|
|
|
#define CMPXCHG_TYPE(t, ptr, old, new) \
|
|
(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
|
|
|
|
#ifdef CONFIG_X86_64
|
|
# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
|
|
#else
|
|
# define CMPXCHG64(ptr, old, new) \
|
|
(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
|
|
#endif
|
|
|
|
static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
|
|
unsigned long addr,
|
|
const void *old,
|
|
const void *new,
|
|
unsigned int bytes,
|
|
struct x86_exception *exception)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
gpa_t gpa;
|
|
struct page *page;
|
|
char *kaddr;
|
|
bool exchanged;
|
|
|
|
/* guests cmpxchg8b have to be emulated atomically */
|
|
if (bytes > 8 || (bytes & (bytes - 1)))
|
|
goto emul_write;
|
|
|
|
gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
|
|
|
|
if (gpa == UNMAPPED_GVA ||
|
|
(gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
|
|
goto emul_write;
|
|
|
|
if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
|
|
goto emul_write;
|
|
|
|
page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
|
|
if (is_error_page(page))
|
|
goto emul_write;
|
|
|
|
kaddr = kmap_atomic(page);
|
|
kaddr += offset_in_page(gpa);
|
|
switch (bytes) {
|
|
case 1:
|
|
exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
|
|
break;
|
|
case 2:
|
|
exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
|
|
break;
|
|
case 4:
|
|
exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
|
|
break;
|
|
case 8:
|
|
exchanged = CMPXCHG64(kaddr, old, new);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
kunmap_atomic(kaddr);
|
|
kvm_release_page_dirty(page);
|
|
|
|
if (!exchanged)
|
|
return X86EMUL_CMPXCHG_FAILED;
|
|
|
|
mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
|
|
kvm_mmu_pte_write(vcpu, gpa, new, bytes);
|
|
|
|
return X86EMUL_CONTINUE;
|
|
|
|
emul_write:
|
|
printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
|
|
|
|
return emulator_write_emulated(ctxt, addr, new, bytes, exception);
|
|
}
|
|
|
|
static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
|
|
{
|
|
/* TODO: String I/O for in kernel device */
|
|
int r;
|
|
|
|
if (vcpu->arch.pio.in)
|
|
r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
|
|
vcpu->arch.pio.size, pd);
|
|
else
|
|
r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
|
|
vcpu->arch.pio.port, vcpu->arch.pio.size,
|
|
pd);
|
|
return r;
|
|
}
|
|
|
|
static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
|
|
unsigned short port, void *val,
|
|
unsigned int count, bool in)
|
|
{
|
|
vcpu->arch.pio.port = port;
|
|
vcpu->arch.pio.in = in;
|
|
vcpu->arch.pio.count = count;
|
|
vcpu->arch.pio.size = size;
|
|
|
|
if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
|
|
vcpu->arch.pio.count = 0;
|
|
return 1;
|
|
}
|
|
|
|
vcpu->run->exit_reason = KVM_EXIT_IO;
|
|
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
|
|
vcpu->run->io.size = size;
|
|
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
|
|
vcpu->run->io.count = count;
|
|
vcpu->run->io.port = port;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
|
|
int size, unsigned short port, void *val,
|
|
unsigned int count)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
int ret;
|
|
|
|
if (vcpu->arch.pio.count)
|
|
goto data_avail;
|
|
|
|
ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
|
|
if (ret) {
|
|
data_avail:
|
|
memcpy(val, vcpu->arch.pio_data, size * count);
|
|
trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
|
|
vcpu->arch.pio.count = 0;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
|
|
int size, unsigned short port,
|
|
const void *val, unsigned int count)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
|
|
memcpy(vcpu->arch.pio_data, val, size * count);
|
|
trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
|
|
return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
|
|
}
|
|
|
|
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
return kvm_x86_ops->get_segment_base(vcpu, seg);
|
|
}
|
|
|
|
static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
|
|
{
|
|
kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
|
|
}
|
|
|
|
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!need_emulate_wbinvd(vcpu))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
if (kvm_x86_ops->has_wbinvd_exit()) {
|
|
int cpu = get_cpu();
|
|
|
|
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
|
|
smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
|
|
wbinvd_ipi, NULL, 1);
|
|
put_cpu();
|
|
cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
|
|
} else
|
|
wbinvd();
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
|
|
|
|
static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
|
|
}
|
|
|
|
int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
|
|
{
|
|
return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
|
|
}
|
|
|
|
int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
|
|
{
|
|
|
|
return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
|
|
}
|
|
|
|
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
|
|
{
|
|
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
|
|
}
|
|
|
|
static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
unsigned long value;
|
|
|
|
switch (cr) {
|
|
case 0:
|
|
value = kvm_read_cr0(vcpu);
|
|
break;
|
|
case 2:
|
|
value = vcpu->arch.cr2;
|
|
break;
|
|
case 3:
|
|
value = kvm_read_cr3(vcpu);
|
|
break;
|
|
case 4:
|
|
value = kvm_read_cr4(vcpu);
|
|
break;
|
|
case 8:
|
|
value = kvm_get_cr8(vcpu);
|
|
break;
|
|
default:
|
|
kvm_err("%s: unexpected cr %u\n", __func__, cr);
|
|
return 0;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
int res = 0;
|
|
|
|
switch (cr) {
|
|
case 0:
|
|
res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
|
|
break;
|
|
case 2:
|
|
vcpu->arch.cr2 = val;
|
|
break;
|
|
case 3:
|
|
res = kvm_set_cr3(vcpu, val);
|
|
break;
|
|
case 4:
|
|
res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
|
|
break;
|
|
case 8:
|
|
res = kvm_set_cr8(vcpu, val);
|
|
break;
|
|
default:
|
|
kvm_err("%s: unexpected cr %u\n", __func__, cr);
|
|
res = -1;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
|
|
}
|
|
|
|
static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
|
|
{
|
|
kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
|
|
}
|
|
|
|
static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
|
|
{
|
|
kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
|
|
}
|
|
|
|
static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
|
|
{
|
|
kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
|
|
}
|
|
|
|
static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
|
|
{
|
|
kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
|
|
}
|
|
|
|
static unsigned long emulator_get_cached_segment_base(
|
|
struct x86_emulate_ctxt *ctxt, int seg)
|
|
{
|
|
return get_segment_base(emul_to_vcpu(ctxt), seg);
|
|
}
|
|
|
|
static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
|
|
struct desc_struct *desc, u32 *base3,
|
|
int seg)
|
|
{
|
|
struct kvm_segment var;
|
|
|
|
kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
|
|
*selector = var.selector;
|
|
|
|
if (var.unusable) {
|
|
memset(desc, 0, sizeof(*desc));
|
|
return false;
|
|
}
|
|
|
|
if (var.g)
|
|
var.limit >>= 12;
|
|
set_desc_limit(desc, var.limit);
|
|
set_desc_base(desc, (unsigned long)var.base);
|
|
#ifdef CONFIG_X86_64
|
|
if (base3)
|
|
*base3 = var.base >> 32;
|
|
#endif
|
|
desc->type = var.type;
|
|
desc->s = var.s;
|
|
desc->dpl = var.dpl;
|
|
desc->p = var.present;
|
|
desc->avl = var.avl;
|
|
desc->l = var.l;
|
|
desc->d = var.db;
|
|
desc->g = var.g;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
|
|
struct desc_struct *desc, u32 base3,
|
|
int seg)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
struct kvm_segment var;
|
|
|
|
var.selector = selector;
|
|
var.base = get_desc_base(desc);
|
|
#ifdef CONFIG_X86_64
|
|
var.base |= ((u64)base3) << 32;
|
|
#endif
|
|
var.limit = get_desc_limit(desc);
|
|
if (desc->g)
|
|
var.limit = (var.limit << 12) | 0xfff;
|
|
var.type = desc->type;
|
|
var.present = desc->p;
|
|
var.dpl = desc->dpl;
|
|
var.db = desc->d;
|
|
var.s = desc->s;
|
|
var.l = desc->l;
|
|
var.g = desc->g;
|
|
var.avl = desc->avl;
|
|
var.present = desc->p;
|
|
var.unusable = !var.present;
|
|
var.padding = 0;
|
|
|
|
kvm_set_segment(vcpu, &var, seg);
|
|
return;
|
|
}
|
|
|
|
static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
|
|
u32 msr_index, u64 *pdata)
|
|
{
|
|
return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
|
|
}
|
|
|
|
static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
|
|
u32 msr_index, u64 data)
|
|
{
|
|
struct msr_data msr;
|
|
|
|
msr.data = data;
|
|
msr.index = msr_index;
|
|
msr.host_initiated = false;
|
|
return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
|
|
}
|
|
|
|
static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
|
|
u32 pmc, u64 *pdata)
|
|
{
|
|
return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
|
|
}
|
|
|
|
static void emulator_halt(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
emul_to_vcpu(ctxt)->arch.halt_request = 1;
|
|
}
|
|
|
|
static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
preempt_disable();
|
|
kvm_load_guest_fpu(emul_to_vcpu(ctxt));
|
|
/*
|
|
* CR0.TS may reference the host fpu state, not the guest fpu state,
|
|
* so it may be clear at this point.
|
|
*/
|
|
clts();
|
|
}
|
|
|
|
static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
preempt_enable();
|
|
}
|
|
|
|
static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
|
|
struct x86_instruction_info *info,
|
|
enum x86_intercept_stage stage)
|
|
{
|
|
return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
|
|
}
|
|
|
|
static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
|
|
u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
|
|
{
|
|
kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
|
|
}
|
|
|
|
static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
|
|
{
|
|
return kvm_register_read(emul_to_vcpu(ctxt), reg);
|
|
}
|
|
|
|
static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
|
|
{
|
|
kvm_register_write(emul_to_vcpu(ctxt), reg, val);
|
|
}
|
|
|
|
static const struct x86_emulate_ops emulate_ops = {
|
|
.read_gpr = emulator_read_gpr,
|
|
.write_gpr = emulator_write_gpr,
|
|
.read_std = kvm_read_guest_virt_system,
|
|
.write_std = kvm_write_guest_virt_system,
|
|
.fetch = kvm_fetch_guest_virt,
|
|
.read_emulated = emulator_read_emulated,
|
|
.write_emulated = emulator_write_emulated,
|
|
.cmpxchg_emulated = emulator_cmpxchg_emulated,
|
|
.invlpg = emulator_invlpg,
|
|
.pio_in_emulated = emulator_pio_in_emulated,
|
|
.pio_out_emulated = emulator_pio_out_emulated,
|
|
.get_segment = emulator_get_segment,
|
|
.set_segment = emulator_set_segment,
|
|
.get_cached_segment_base = emulator_get_cached_segment_base,
|
|
.get_gdt = emulator_get_gdt,
|
|
.get_idt = emulator_get_idt,
|
|
.set_gdt = emulator_set_gdt,
|
|
.set_idt = emulator_set_idt,
|
|
.get_cr = emulator_get_cr,
|
|
.set_cr = emulator_set_cr,
|
|
.cpl = emulator_get_cpl,
|
|
.get_dr = emulator_get_dr,
|
|
.set_dr = emulator_set_dr,
|
|
.set_msr = emulator_set_msr,
|
|
.get_msr = emulator_get_msr,
|
|
.read_pmc = emulator_read_pmc,
|
|
.halt = emulator_halt,
|
|
.wbinvd = emulator_wbinvd,
|
|
.fix_hypercall = emulator_fix_hypercall,
|
|
.get_fpu = emulator_get_fpu,
|
|
.put_fpu = emulator_put_fpu,
|
|
.intercept = emulator_intercept,
|
|
.get_cpuid = emulator_get_cpuid,
|
|
};
|
|
|
|
static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
|
|
{
|
|
u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
|
|
/*
|
|
* an sti; sti; sequence only disable interrupts for the first
|
|
* instruction. So, if the last instruction, be it emulated or
|
|
* not, left the system with the INT_STI flag enabled, it
|
|
* means that the last instruction is an sti. We should not
|
|
* leave the flag on in this case. The same goes for mov ss
|
|
*/
|
|
if (!(int_shadow & mask))
|
|
kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
|
|
}
|
|
|
|
static void inject_emulated_exception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
|
|
if (ctxt->exception.vector == PF_VECTOR)
|
|
kvm_propagate_fault(vcpu, &ctxt->exception);
|
|
else if (ctxt->exception.error_code_valid)
|
|
kvm_queue_exception_e(vcpu, ctxt->exception.vector,
|
|
ctxt->exception.error_code);
|
|
else
|
|
kvm_queue_exception(vcpu, ctxt->exception.vector);
|
|
}
|
|
|
|
static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
memset(&ctxt->opcode_len, 0,
|
|
(void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
|
|
|
|
ctxt->fetch.start = 0;
|
|
ctxt->fetch.end = 0;
|
|
ctxt->io_read.pos = 0;
|
|
ctxt->io_read.end = 0;
|
|
ctxt->mem_read.pos = 0;
|
|
ctxt->mem_read.end = 0;
|
|
}
|
|
|
|
static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
|
|
int cs_db, cs_l;
|
|
|
|
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
|
|
|
|
ctxt->eflags = kvm_get_rflags(vcpu);
|
|
ctxt->eip = kvm_rip_read(vcpu);
|
|
ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
|
|
(ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
|
|
(cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
|
|
cs_db ? X86EMUL_MODE_PROT32 :
|
|
X86EMUL_MODE_PROT16;
|
|
ctxt->guest_mode = is_guest_mode(vcpu);
|
|
|
|
init_decode_cache(ctxt);
|
|
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
|
|
}
|
|
|
|
int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
|
|
{
|
|
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
|
|
int ret;
|
|
|
|
init_emulate_ctxt(vcpu);
|
|
|
|
ctxt->op_bytes = 2;
|
|
ctxt->ad_bytes = 2;
|
|
ctxt->_eip = ctxt->eip + inc_eip;
|
|
ret = emulate_int_real(ctxt, irq);
|
|
|
|
if (ret != X86EMUL_CONTINUE)
|
|
return EMULATE_FAIL;
|
|
|
|
ctxt->eip = ctxt->_eip;
|
|
kvm_rip_write(vcpu, ctxt->eip);
|
|
kvm_set_rflags(vcpu, ctxt->eflags);
|
|
|
|
if (irq == NMI_VECTOR)
|
|
vcpu->arch.nmi_pending = 0;
|
|
else
|
|
vcpu->arch.interrupt.pending = false;
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
|
|
|
|
static int handle_emulation_failure(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r = EMULATE_DONE;
|
|
|
|
++vcpu->stat.insn_emulation_fail;
|
|
trace_kvm_emulate_insn_failed(vcpu);
|
|
if (!is_guest_mode(vcpu)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
|
|
vcpu->run->internal.ndata = 0;
|
|
r = EMULATE_FAIL;
|
|
}
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
|
|
return r;
|
|
}
|
|
|
|
static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
|
|
bool write_fault_to_shadow_pgtable,
|
|
int emulation_type)
|
|
{
|
|
gpa_t gpa = cr2;
|
|
pfn_t pfn;
|
|
|
|
if (emulation_type & EMULTYPE_NO_REEXECUTE)
|
|
return false;
|
|
|
|
if (!vcpu->arch.mmu.direct_map) {
|
|
/*
|
|
* Write permission should be allowed since only
|
|
* write access need to be emulated.
|
|
*/
|
|
gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
|
|
|
|
/*
|
|
* If the mapping is invalid in guest, let cpu retry
|
|
* it to generate fault.
|
|
*/
|
|
if (gpa == UNMAPPED_GVA)
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Do not retry the unhandleable instruction if it faults on the
|
|
* readonly host memory, otherwise it will goto a infinite loop:
|
|
* retry instruction -> write #PF -> emulation fail -> retry
|
|
* instruction -> ...
|
|
*/
|
|
pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
|
|
|
|
/*
|
|
* If the instruction failed on the error pfn, it can not be fixed,
|
|
* report the error to userspace.
|
|
*/
|
|
if (is_error_noslot_pfn(pfn))
|
|
return false;
|
|
|
|
kvm_release_pfn_clean(pfn);
|
|
|
|
/* The instructions are well-emulated on direct mmu. */
|
|
if (vcpu->arch.mmu.direct_map) {
|
|
unsigned int indirect_shadow_pages;
|
|
|
|
spin_lock(&vcpu->kvm->mmu_lock);
|
|
indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
|
|
spin_unlock(&vcpu->kvm->mmu_lock);
|
|
|
|
if (indirect_shadow_pages)
|
|
kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* if emulation was due to access to shadowed page table
|
|
* and it failed try to unshadow page and re-enter the
|
|
* guest to let CPU execute the instruction.
|
|
*/
|
|
kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
|
|
|
|
/*
|
|
* If the access faults on its page table, it can not
|
|
* be fixed by unprotecting shadow page and it should
|
|
* be reported to userspace.
|
|
*/
|
|
return !write_fault_to_shadow_pgtable;
|
|
}
|
|
|
|
static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
|
|
unsigned long cr2, int emulation_type)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
|
|
|
|
last_retry_eip = vcpu->arch.last_retry_eip;
|
|
last_retry_addr = vcpu->arch.last_retry_addr;
|
|
|
|
/*
|
|
* If the emulation is caused by #PF and it is non-page_table
|
|
* writing instruction, it means the VM-EXIT is caused by shadow
|
|
* page protected, we can zap the shadow page and retry this
|
|
* instruction directly.
|
|
*
|
|
* Note: if the guest uses a non-page-table modifying instruction
|
|
* on the PDE that points to the instruction, then we will unmap
|
|
* the instruction and go to an infinite loop. So, we cache the
|
|
* last retried eip and the last fault address, if we meet the eip
|
|
* and the address again, we can break out of the potential infinite
|
|
* loop.
|
|
*/
|
|
vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
|
|
|
|
if (!(emulation_type & EMULTYPE_RETRY))
|
|
return false;
|
|
|
|
if (x86_page_table_writing_insn(ctxt))
|
|
return false;
|
|
|
|
if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
|
|
return false;
|
|
|
|
vcpu->arch.last_retry_eip = ctxt->eip;
|
|
vcpu->arch.last_retry_addr = cr2;
|
|
|
|
if (!vcpu->arch.mmu.direct_map)
|
|
gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
|
|
|
|
kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
|
|
|
|
return true;
|
|
}
|
|
|
|
static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
|
|
static int complete_emulated_pio(struct kvm_vcpu *vcpu);
|
|
|
|
static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
|
|
unsigned long *db)
|
|
{
|
|
u32 dr6 = 0;
|
|
int i;
|
|
u32 enable, rwlen;
|
|
|
|
enable = dr7;
|
|
rwlen = dr7 >> 16;
|
|
for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
|
|
if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
|
|
dr6 |= (1 << i);
|
|
return dr6;
|
|
}
|
|
|
|
static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
|
|
{
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
|
|
/*
|
|
* Use the "raw" value to see if TF was passed to the processor.
|
|
* Note that the new value of the flags has not been saved yet.
|
|
*
|
|
* This is correct even for TF set by the guest, because "the
|
|
* processor will not generate this exception after the instruction
|
|
* that sets the TF flag".
|
|
*/
|
|
unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
|
|
|
|
if (unlikely(rflags & X86_EFLAGS_TF)) {
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
|
|
kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
|
|
kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
|
|
kvm_run->debug.arch.exception = DB_VECTOR;
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
*r = EMULATE_USER_EXIT;
|
|
} else {
|
|
vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
|
|
/*
|
|
* "Certain debug exceptions may clear bit 0-3. The
|
|
* remaining contents of the DR6 register are never
|
|
* cleared by the processor".
|
|
*/
|
|
vcpu->arch.dr6 &= ~15;
|
|
vcpu->arch.dr6 |= DR6_BS;
|
|
kvm_queue_exception(vcpu, DB_VECTOR);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
|
|
{
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
unsigned long eip = vcpu->arch.emulate_ctxt.eip;
|
|
u32 dr6 = 0;
|
|
|
|
if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
|
|
(vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
|
|
dr6 = kvm_vcpu_check_hw_bp(eip, 0,
|
|
vcpu->arch.guest_debug_dr7,
|
|
vcpu->arch.eff_db);
|
|
|
|
if (dr6 != 0) {
|
|
kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
|
|
kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
|
|
get_segment_base(vcpu, VCPU_SREG_CS);
|
|
|
|
kvm_run->debug.arch.exception = DB_VECTOR;
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
*r = EMULATE_USER_EXIT;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
|
|
dr6 = kvm_vcpu_check_hw_bp(eip, 0,
|
|
vcpu->arch.dr7,
|
|
vcpu->arch.db);
|
|
|
|
if (dr6 != 0) {
|
|
vcpu->arch.dr6 &= ~15;
|
|
vcpu->arch.dr6 |= dr6;
|
|
kvm_queue_exception(vcpu, DB_VECTOR);
|
|
*r = EMULATE_DONE;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int x86_emulate_instruction(struct kvm_vcpu *vcpu,
|
|
unsigned long cr2,
|
|
int emulation_type,
|
|
void *insn,
|
|
int insn_len)
|
|
{
|
|
int r;
|
|
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
|
|
bool writeback = true;
|
|
bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
|
|
|
|
/*
|
|
* Clear write_fault_to_shadow_pgtable here to ensure it is
|
|
* never reused.
|
|
*/
|
|
vcpu->arch.write_fault_to_shadow_pgtable = false;
|
|
kvm_clear_exception_queue(vcpu);
|
|
|
|
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
|
|
init_emulate_ctxt(vcpu);
|
|
|
|
/*
|
|
* We will reenter on the same instruction since
|
|
* we do not set complete_userspace_io. This does not
|
|
* handle watchpoints yet, those would be handled in
|
|
* the emulate_ops.
|
|
*/
|
|
if (kvm_vcpu_check_breakpoint(vcpu, &r))
|
|
return r;
|
|
|
|
ctxt->interruptibility = 0;
|
|
ctxt->have_exception = false;
|
|
ctxt->perm_ok = false;
|
|
|
|
ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
|
|
|
|
r = x86_decode_insn(ctxt, insn, insn_len);
|
|
|
|
trace_kvm_emulate_insn_start(vcpu);
|
|
++vcpu->stat.insn_emulation;
|
|
if (r != EMULATION_OK) {
|
|
if (emulation_type & EMULTYPE_TRAP_UD)
|
|
return EMULATE_FAIL;
|
|
if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
|
|
emulation_type))
|
|
return EMULATE_DONE;
|
|
if (emulation_type & EMULTYPE_SKIP)
|
|
return EMULATE_FAIL;
|
|
return handle_emulation_failure(vcpu);
|
|
}
|
|
}
|
|
|
|
if (emulation_type & EMULTYPE_SKIP) {
|
|
kvm_rip_write(vcpu, ctxt->_eip);
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
if (retry_instruction(ctxt, cr2, emulation_type))
|
|
return EMULATE_DONE;
|
|
|
|
/* this is needed for vmware backdoor interface to work since it
|
|
changes registers values during IO operation */
|
|
if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
|
|
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
|
|
emulator_invalidate_register_cache(ctxt);
|
|
}
|
|
|
|
restart:
|
|
r = x86_emulate_insn(ctxt);
|
|
|
|
if (r == EMULATION_INTERCEPTED)
|
|
return EMULATE_DONE;
|
|
|
|
if (r == EMULATION_FAILED) {
|
|
if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
|
|
emulation_type))
|
|
return EMULATE_DONE;
|
|
|
|
return handle_emulation_failure(vcpu);
|
|
}
|
|
|
|
if (ctxt->have_exception) {
|
|
inject_emulated_exception(vcpu);
|
|
r = EMULATE_DONE;
|
|
} else if (vcpu->arch.pio.count) {
|
|
if (!vcpu->arch.pio.in) {
|
|
/* FIXME: return into emulator if single-stepping. */
|
|
vcpu->arch.pio.count = 0;
|
|
} else {
|
|
writeback = false;
|
|
vcpu->arch.complete_userspace_io = complete_emulated_pio;
|
|
}
|
|
r = EMULATE_USER_EXIT;
|
|
} else if (vcpu->mmio_needed) {
|
|
if (!vcpu->mmio_is_write)
|
|
writeback = false;
|
|
r = EMULATE_USER_EXIT;
|
|
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
|
|
} else if (r == EMULATION_RESTART)
|
|
goto restart;
|
|
else
|
|
r = EMULATE_DONE;
|
|
|
|
if (writeback) {
|
|
toggle_interruptibility(vcpu, ctxt->interruptibility);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
|
|
kvm_rip_write(vcpu, ctxt->eip);
|
|
if (r == EMULATE_DONE)
|
|
kvm_vcpu_check_singlestep(vcpu, &r);
|
|
kvm_set_rflags(vcpu, ctxt->eflags);
|
|
} else
|
|
vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
|
|
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(x86_emulate_instruction);
|
|
|
|
int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
|
|
{
|
|
unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
|
|
int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
|
|
size, port, &val, 1);
|
|
/* do not return to emulator after return from userspace */
|
|
vcpu->arch.pio.count = 0;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
|
|
|
|
static void tsc_bad(void *info)
|
|
{
|
|
__this_cpu_write(cpu_tsc_khz, 0);
|
|
}
|
|
|
|
static void tsc_khz_changed(void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = data;
|
|
unsigned long khz = 0;
|
|
|
|
if (data)
|
|
khz = freq->new;
|
|
else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
|
|
khz = cpufreq_quick_get(raw_smp_processor_id());
|
|
if (!khz)
|
|
khz = tsc_khz;
|
|
__this_cpu_write(cpu_tsc_khz, khz);
|
|
}
|
|
|
|
static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
|
void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = data;
|
|
struct kvm *kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int i, send_ipi = 0;
|
|
|
|
/*
|
|
* We allow guests to temporarily run on slowing clocks,
|
|
* provided we notify them after, or to run on accelerating
|
|
* clocks, provided we notify them before. Thus time never
|
|
* goes backwards.
|
|
*
|
|
* However, we have a problem. We can't atomically update
|
|
* the frequency of a given CPU from this function; it is
|
|
* merely a notifier, which can be called from any CPU.
|
|
* Changing the TSC frequency at arbitrary points in time
|
|
* requires a recomputation of local variables related to
|
|
* the TSC for each VCPU. We must flag these local variables
|
|
* to be updated and be sure the update takes place with the
|
|
* new frequency before any guests proceed.
|
|
*
|
|
* Unfortunately, the combination of hotplug CPU and frequency
|
|
* change creates an intractable locking scenario; the order
|
|
* of when these callouts happen is undefined with respect to
|
|
* CPU hotplug, and they can race with each other. As such,
|
|
* merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
|
|
* undefined; you can actually have a CPU frequency change take
|
|
* place in between the computation of X and the setting of the
|
|
* variable. To protect against this problem, all updates of
|
|
* the per_cpu tsc_khz variable are done in an interrupt
|
|
* protected IPI, and all callers wishing to update the value
|
|
* must wait for a synchronous IPI to complete (which is trivial
|
|
* if the caller is on the CPU already). This establishes the
|
|
* necessary total order on variable updates.
|
|
*
|
|
* Note that because a guest time update may take place
|
|
* anytime after the setting of the VCPU's request bit, the
|
|
* correct TSC value must be set before the request. However,
|
|
* to ensure the update actually makes it to any guest which
|
|
* starts running in hardware virtualization between the set
|
|
* and the acquisition of the spinlock, we must also ping the
|
|
* CPU after setting the request bit.
|
|
*
|
|
*/
|
|
|
|
if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
|
|
return 0;
|
|
if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
|
|
return 0;
|
|
|
|
smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
|
|
|
|
spin_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list) {
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (vcpu->cpu != freq->cpu)
|
|
continue;
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
if (vcpu->cpu != smp_processor_id())
|
|
send_ipi = 1;
|
|
}
|
|
}
|
|
spin_unlock(&kvm_lock);
|
|
|
|
if (freq->old < freq->new && send_ipi) {
|
|
/*
|
|
* We upscale the frequency. Must make the guest
|
|
* doesn't see old kvmclock values while running with
|
|
* the new frequency, otherwise we risk the guest sees
|
|
* time go backwards.
|
|
*
|
|
* In case we update the frequency for another cpu
|
|
* (which might be in guest context) send an interrupt
|
|
* to kick the cpu out of guest context. Next time
|
|
* guest context is entered kvmclock will be updated,
|
|
* so the guest will not see stale values.
|
|
*/
|
|
smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block kvmclock_cpufreq_notifier_block = {
|
|
.notifier_call = kvmclock_cpufreq_notifier
|
|
};
|
|
|
|
static int kvmclock_cpu_notifier(struct notifier_block *nfb,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (unsigned long)hcpu;
|
|
|
|
switch (action) {
|
|
case CPU_ONLINE:
|
|
case CPU_DOWN_FAILED:
|
|
smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
|
|
break;
|
|
case CPU_DOWN_PREPARE:
|
|
smp_call_function_single(cpu, tsc_bad, NULL, 1);
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block kvmclock_cpu_notifier_block = {
|
|
.notifier_call = kvmclock_cpu_notifier,
|
|
.priority = -INT_MAX
|
|
};
|
|
|
|
static void kvm_timer_init(void)
|
|
{
|
|
int cpu;
|
|
|
|
max_tsc_khz = tsc_khz;
|
|
|
|
cpu_notifier_register_begin();
|
|
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
|
|
#ifdef CONFIG_CPU_FREQ
|
|
struct cpufreq_policy policy;
|
|
memset(&policy, 0, sizeof(policy));
|
|
cpu = get_cpu();
|
|
cpufreq_get_policy(&policy, cpu);
|
|
if (policy.cpuinfo.max_freq)
|
|
max_tsc_khz = policy.cpuinfo.max_freq;
|
|
put_cpu();
|
|
#endif
|
|
cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
}
|
|
pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
|
|
for_each_online_cpu(cpu)
|
|
smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
|
|
|
|
__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
|
|
cpu_notifier_register_done();
|
|
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
|
|
|
|
int kvm_is_in_guest(void)
|
|
{
|
|
return __this_cpu_read(current_vcpu) != NULL;
|
|
}
|
|
|
|
static int kvm_is_user_mode(void)
|
|
{
|
|
int user_mode = 3;
|
|
|
|
if (__this_cpu_read(current_vcpu))
|
|
user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
|
|
|
|
return user_mode != 0;
|
|
}
|
|
|
|
static unsigned long kvm_get_guest_ip(void)
|
|
{
|
|
unsigned long ip = 0;
|
|
|
|
if (__this_cpu_read(current_vcpu))
|
|
ip = kvm_rip_read(__this_cpu_read(current_vcpu));
|
|
|
|
return ip;
|
|
}
|
|
|
|
static struct perf_guest_info_callbacks kvm_guest_cbs = {
|
|
.is_in_guest = kvm_is_in_guest,
|
|
.is_user_mode = kvm_is_user_mode,
|
|
.get_guest_ip = kvm_get_guest_ip,
|
|
};
|
|
|
|
void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
__this_cpu_write(current_vcpu, vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
|
|
|
|
void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
__this_cpu_write(current_vcpu, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
|
|
|
|
static void kvm_set_mmio_spte_mask(void)
|
|
{
|
|
u64 mask;
|
|
int maxphyaddr = boot_cpu_data.x86_phys_bits;
|
|
|
|
/*
|
|
* Set the reserved bits and the present bit of an paging-structure
|
|
* entry to generate page fault with PFER.RSV = 1.
|
|
*/
|
|
/* Mask the reserved physical address bits. */
|
|
mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
|
|
|
|
/* Bit 62 is always reserved for 32bit host. */
|
|
mask |= 0x3ull << 62;
|
|
|
|
/* Set the present bit. */
|
|
mask |= 1ull;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* If reserved bit is not supported, clear the present bit to disable
|
|
* mmio page fault.
|
|
*/
|
|
if (maxphyaddr == 52)
|
|
mask &= ~1ull;
|
|
#endif
|
|
|
|
kvm_mmu_set_mmio_spte_mask(mask);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static void pvclock_gtod_update_fn(struct work_struct *work)
|
|
{
|
|
struct kvm *kvm;
|
|
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
spin_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list)
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
|
|
atomic_set(&kvm_guest_has_master_clock, 0);
|
|
spin_unlock(&kvm_lock);
|
|
}
|
|
|
|
static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
|
|
|
|
/*
|
|
* Notification about pvclock gtod data update.
|
|
*/
|
|
static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
|
|
void *priv)
|
|
{
|
|
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
|
|
struct timekeeper *tk = priv;
|
|
|
|
update_pvclock_gtod(tk);
|
|
|
|
/* disable master clock if host does not trust, or does not
|
|
* use, TSC clocksource
|
|
*/
|
|
if (gtod->clock.vclock_mode != VCLOCK_TSC &&
|
|
atomic_read(&kvm_guest_has_master_clock) != 0)
|
|
queue_work(system_long_wq, &pvclock_gtod_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block pvclock_gtod_notifier = {
|
|
.notifier_call = pvclock_gtod_notify,
|
|
};
|
|
#endif
|
|
|
|
int kvm_arch_init(void *opaque)
|
|
{
|
|
int r;
|
|
struct kvm_x86_ops *ops = opaque;
|
|
|
|
if (kvm_x86_ops) {
|
|
printk(KERN_ERR "kvm: already loaded the other module\n");
|
|
r = -EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
if (!ops->cpu_has_kvm_support()) {
|
|
printk(KERN_ERR "kvm: no hardware support\n");
|
|
r = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
if (ops->disabled_by_bios()) {
|
|
printk(KERN_ERR "kvm: disabled by bios\n");
|
|
r = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
r = -ENOMEM;
|
|
shared_msrs = alloc_percpu(struct kvm_shared_msrs);
|
|
if (!shared_msrs) {
|
|
printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
|
|
goto out;
|
|
}
|
|
|
|
r = kvm_mmu_module_init();
|
|
if (r)
|
|
goto out_free_percpu;
|
|
|
|
kvm_set_mmio_spte_mask();
|
|
|
|
kvm_x86_ops = ops;
|
|
kvm_init_msr_list();
|
|
|
|
kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
|
|
PT_DIRTY_MASK, PT64_NX_MASK, 0);
|
|
|
|
kvm_timer_init();
|
|
|
|
perf_register_guest_info_callbacks(&kvm_guest_cbs);
|
|
|
|
if (cpu_has_xsave)
|
|
host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
|
|
|
|
kvm_lapic_init();
|
|
#ifdef CONFIG_X86_64
|
|
pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
out_free_percpu:
|
|
free_percpu(shared_msrs);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
void kvm_arch_exit(void)
|
|
{
|
|
perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
|
|
cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
|
|
#ifdef CONFIG_X86_64
|
|
pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
|
|
#endif
|
|
kvm_x86_ops = NULL;
|
|
kvm_mmu_module_exit();
|
|
free_percpu(shared_msrs);
|
|
}
|
|
|
|
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
|
|
{
|
|
++vcpu->stat.halt_exits;
|
|
if (irqchip_in_kernel(vcpu->kvm)) {
|
|
vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
|
|
return 1;
|
|
} else {
|
|
vcpu->run->exit_reason = KVM_EXIT_HLT;
|
|
return 0;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_halt);
|
|
|
|
int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 param, ingpa, outgpa, ret;
|
|
uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
|
|
bool fast, longmode;
|
|
int cs_db, cs_l;
|
|
|
|
/*
|
|
* hypercall generates UD from non zero cpl and real mode
|
|
* per HYPER-V spec
|
|
*/
|
|
if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 0;
|
|
}
|
|
|
|
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
|
|
longmode = is_long_mode(vcpu) && cs_l == 1;
|
|
|
|
if (!longmode) {
|
|
param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
|
|
(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
|
|
ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
|
|
(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
|
|
outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
|
|
(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
|
|
}
|
|
#ifdef CONFIG_X86_64
|
|
else {
|
|
param = kvm_register_read(vcpu, VCPU_REGS_RCX);
|
|
ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
|
|
outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
|
|
}
|
|
#endif
|
|
|
|
code = param & 0xffff;
|
|
fast = (param >> 16) & 0x1;
|
|
rep_cnt = (param >> 32) & 0xfff;
|
|
rep_idx = (param >> 48) & 0xfff;
|
|
|
|
trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
|
|
|
|
switch (code) {
|
|
case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
|
|
kvm_vcpu_on_spin(vcpu);
|
|
break;
|
|
default:
|
|
res = HV_STATUS_INVALID_HYPERCALL_CODE;
|
|
break;
|
|
}
|
|
|
|
ret = res | (((u64)rep_done & 0xfff) << 32);
|
|
if (longmode) {
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
|
|
} else {
|
|
kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* kvm_pv_kick_cpu_op: Kick a vcpu.
|
|
*
|
|
* @apicid - apicid of vcpu to be kicked.
|
|
*/
|
|
static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
|
|
{
|
|
struct kvm_lapic_irq lapic_irq;
|
|
|
|
lapic_irq.shorthand = 0;
|
|
lapic_irq.dest_mode = 0;
|
|
lapic_irq.dest_id = apicid;
|
|
|
|
lapic_irq.delivery_mode = APIC_DM_REMRD;
|
|
kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
|
|
}
|
|
|
|
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long nr, a0, a1, a2, a3, ret;
|
|
int r = 1;
|
|
|
|
if (kvm_hv_hypercall_enabled(vcpu->kvm))
|
|
return kvm_hv_hypercall(vcpu);
|
|
|
|
nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
|
|
a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
|
|
a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
|
|
a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
|
|
a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
|
|
|
|
trace_kvm_hypercall(nr, a0, a1, a2, a3);
|
|
|
|
if (!is_long_mode(vcpu)) {
|
|
nr &= 0xFFFFFFFF;
|
|
a0 &= 0xFFFFFFFF;
|
|
a1 &= 0xFFFFFFFF;
|
|
a2 &= 0xFFFFFFFF;
|
|
a3 &= 0xFFFFFFFF;
|
|
}
|
|
|
|
if (kvm_x86_ops->get_cpl(vcpu) != 0) {
|
|
ret = -KVM_EPERM;
|
|
goto out;
|
|
}
|
|
|
|
switch (nr) {
|
|
case KVM_HC_VAPIC_POLL_IRQ:
|
|
ret = 0;
|
|
break;
|
|
case KVM_HC_KICK_CPU:
|
|
kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
ret = -KVM_ENOSYS;
|
|
break;
|
|
}
|
|
out:
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
|
|
++vcpu->stat.hypercalls;
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
|
|
|
|
static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
char instruction[3];
|
|
unsigned long rip = kvm_rip_read(vcpu);
|
|
|
|
kvm_x86_ops->patch_hypercall(vcpu, instruction);
|
|
|
|
return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
|
|
}
|
|
|
|
/*
|
|
* Check if userspace requested an interrupt window, and that the
|
|
* interrupt window is open.
|
|
*
|
|
* No need to exit to userspace if we already have an interrupt queued.
|
|
*/
|
|
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
|
|
{
|
|
return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
|
|
vcpu->run->request_interrupt_window &&
|
|
kvm_arch_interrupt_allowed(vcpu));
|
|
}
|
|
|
|
static void post_kvm_run_save(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
|
|
kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
|
|
kvm_run->cr8 = kvm_get_cr8(vcpu);
|
|
kvm_run->apic_base = kvm_get_apic_base(vcpu);
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
kvm_run->ready_for_interrupt_injection = 1;
|
|
else
|
|
kvm_run->ready_for_interrupt_injection =
|
|
kvm_arch_interrupt_allowed(vcpu) &&
|
|
!kvm_cpu_has_interrupt(vcpu) &&
|
|
!kvm_event_needs_reinjection(vcpu);
|
|
}
|
|
|
|
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
|
|
{
|
|
int max_irr, tpr;
|
|
|
|
if (!kvm_x86_ops->update_cr8_intercept)
|
|
return;
|
|
|
|
if (!vcpu->arch.apic)
|
|
return;
|
|
|
|
if (!vcpu->arch.apic->vapic_addr)
|
|
max_irr = kvm_lapic_find_highest_irr(vcpu);
|
|
else
|
|
max_irr = -1;
|
|
|
|
if (max_irr != -1)
|
|
max_irr >>= 4;
|
|
|
|
tpr = kvm_lapic_get_cr8(vcpu);
|
|
|
|
kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
|
|
}
|
|
|
|
static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
|
|
{
|
|
int r;
|
|
|
|
/* try to reinject previous events if any */
|
|
if (vcpu->arch.exception.pending) {
|
|
trace_kvm_inj_exception(vcpu->arch.exception.nr,
|
|
vcpu->arch.exception.has_error_code,
|
|
vcpu->arch.exception.error_code);
|
|
kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
|
|
vcpu->arch.exception.has_error_code,
|
|
vcpu->arch.exception.error_code,
|
|
vcpu->arch.exception.reinject);
|
|
return 0;
|
|
}
|
|
|
|
if (vcpu->arch.nmi_injected) {
|
|
kvm_x86_ops->set_nmi(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
if (vcpu->arch.interrupt.pending) {
|
|
kvm_x86_ops->set_irq(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
|
|
r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
|
|
if (r != 0)
|
|
return r;
|
|
}
|
|
|
|
/* try to inject new event if pending */
|
|
if (vcpu->arch.nmi_pending) {
|
|
if (kvm_x86_ops->nmi_allowed(vcpu)) {
|
|
--vcpu->arch.nmi_pending;
|
|
vcpu->arch.nmi_injected = true;
|
|
kvm_x86_ops->set_nmi(vcpu);
|
|
}
|
|
} else if (kvm_cpu_has_injectable_intr(vcpu)) {
|
|
if (kvm_x86_ops->interrupt_allowed(vcpu)) {
|
|
kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
|
|
false);
|
|
kvm_x86_ops->set_irq(vcpu);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void process_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned limit = 2;
|
|
|
|
/*
|
|
* x86 is limited to one NMI running, and one NMI pending after it.
|
|
* If an NMI is already in progress, limit further NMIs to just one.
|
|
* Otherwise, allow two (and we'll inject the first one immediately).
|
|
*/
|
|
if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
|
|
limit = 1;
|
|
|
|
vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
|
|
vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
}
|
|
|
|
static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 eoi_exit_bitmap[4];
|
|
u32 tmr[8];
|
|
|
|
if (!kvm_apic_hw_enabled(vcpu->arch.apic))
|
|
return;
|
|
|
|
memset(eoi_exit_bitmap, 0, 32);
|
|
memset(tmr, 0, 32);
|
|
|
|
kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
|
|
kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
|
|
kvm_apic_update_tmr(vcpu, tmr);
|
|
}
|
|
|
|
/*
|
|
* Returns 1 to let __vcpu_run() continue the guest execution loop without
|
|
* exiting to the userspace. Otherwise, the value will be returned to the
|
|
* userspace.
|
|
*/
|
|
static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
|
|
vcpu->run->request_interrupt_window;
|
|
bool req_immediate_exit = false;
|
|
|
|
if (vcpu->requests) {
|
|
if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
|
|
kvm_mmu_unload(vcpu);
|
|
if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
|
|
__kvm_migrate_timers(vcpu);
|
|
if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
|
|
kvm_gen_update_masterclock(vcpu->kvm);
|
|
if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
|
|
kvm_gen_kvmclock_update(vcpu);
|
|
if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
|
|
r = kvm_guest_time_update(vcpu);
|
|
if (unlikely(r))
|
|
goto out;
|
|
}
|
|
if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
|
|
kvm_mmu_sync_roots(vcpu);
|
|
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
|
|
kvm_x86_ops->tlb_flush(vcpu);
|
|
if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
|
|
vcpu->fpu_active = 0;
|
|
kvm_x86_ops->fpu_deactivate(vcpu);
|
|
}
|
|
if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
|
|
/* Page is swapped out. Do synthetic halt */
|
|
vcpu->arch.apf.halted = true;
|
|
r = 1;
|
|
goto out;
|
|
}
|
|
if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
|
|
record_steal_time(vcpu);
|
|
if (kvm_check_request(KVM_REQ_NMI, vcpu))
|
|
process_nmi(vcpu);
|
|
if (kvm_check_request(KVM_REQ_PMU, vcpu))
|
|
kvm_handle_pmu_event(vcpu);
|
|
if (kvm_check_request(KVM_REQ_PMI, vcpu))
|
|
kvm_deliver_pmi(vcpu);
|
|
if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
|
|
vcpu_scan_ioapic(vcpu);
|
|
}
|
|
|
|
if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
|
|
kvm_apic_accept_events(vcpu);
|
|
if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
|
|
r = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (inject_pending_event(vcpu, req_int_win) != 0)
|
|
req_immediate_exit = true;
|
|
/* enable NMI/IRQ window open exits if needed */
|
|
else if (vcpu->arch.nmi_pending)
|
|
kvm_x86_ops->enable_nmi_window(vcpu);
|
|
else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
|
|
kvm_x86_ops->enable_irq_window(vcpu);
|
|
|
|
if (kvm_lapic_enabled(vcpu)) {
|
|
/*
|
|
* Update architecture specific hints for APIC
|
|
* virtual interrupt delivery.
|
|
*/
|
|
if (kvm_x86_ops->hwapic_irr_update)
|
|
kvm_x86_ops->hwapic_irr_update(vcpu,
|
|
kvm_lapic_find_highest_irr(vcpu));
|
|
update_cr8_intercept(vcpu);
|
|
kvm_lapic_sync_to_vapic(vcpu);
|
|
}
|
|
}
|
|
|
|
r = kvm_mmu_reload(vcpu);
|
|
if (unlikely(r)) {
|
|
goto cancel_injection;
|
|
}
|
|
|
|
preempt_disable();
|
|
|
|
kvm_x86_ops->prepare_guest_switch(vcpu);
|
|
if (vcpu->fpu_active)
|
|
kvm_load_guest_fpu(vcpu);
|
|
kvm_load_guest_xcr0(vcpu);
|
|
|
|
vcpu->mode = IN_GUEST_MODE;
|
|
|
|
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
|
|
|
|
/* We should set ->mode before check ->requests,
|
|
* see the comment in make_all_cpus_request.
|
|
*/
|
|
smp_mb__after_srcu_read_unlock();
|
|
|
|
local_irq_disable();
|
|
|
|
if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
|
|
|| need_resched() || signal_pending(current)) {
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
smp_wmb();
|
|
local_irq_enable();
|
|
preempt_enable();
|
|
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = 1;
|
|
goto cancel_injection;
|
|
}
|
|
|
|
if (req_immediate_exit)
|
|
smp_send_reschedule(vcpu->cpu);
|
|
|
|
kvm_guest_enter();
|
|
|
|
if (unlikely(vcpu->arch.switch_db_regs)) {
|
|
set_debugreg(0, 7);
|
|
set_debugreg(vcpu->arch.eff_db[0], 0);
|
|
set_debugreg(vcpu->arch.eff_db[1], 1);
|
|
set_debugreg(vcpu->arch.eff_db[2], 2);
|
|
set_debugreg(vcpu->arch.eff_db[3], 3);
|
|
set_debugreg(vcpu->arch.dr6, 6);
|
|
}
|
|
|
|
trace_kvm_entry(vcpu->vcpu_id);
|
|
kvm_x86_ops->run(vcpu);
|
|
|
|
/*
|
|
* Do this here before restoring debug registers on the host. And
|
|
* since we do this before handling the vmexit, a DR access vmexit
|
|
* can (a) read the correct value of the debug registers, (b) set
|
|
* KVM_DEBUGREG_WONT_EXIT again.
|
|
*/
|
|
if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
|
|
int i;
|
|
|
|
WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
|
|
kvm_x86_ops->sync_dirty_debug_regs(vcpu);
|
|
for (i = 0; i < KVM_NR_DB_REGS; i++)
|
|
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
|
|
}
|
|
|
|
/*
|
|
* If the guest has used debug registers, at least dr7
|
|
* will be disabled while returning to the host.
|
|
* If we don't have active breakpoints in the host, we don't
|
|
* care about the messed up debug address registers. But if
|
|
* we have some of them active, restore the old state.
|
|
*/
|
|
if (hw_breakpoint_active())
|
|
hw_breakpoint_restore();
|
|
|
|
vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
|
|
native_read_tsc());
|
|
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
smp_wmb();
|
|
|
|
/* Interrupt is enabled by handle_external_intr() */
|
|
kvm_x86_ops->handle_external_intr(vcpu);
|
|
|
|
++vcpu->stat.exits;
|
|
|
|
/*
|
|
* We must have an instruction between local_irq_enable() and
|
|
* kvm_guest_exit(), so the timer interrupt isn't delayed by
|
|
* the interrupt shadow. The stat.exits increment will do nicely.
|
|
* But we need to prevent reordering, hence this barrier():
|
|
*/
|
|
barrier();
|
|
|
|
kvm_guest_exit();
|
|
|
|
preempt_enable();
|
|
|
|
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
|
|
/*
|
|
* Profile KVM exit RIPs:
|
|
*/
|
|
if (unlikely(prof_on == KVM_PROFILING)) {
|
|
unsigned long rip = kvm_rip_read(vcpu);
|
|
profile_hit(KVM_PROFILING, (void *)rip);
|
|
}
|
|
|
|
if (unlikely(vcpu->arch.tsc_always_catchup))
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
|
|
if (vcpu->arch.apic_attention)
|
|
kvm_lapic_sync_from_vapic(vcpu);
|
|
|
|
r = kvm_x86_ops->handle_exit(vcpu);
|
|
return r;
|
|
|
|
cancel_injection:
|
|
kvm_x86_ops->cancel_injection(vcpu);
|
|
if (unlikely(vcpu->arch.apic_attention))
|
|
kvm_lapic_sync_from_vapic(vcpu);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
|
|
static int __vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
|
|
r = 1;
|
|
while (r > 0) {
|
|
if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
|
|
!vcpu->arch.apf.halted)
|
|
r = vcpu_enter_guest(vcpu);
|
|
else {
|
|
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
|
|
kvm_vcpu_block(vcpu);
|
|
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
|
|
kvm_apic_accept_events(vcpu);
|
|
switch(vcpu->arch.mp_state) {
|
|
case KVM_MP_STATE_HALTED:
|
|
vcpu->arch.pv.pv_unhalted = false;
|
|
vcpu->arch.mp_state =
|
|
KVM_MP_STATE_RUNNABLE;
|
|
case KVM_MP_STATE_RUNNABLE:
|
|
vcpu->arch.apf.halted = false;
|
|
break;
|
|
case KVM_MP_STATE_INIT_RECEIVED:
|
|
break;
|
|
default:
|
|
r = -EINTR;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (r <= 0)
|
|
break;
|
|
|
|
clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
|
|
if (kvm_cpu_has_pending_timer(vcpu))
|
|
kvm_inject_pending_timer_irqs(vcpu);
|
|
|
|
if (dm_request_for_irq_injection(vcpu)) {
|
|
r = -EINTR;
|
|
vcpu->run->exit_reason = KVM_EXIT_INTR;
|
|
++vcpu->stat.request_irq_exits;
|
|
}
|
|
|
|
kvm_check_async_pf_completion(vcpu);
|
|
|
|
if (signal_pending(current)) {
|
|
r = -EINTR;
|
|
vcpu->run->exit_reason = KVM_EXIT_INTR;
|
|
++vcpu->stat.signal_exits;
|
|
}
|
|
if (need_resched()) {
|
|
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
|
|
cond_resched();
|
|
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
}
|
|
}
|
|
|
|
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
|
|
if (r != EMULATE_DONE)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int complete_emulated_pio(struct kvm_vcpu *vcpu)
|
|
{
|
|
BUG_ON(!vcpu->arch.pio.count);
|
|
|
|
return complete_emulated_io(vcpu);
|
|
}
|
|
|
|
/*
|
|
* Implements the following, as a state machine:
|
|
*
|
|
* read:
|
|
* for each fragment
|
|
* for each mmio piece in the fragment
|
|
* write gpa, len
|
|
* exit
|
|
* copy data
|
|
* execute insn
|
|
*
|
|
* write:
|
|
* for each fragment
|
|
* for each mmio piece in the fragment
|
|
* write gpa, len
|
|
* copy data
|
|
* exit
|
|
*/
|
|
static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
struct kvm_mmio_fragment *frag;
|
|
unsigned len;
|
|
|
|
BUG_ON(!vcpu->mmio_needed);
|
|
|
|
/* Complete previous fragment */
|
|
frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
|
|
len = min(8u, frag->len);
|
|
if (!vcpu->mmio_is_write)
|
|
memcpy(frag->data, run->mmio.data, len);
|
|
|
|
if (frag->len <= 8) {
|
|
/* Switch to the next fragment. */
|
|
frag++;
|
|
vcpu->mmio_cur_fragment++;
|
|
} else {
|
|
/* Go forward to the next mmio piece. */
|
|
frag->data += len;
|
|
frag->gpa += len;
|
|
frag->len -= len;
|
|
}
|
|
|
|
if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
|
|
vcpu->mmio_needed = 0;
|
|
|
|
/* FIXME: return into emulator if single-stepping. */
|
|
if (vcpu->mmio_is_write)
|
|
return 1;
|
|
vcpu->mmio_read_completed = 1;
|
|
return complete_emulated_io(vcpu);
|
|
}
|
|
|
|
run->exit_reason = KVM_EXIT_MMIO;
|
|
run->mmio.phys_addr = frag->gpa;
|
|
if (vcpu->mmio_is_write)
|
|
memcpy(run->mmio.data, frag->data, min(8u, frag->len));
|
|
run->mmio.len = min(8u, frag->len);
|
|
run->mmio.is_write = vcpu->mmio_is_write;
|
|
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
int r;
|
|
sigset_t sigsaved;
|
|
|
|
if (!tsk_used_math(current) && init_fpu(current))
|
|
return -ENOMEM;
|
|
|
|
if (vcpu->sigset_active)
|
|
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
|
|
|
|
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
|
|
kvm_vcpu_block(vcpu);
|
|
kvm_apic_accept_events(vcpu);
|
|
clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
|
|
r = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
/* re-sync apic's tpr */
|
|
if (!irqchip_in_kernel(vcpu->kvm)) {
|
|
if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (unlikely(vcpu->arch.complete_userspace_io)) {
|
|
int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
|
|
vcpu->arch.complete_userspace_io = NULL;
|
|
r = cui(vcpu);
|
|
if (r <= 0)
|
|
goto out;
|
|
} else
|
|
WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
|
|
|
|
r = __vcpu_run(vcpu);
|
|
|
|
out:
|
|
post_kvm_run_save(vcpu);
|
|
if (vcpu->sigset_active)
|
|
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
{
|
|
if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
|
|
/*
|
|
* We are here if userspace calls get_regs() in the middle of
|
|
* instruction emulation. Registers state needs to be copied
|
|
* back from emulation context to vcpu. Userspace shouldn't do
|
|
* that usually, but some bad designed PV devices (vmware
|
|
* backdoor interface) need this to work
|
|
*/
|
|
emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
|
|
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
|
|
}
|
|
regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
|
|
regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
|
|
regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
|
|
regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
|
|
regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
|
|
regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
|
|
regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
|
|
regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
|
|
#ifdef CONFIG_X86_64
|
|
regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
|
|
regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
|
|
regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
|
|
regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
|
|
regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
|
|
regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
|
|
regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
|
|
regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
|
|
#endif
|
|
|
|
regs->rip = kvm_rip_read(vcpu);
|
|
regs->rflags = kvm_get_rflags(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
{
|
|
vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
|
|
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
|
|
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
|
|
kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
|
|
kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
|
|
kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
|
|
kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
|
|
#ifdef CONFIG_X86_64
|
|
kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
|
|
kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
|
|
kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
|
|
kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
|
|
kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
|
|
kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
|
|
kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
|
|
kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
|
|
#endif
|
|
|
|
kvm_rip_write(vcpu, regs->rip);
|
|
kvm_set_rflags(vcpu, regs->rflags);
|
|
|
|
vcpu->arch.exception.pending = false;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
|
|
{
|
|
struct kvm_segment cs;
|
|
|
|
kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
*db = cs.db;
|
|
*l = cs.l;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
|
|
|
|
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
struct desc_ptr dt;
|
|
|
|
kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
|
|
kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
|
|
kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
|
|
kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
|
|
kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
|
|
kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
|
|
|
|
kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
|
|
kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
|
|
|
|
kvm_x86_ops->get_idt(vcpu, &dt);
|
|
sregs->idt.limit = dt.size;
|
|
sregs->idt.base = dt.address;
|
|
kvm_x86_ops->get_gdt(vcpu, &dt);
|
|
sregs->gdt.limit = dt.size;
|
|
sregs->gdt.base = dt.address;
|
|
|
|
sregs->cr0 = kvm_read_cr0(vcpu);
|
|
sregs->cr2 = vcpu->arch.cr2;
|
|
sregs->cr3 = kvm_read_cr3(vcpu);
|
|
sregs->cr4 = kvm_read_cr4(vcpu);
|
|
sregs->cr8 = kvm_get_cr8(vcpu);
|
|
sregs->efer = vcpu->arch.efer;
|
|
sregs->apic_base = kvm_get_apic_base(vcpu);
|
|
|
|
memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
|
|
|
|
if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
|
|
set_bit(vcpu->arch.interrupt.nr,
|
|
(unsigned long *)sregs->interrupt_bitmap);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
kvm_apic_accept_events(vcpu);
|
|
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
|
|
vcpu->arch.pv.pv_unhalted)
|
|
mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
|
|
else
|
|
mp_state->mp_state = vcpu->arch.mp_state;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
if (!kvm_vcpu_has_lapic(vcpu) &&
|
|
mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
|
|
return -EINVAL;
|
|
|
|
if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
|
|
vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
|
|
set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
|
|
} else
|
|
vcpu->arch.mp_state = mp_state->mp_state;
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
|
|
int reason, bool has_error_code, u32 error_code)
|
|
{
|
|
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
|
|
int ret;
|
|
|
|
init_emulate_ctxt(vcpu);
|
|
|
|
ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
|
|
has_error_code, error_code);
|
|
|
|
if (ret)
|
|
return EMULATE_FAIL;
|
|
|
|
kvm_rip_write(vcpu, ctxt->eip);
|
|
kvm_set_rflags(vcpu, ctxt->eflags);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
return EMULATE_DONE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_task_switch);
|
|
|
|
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
struct msr_data apic_base_msr;
|
|
int mmu_reset_needed = 0;
|
|
int pending_vec, max_bits, idx;
|
|
struct desc_ptr dt;
|
|
|
|
if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
|
|
return -EINVAL;
|
|
|
|
dt.size = sregs->idt.limit;
|
|
dt.address = sregs->idt.base;
|
|
kvm_x86_ops->set_idt(vcpu, &dt);
|
|
dt.size = sregs->gdt.limit;
|
|
dt.address = sregs->gdt.base;
|
|
kvm_x86_ops->set_gdt(vcpu, &dt);
|
|
|
|
vcpu->arch.cr2 = sregs->cr2;
|
|
mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
|
|
vcpu->arch.cr3 = sregs->cr3;
|
|
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
|
|
|
|
kvm_set_cr8(vcpu, sregs->cr8);
|
|
|
|
mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
|
|
kvm_x86_ops->set_efer(vcpu, sregs->efer);
|
|
apic_base_msr.data = sregs->apic_base;
|
|
apic_base_msr.host_initiated = true;
|
|
kvm_set_apic_base(vcpu, &apic_base_msr);
|
|
|
|
mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
|
|
kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
|
|
vcpu->arch.cr0 = sregs->cr0;
|
|
|
|
mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
|
|
kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
|
|
if (sregs->cr4 & X86_CR4_OSXSAVE)
|
|
kvm_update_cpuid(vcpu);
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
if (!is_long_mode(vcpu) && is_pae(vcpu)) {
|
|
load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
|
|
mmu_reset_needed = 1;
|
|
}
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
|
|
if (mmu_reset_needed)
|
|
kvm_mmu_reset_context(vcpu);
|
|
|
|
max_bits = KVM_NR_INTERRUPTS;
|
|
pending_vec = find_first_bit(
|
|
(const unsigned long *)sregs->interrupt_bitmap, max_bits);
|
|
if (pending_vec < max_bits) {
|
|
kvm_queue_interrupt(vcpu, pending_vec, false);
|
|
pr_debug("Set back pending irq %d\n", pending_vec);
|
|
}
|
|
|
|
kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
|
|
kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
|
|
kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
|
|
kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
|
|
kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
|
|
kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
|
|
|
|
kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
|
|
kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
|
|
|
|
update_cr8_intercept(vcpu);
|
|
|
|
/* Older userspace won't unhalt the vcpu on reset. */
|
|
if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
|
|
sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
|
|
!is_protmode(vcpu))
|
|
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
|
|
struct kvm_guest_debug *dbg)
|
|
{
|
|
unsigned long rflags;
|
|
int i, r;
|
|
|
|
if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
|
|
r = -EBUSY;
|
|
if (vcpu->arch.exception.pending)
|
|
goto out;
|
|
if (dbg->control & KVM_GUESTDBG_INJECT_DB)
|
|
kvm_queue_exception(vcpu, DB_VECTOR);
|
|
else
|
|
kvm_queue_exception(vcpu, BP_VECTOR);
|
|
}
|
|
|
|
/*
|
|
* Read rflags as long as potentially injected trace flags are still
|
|
* filtered out.
|
|
*/
|
|
rflags = kvm_get_rflags(vcpu);
|
|
|
|
vcpu->guest_debug = dbg->control;
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
|
|
vcpu->guest_debug = 0;
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
|
|
for (i = 0; i < KVM_NR_DB_REGS; ++i)
|
|
vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
|
|
vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
|
|
} else {
|
|
for (i = 0; i < KVM_NR_DB_REGS; i++)
|
|
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
|
|
}
|
|
kvm_update_dr7(vcpu);
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
|
|
vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
|
|
get_segment_base(vcpu, VCPU_SREG_CS);
|
|
|
|
/*
|
|
* Trigger an rflags update that will inject or remove the trace
|
|
* flags.
|
|
*/
|
|
kvm_set_rflags(vcpu, rflags);
|
|
|
|
kvm_x86_ops->update_db_bp_intercept(vcpu);
|
|
|
|
r = 0;
|
|
|
|
out:
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Translate a guest virtual address to a guest physical address.
|
|
*/
|
|
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
|
|
struct kvm_translation *tr)
|
|
{
|
|
unsigned long vaddr = tr->linear_address;
|
|
gpa_t gpa;
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
tr->physical_address = gpa;
|
|
tr->valid = gpa != UNMAPPED_GVA;
|
|
tr->writeable = 1;
|
|
tr->usermode = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
{
|
|
struct i387_fxsave_struct *fxsave =
|
|
&vcpu->arch.guest_fpu.state->fxsave;
|
|
|
|
memcpy(fpu->fpr, fxsave->st_space, 128);
|
|
fpu->fcw = fxsave->cwd;
|
|
fpu->fsw = fxsave->swd;
|
|
fpu->ftwx = fxsave->twd;
|
|
fpu->last_opcode = fxsave->fop;
|
|
fpu->last_ip = fxsave->rip;
|
|
fpu->last_dp = fxsave->rdp;
|
|
memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
{
|
|
struct i387_fxsave_struct *fxsave =
|
|
&vcpu->arch.guest_fpu.state->fxsave;
|
|
|
|
memcpy(fxsave->st_space, fpu->fpr, 128);
|
|
fxsave->cwd = fpu->fcw;
|
|
fxsave->swd = fpu->fsw;
|
|
fxsave->twd = fpu->ftwx;
|
|
fxsave->fop = fpu->last_opcode;
|
|
fxsave->rip = fpu->last_ip;
|
|
fxsave->rdp = fpu->last_dp;
|
|
memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int fx_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
int err;
|
|
|
|
err = fpu_alloc(&vcpu->arch.guest_fpu);
|
|
if (err)
|
|
return err;
|
|
|
|
fpu_finit(&vcpu->arch.guest_fpu);
|
|
|
|
/*
|
|
* Ensure guest xcr0 is valid for loading
|
|
*/
|
|
vcpu->arch.xcr0 = XSTATE_FP;
|
|
|
|
vcpu->arch.cr0 |= X86_CR0_ET;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fx_init);
|
|
|
|
static void fx_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
fpu_free(&vcpu->arch.guest_fpu);
|
|
}
|
|
|
|
void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->guest_fpu_loaded)
|
|
return;
|
|
|
|
/*
|
|
* Restore all possible states in the guest,
|
|
* and assume host would use all available bits.
|
|
* Guest xcr0 would be loaded later.
|
|
*/
|
|
kvm_put_guest_xcr0(vcpu);
|
|
vcpu->guest_fpu_loaded = 1;
|
|
__kernel_fpu_begin();
|
|
fpu_restore_checking(&vcpu->arch.guest_fpu);
|
|
trace_kvm_fpu(1);
|
|
}
|
|
|
|
void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_put_guest_xcr0(vcpu);
|
|
|
|
if (!vcpu->guest_fpu_loaded)
|
|
return;
|
|
|
|
vcpu->guest_fpu_loaded = 0;
|
|
fpu_save_init(&vcpu->arch.guest_fpu);
|
|
__kernel_fpu_end();
|
|
++vcpu->stat.fpu_reload;
|
|
kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
|
|
trace_kvm_fpu(0);
|
|
}
|
|
|
|
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvmclock_reset(vcpu);
|
|
|
|
free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
|
|
fx_free(vcpu);
|
|
kvm_x86_ops->vcpu_free(vcpu);
|
|
}
|
|
|
|
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
|
|
unsigned int id)
|
|
{
|
|
if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
|
|
printk_once(KERN_WARNING
|
|
"kvm: SMP vm created on host with unstable TSC; "
|
|
"guest TSC will not be reliable\n");
|
|
return kvm_x86_ops->vcpu_create(kvm, id);
|
|
}
|
|
|
|
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
|
|
vcpu->arch.mtrr_state.have_fixed = 1;
|
|
r = vcpu_load(vcpu);
|
|
if (r)
|
|
return r;
|
|
kvm_vcpu_reset(vcpu);
|
|
kvm_mmu_setup(vcpu);
|
|
vcpu_put(vcpu);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
struct msr_data msr;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
r = vcpu_load(vcpu);
|
|
if (r)
|
|
return r;
|
|
msr.data = 0x0;
|
|
msr.index = MSR_IA32_TSC;
|
|
msr.host_initiated = true;
|
|
kvm_write_tsc(vcpu, &msr);
|
|
vcpu_put(vcpu);
|
|
|
|
schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
|
|
KVMCLOCK_SYNC_PERIOD);
|
|
|
|
return r;
|
|
}
|
|
|
|
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
vcpu->arch.apf.msr_val = 0;
|
|
|
|
r = vcpu_load(vcpu);
|
|
BUG_ON(r);
|
|
kvm_mmu_unload(vcpu);
|
|
vcpu_put(vcpu);
|
|
|
|
fx_free(vcpu);
|
|
kvm_x86_ops->vcpu_free(vcpu);
|
|
}
|
|
|
|
void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
atomic_set(&vcpu->arch.nmi_queued, 0);
|
|
vcpu->arch.nmi_pending = 0;
|
|
vcpu->arch.nmi_injected = false;
|
|
|
|
memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
|
|
vcpu->arch.dr6 = DR6_FIXED_1;
|
|
kvm_update_dr6(vcpu);
|
|
vcpu->arch.dr7 = DR7_FIXED_1;
|
|
kvm_update_dr7(vcpu);
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
vcpu->arch.apf.msr_val = 0;
|
|
vcpu->arch.st.msr_val = 0;
|
|
|
|
kvmclock_reset(vcpu);
|
|
|
|
kvm_clear_async_pf_completion_queue(vcpu);
|
|
kvm_async_pf_hash_reset(vcpu);
|
|
vcpu->arch.apf.halted = false;
|
|
|
|
kvm_pmu_reset(vcpu);
|
|
|
|
memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
|
|
vcpu->arch.regs_avail = ~0;
|
|
vcpu->arch.regs_dirty = ~0;
|
|
|
|
kvm_x86_ops->vcpu_reset(vcpu);
|
|
}
|
|
|
|
void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
|
|
{
|
|
struct kvm_segment cs;
|
|
|
|
kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
cs.selector = vector << 8;
|
|
cs.base = vector << 12;
|
|
kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
kvm_rip_write(vcpu, 0);
|
|
}
|
|
|
|
int kvm_arch_hardware_enable(void *garbage)
|
|
{
|
|
struct kvm *kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
int ret;
|
|
u64 local_tsc;
|
|
u64 max_tsc = 0;
|
|
bool stable, backwards_tsc = false;
|
|
|
|
kvm_shared_msr_cpu_online();
|
|
ret = kvm_x86_ops->hardware_enable(garbage);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
local_tsc = native_read_tsc();
|
|
stable = !check_tsc_unstable();
|
|
list_for_each_entry(kvm, &vm_list, vm_list) {
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (!stable && vcpu->cpu == smp_processor_id())
|
|
set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
|
|
if (stable && vcpu->arch.last_host_tsc > local_tsc) {
|
|
backwards_tsc = true;
|
|
if (vcpu->arch.last_host_tsc > max_tsc)
|
|
max_tsc = vcpu->arch.last_host_tsc;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sometimes, even reliable TSCs go backwards. This happens on
|
|
* platforms that reset TSC during suspend or hibernate actions, but
|
|
* maintain synchronization. We must compensate. Fortunately, we can
|
|
* detect that condition here, which happens early in CPU bringup,
|
|
* before any KVM threads can be running. Unfortunately, we can't
|
|
* bring the TSCs fully up to date with real time, as we aren't yet far
|
|
* enough into CPU bringup that we know how much real time has actually
|
|
* elapsed; our helper function, get_kernel_ns() will be using boot
|
|
* variables that haven't been updated yet.
|
|
*
|
|
* So we simply find the maximum observed TSC above, then record the
|
|
* adjustment to TSC in each VCPU. When the VCPU later gets loaded,
|
|
* the adjustment will be applied. Note that we accumulate
|
|
* adjustments, in case multiple suspend cycles happen before some VCPU
|
|
* gets a chance to run again. In the event that no KVM threads get a
|
|
* chance to run, we will miss the entire elapsed period, as we'll have
|
|
* reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
|
|
* loose cycle time. This isn't too big a deal, since the loss will be
|
|
* uniform across all VCPUs (not to mention the scenario is extremely
|
|
* unlikely). It is possible that a second hibernate recovery happens
|
|
* much faster than a first, causing the observed TSC here to be
|
|
* smaller; this would require additional padding adjustment, which is
|
|
* why we set last_host_tsc to the local tsc observed here.
|
|
*
|
|
* N.B. - this code below runs only on platforms with reliable TSC,
|
|
* as that is the only way backwards_tsc is set above. Also note
|
|
* that this runs for ALL vcpus, which is not a bug; all VCPUs should
|
|
* have the same delta_cyc adjustment applied if backwards_tsc
|
|
* is detected. Note further, this adjustment is only done once,
|
|
* as we reset last_host_tsc on all VCPUs to stop this from being
|
|
* called multiple times (one for each physical CPU bringup).
|
|
*
|
|
* Platforms with unreliable TSCs don't have to deal with this, they
|
|
* will be compensated by the logic in vcpu_load, which sets the TSC to
|
|
* catchup mode. This will catchup all VCPUs to real time, but cannot
|
|
* guarantee that they stay in perfect synchronization.
|
|
*/
|
|
if (backwards_tsc) {
|
|
u64 delta_cyc = max_tsc - local_tsc;
|
|
backwards_tsc_observed = true;
|
|
list_for_each_entry(kvm, &vm_list, vm_list) {
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
vcpu->arch.tsc_offset_adjustment += delta_cyc;
|
|
vcpu->arch.last_host_tsc = local_tsc;
|
|
set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
|
|
&vcpu->requests);
|
|
}
|
|
|
|
/*
|
|
* We have to disable TSC offset matching.. if you were
|
|
* booting a VM while issuing an S4 host suspend....
|
|
* you may have some problem. Solving this issue is
|
|
* left as an exercise to the reader.
|
|
*/
|
|
kvm->arch.last_tsc_nsec = 0;
|
|
kvm->arch.last_tsc_write = 0;
|
|
}
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_hardware_disable(void *garbage)
|
|
{
|
|
kvm_x86_ops->hardware_disable(garbage);
|
|
drop_user_return_notifiers(garbage);
|
|
}
|
|
|
|
int kvm_arch_hardware_setup(void)
|
|
{
|
|
return kvm_x86_ops->hardware_setup();
|
|
}
|
|
|
|
void kvm_arch_hardware_unsetup(void)
|
|
{
|
|
kvm_x86_ops->hardware_unsetup();
|
|
}
|
|
|
|
void kvm_arch_check_processor_compat(void *rtn)
|
|
{
|
|
kvm_x86_ops->check_processor_compatibility(rtn);
|
|
}
|
|
|
|
bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
|
|
{
|
|
return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
|
|
}
|
|
|
|
struct static_key kvm_no_apic_vcpu __read_mostly;
|
|
|
|
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct page *page;
|
|
struct kvm *kvm;
|
|
int r;
|
|
|
|
BUG_ON(vcpu->kvm == NULL);
|
|
kvm = vcpu->kvm;
|
|
|
|
vcpu->arch.pv.pv_unhalted = false;
|
|
vcpu->arch.emulate_ctxt.ops = &emulate_ops;
|
|
if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
|
|
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
|
|
else
|
|
vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
|
|
|
|
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
if (!page) {
|
|
r = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
vcpu->arch.pio_data = page_address(page);
|
|
|
|
kvm_set_tsc_khz(vcpu, max_tsc_khz);
|
|
|
|
r = kvm_mmu_create(vcpu);
|
|
if (r < 0)
|
|
goto fail_free_pio_data;
|
|
|
|
if (irqchip_in_kernel(kvm)) {
|
|
r = kvm_create_lapic(vcpu);
|
|
if (r < 0)
|
|
goto fail_mmu_destroy;
|
|
} else
|
|
static_key_slow_inc(&kvm_no_apic_vcpu);
|
|
|
|
vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
|
|
GFP_KERNEL);
|
|
if (!vcpu->arch.mce_banks) {
|
|
r = -ENOMEM;
|
|
goto fail_free_lapic;
|
|
}
|
|
vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
|
|
|
|
if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
|
|
r = -ENOMEM;
|
|
goto fail_free_mce_banks;
|
|
}
|
|
|
|
r = fx_init(vcpu);
|
|
if (r)
|
|
goto fail_free_wbinvd_dirty_mask;
|
|
|
|
vcpu->arch.ia32_tsc_adjust_msr = 0x0;
|
|
vcpu->arch.pv_time_enabled = false;
|
|
|
|
vcpu->arch.guest_supported_xcr0 = 0;
|
|
vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
|
|
|
|
kvm_async_pf_hash_reset(vcpu);
|
|
kvm_pmu_init(vcpu);
|
|
|
|
return 0;
|
|
fail_free_wbinvd_dirty_mask:
|
|
free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
|
|
fail_free_mce_banks:
|
|
kfree(vcpu->arch.mce_banks);
|
|
fail_free_lapic:
|
|
kvm_free_lapic(vcpu);
|
|
fail_mmu_destroy:
|
|
kvm_mmu_destroy(vcpu);
|
|
fail_free_pio_data:
|
|
free_page((unsigned long)vcpu->arch.pio_data);
|
|
fail:
|
|
return r;
|
|
}
|
|
|
|
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
|
|
{
|
|
int idx;
|
|
|
|
kvm_pmu_destroy(vcpu);
|
|
kfree(vcpu->arch.mce_banks);
|
|
kvm_free_lapic(vcpu);
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
kvm_mmu_destroy(vcpu);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
free_page((unsigned long)vcpu->arch.pio_data);
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
static_key_slow_dec(&kvm_no_apic_vcpu);
|
|
}
|
|
|
|
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
|
|
{
|
|
if (type)
|
|
return -EINVAL;
|
|
|
|
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
|
|
INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
|
|
INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
|
|
atomic_set(&kvm->arch.noncoherent_dma_count, 0);
|
|
|
|
/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
|
|
set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
|
|
/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
|
|
set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
|
|
&kvm->arch.irq_sources_bitmap);
|
|
|
|
raw_spin_lock_init(&kvm->arch.tsc_write_lock);
|
|
mutex_init(&kvm->arch.apic_map_lock);
|
|
spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
|
|
|
|
pvclock_update_vm_gtod_copy(kvm);
|
|
|
|
INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
|
|
INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
r = vcpu_load(vcpu);
|
|
BUG_ON(r);
|
|
kvm_mmu_unload(vcpu);
|
|
vcpu_put(vcpu);
|
|
}
|
|
|
|
static void kvm_free_vcpus(struct kvm *kvm)
|
|
{
|
|
unsigned int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
/*
|
|
* Unpin any mmu pages first.
|
|
*/
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
kvm_clear_async_pf_completion_queue(vcpu);
|
|
kvm_unload_vcpu_mmu(vcpu);
|
|
}
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
kvm_arch_vcpu_free(vcpu);
|
|
|
|
mutex_lock(&kvm->lock);
|
|
for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
|
|
kvm->vcpus[i] = NULL;
|
|
|
|
atomic_set(&kvm->online_vcpus, 0);
|
|
mutex_unlock(&kvm->lock);
|
|
}
|
|
|
|
void kvm_arch_sync_events(struct kvm *kvm)
|
|
{
|
|
cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
|
|
cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
|
|
kvm_free_all_assigned_devices(kvm);
|
|
kvm_free_pit(kvm);
|
|
}
|
|
|
|
void kvm_arch_destroy_vm(struct kvm *kvm)
|
|
{
|
|
if (current->mm == kvm->mm) {
|
|
/*
|
|
* Free memory regions allocated on behalf of userspace,
|
|
* unless the the memory map has changed due to process exit
|
|
* or fd copying.
|
|
*/
|
|
struct kvm_userspace_memory_region mem;
|
|
memset(&mem, 0, sizeof(mem));
|
|
mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
|
|
kvm_set_memory_region(kvm, &mem);
|
|
|
|
mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
|
|
kvm_set_memory_region(kvm, &mem);
|
|
|
|
mem.slot = TSS_PRIVATE_MEMSLOT;
|
|
kvm_set_memory_region(kvm, &mem);
|
|
}
|
|
kvm_iommu_unmap_guest(kvm);
|
|
kfree(kvm->arch.vpic);
|
|
kfree(kvm->arch.vioapic);
|
|
kvm_free_vcpus(kvm);
|
|
if (kvm->arch.apic_access_page)
|
|
put_page(kvm->arch.apic_access_page);
|
|
if (kvm->arch.ept_identity_pagetable)
|
|
put_page(kvm->arch.ept_identity_pagetable);
|
|
kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
|
|
}
|
|
|
|
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
|
|
struct kvm_memory_slot *dont)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
|
|
if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
|
|
kvm_kvfree(free->arch.rmap[i]);
|
|
free->arch.rmap[i] = NULL;
|
|
}
|
|
if (i == 0)
|
|
continue;
|
|
|
|
if (!dont || free->arch.lpage_info[i - 1] !=
|
|
dont->arch.lpage_info[i - 1]) {
|
|
kvm_kvfree(free->arch.lpage_info[i - 1]);
|
|
free->arch.lpage_info[i - 1] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
|
|
unsigned long npages)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
|
|
unsigned long ugfn;
|
|
int lpages;
|
|
int level = i + 1;
|
|
|
|
lpages = gfn_to_index(slot->base_gfn + npages - 1,
|
|
slot->base_gfn, level) + 1;
|
|
|
|
slot->arch.rmap[i] =
|
|
kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
|
|
if (!slot->arch.rmap[i])
|
|
goto out_free;
|
|
if (i == 0)
|
|
continue;
|
|
|
|
slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
|
|
sizeof(*slot->arch.lpage_info[i - 1]));
|
|
if (!slot->arch.lpage_info[i - 1])
|
|
goto out_free;
|
|
|
|
if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
|
|
slot->arch.lpage_info[i - 1][0].write_count = 1;
|
|
if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
|
|
slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
|
|
ugfn = slot->userspace_addr >> PAGE_SHIFT;
|
|
/*
|
|
* If the gfn and userspace address are not aligned wrt each
|
|
* other, or if explicitly asked to, disable large page
|
|
* support for this slot
|
|
*/
|
|
if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
|
|
!kvm_largepages_enabled()) {
|
|
unsigned long j;
|
|
|
|
for (j = 0; j < lpages; ++j)
|
|
slot->arch.lpage_info[i - 1][j].write_count = 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
|
|
kvm_kvfree(slot->arch.rmap[i]);
|
|
slot->arch.rmap[i] = NULL;
|
|
if (i == 0)
|
|
continue;
|
|
|
|
kvm_kvfree(slot->arch.lpage_info[i - 1]);
|
|
slot->arch.lpage_info[i - 1] = NULL;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void kvm_arch_memslots_updated(struct kvm *kvm)
|
|
{
|
|
/*
|
|
* memslots->generation has been incremented.
|
|
* mmio generation may have reached its maximum value.
|
|
*/
|
|
kvm_mmu_invalidate_mmio_sptes(kvm);
|
|
}
|
|
|
|
int kvm_arch_prepare_memory_region(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot,
|
|
struct kvm_userspace_memory_region *mem,
|
|
enum kvm_mr_change change)
|
|
{
|
|
/*
|
|
* Only private memory slots need to be mapped here since
|
|
* KVM_SET_MEMORY_REGION ioctl is no longer supported.
|
|
*/
|
|
if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
|
|
unsigned long userspace_addr;
|
|
|
|
/*
|
|
* MAP_SHARED to prevent internal slot pages from being moved
|
|
* by fork()/COW.
|
|
*/
|
|
userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_ANONYMOUS, 0);
|
|
|
|
if (IS_ERR((void *)userspace_addr))
|
|
return PTR_ERR((void *)userspace_addr);
|
|
|
|
memslot->userspace_addr = userspace_addr;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_commit_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem,
|
|
const struct kvm_memory_slot *old,
|
|
enum kvm_mr_change change)
|
|
{
|
|
|
|
int nr_mmu_pages = 0;
|
|
|
|
if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
|
|
int ret;
|
|
|
|
ret = vm_munmap(old->userspace_addr,
|
|
old->npages * PAGE_SIZE);
|
|
if (ret < 0)
|
|
printk(KERN_WARNING
|
|
"kvm_vm_ioctl_set_memory_region: "
|
|
"failed to munmap memory\n");
|
|
}
|
|
|
|
if (!kvm->arch.n_requested_mmu_pages)
|
|
nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
|
|
|
|
if (nr_mmu_pages)
|
|
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
|
|
/*
|
|
* Write protect all pages for dirty logging.
|
|
*
|
|
* All the sptes including the large sptes which point to this
|
|
* slot are set to readonly. We can not create any new large
|
|
* spte on this slot until the end of the logging.
|
|
*
|
|
* See the comments in fast_page_fault().
|
|
*/
|
|
if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
|
|
kvm_mmu_slot_remove_write_access(kvm, mem->slot);
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_all(struct kvm *kvm)
|
|
{
|
|
kvm_mmu_invalidate_zap_all_pages(kvm);
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot)
|
|
{
|
|
kvm_mmu_invalidate_zap_all_pages(kvm);
|
|
}
|
|
|
|
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
|
|
kvm_x86_ops->check_nested_events(vcpu, false);
|
|
|
|
return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
|
|
!vcpu->arch.apf.halted)
|
|
|| !list_empty_careful(&vcpu->async_pf.done)
|
|
|| kvm_apic_has_events(vcpu)
|
|
|| vcpu->arch.pv.pv_unhalted
|
|
|| atomic_read(&vcpu->arch.nmi_queued) ||
|
|
(kvm_arch_interrupt_allowed(vcpu) &&
|
|
kvm_cpu_has_interrupt(vcpu));
|
|
}
|
|
|
|
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
|
|
}
|
|
|
|
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_x86_ops->interrupt_allowed(vcpu);
|
|
}
|
|
|
|
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
|
|
{
|
|
unsigned long current_rip = kvm_rip_read(vcpu) +
|
|
get_segment_base(vcpu, VCPU_SREG_CS);
|
|
|
|
return current_rip == linear_rip;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
|
|
|
|
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long rflags;
|
|
|
|
rflags = kvm_x86_ops->get_rflags(vcpu);
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
|
|
rflags &= ~X86_EFLAGS_TF;
|
|
return rflags;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_rflags);
|
|
|
|
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
|
|
{
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
|
|
kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
|
|
rflags |= X86_EFLAGS_TF;
|
|
kvm_x86_ops->set_rflags(vcpu, rflags);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_rflags);
|
|
|
|
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
|
|
{
|
|
int r;
|
|
|
|
if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
|
|
work->wakeup_all)
|
|
return;
|
|
|
|
r = kvm_mmu_reload(vcpu);
|
|
if (unlikely(r))
|
|
return;
|
|
|
|
if (!vcpu->arch.mmu.direct_map &&
|
|
work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
|
|
return;
|
|
|
|
vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
|
|
}
|
|
|
|
static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
|
|
{
|
|
return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
|
|
}
|
|
|
|
static inline u32 kvm_async_pf_next_probe(u32 key)
|
|
{
|
|
return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
|
|
}
|
|
|
|
static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
u32 key = kvm_async_pf_hash_fn(gfn);
|
|
|
|
while (vcpu->arch.apf.gfns[key] != ~0)
|
|
key = kvm_async_pf_next_probe(key);
|
|
|
|
vcpu->arch.apf.gfns[key] = gfn;
|
|
}
|
|
|
|
static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
int i;
|
|
u32 key = kvm_async_pf_hash_fn(gfn);
|
|
|
|
for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
|
|
(vcpu->arch.apf.gfns[key] != gfn &&
|
|
vcpu->arch.apf.gfns[key] != ~0); i++)
|
|
key = kvm_async_pf_next_probe(key);
|
|
|
|
return key;
|
|
}
|
|
|
|
bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
|
|
}
|
|
|
|
static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
u32 i, j, k;
|
|
|
|
i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
|
|
while (true) {
|
|
vcpu->arch.apf.gfns[i] = ~0;
|
|
do {
|
|
j = kvm_async_pf_next_probe(j);
|
|
if (vcpu->arch.apf.gfns[j] == ~0)
|
|
return;
|
|
k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
|
|
/*
|
|
* k lies cyclically in ]i,j]
|
|
* | i.k.j |
|
|
* |....j i.k.| or |.k..j i...|
|
|
*/
|
|
} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
|
|
vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
|
|
i = j;
|
|
}
|
|
}
|
|
|
|
static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
|
|
{
|
|
|
|
return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
|
|
sizeof(val));
|
|
}
|
|
|
|
void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
|
|
struct kvm_async_pf *work)
|
|
{
|
|
struct x86_exception fault;
|
|
|
|
trace_kvm_async_pf_not_present(work->arch.token, work->gva);
|
|
kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
|
|
|
|
if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
|
|
(vcpu->arch.apf.send_user_only &&
|
|
kvm_x86_ops->get_cpl(vcpu) == 0))
|
|
kvm_make_request(KVM_REQ_APF_HALT, vcpu);
|
|
else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
|
|
fault.vector = PF_VECTOR;
|
|
fault.error_code_valid = true;
|
|
fault.error_code = 0;
|
|
fault.nested_page_fault = false;
|
|
fault.address = work->arch.token;
|
|
kvm_inject_page_fault(vcpu, &fault);
|
|
}
|
|
}
|
|
|
|
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
|
|
struct kvm_async_pf *work)
|
|
{
|
|
struct x86_exception fault;
|
|
|
|
trace_kvm_async_pf_ready(work->arch.token, work->gva);
|
|
if (work->wakeup_all)
|
|
work->arch.token = ~0; /* broadcast wakeup */
|
|
else
|
|
kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
|
|
|
|
if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
|
|
!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
|
|
fault.vector = PF_VECTOR;
|
|
fault.error_code_valid = true;
|
|
fault.error_code = 0;
|
|
fault.nested_page_fault = false;
|
|
fault.address = work->arch.token;
|
|
kvm_inject_page_fault(vcpu, &fault);
|
|
}
|
|
vcpu->arch.apf.halted = false;
|
|
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
|
|
}
|
|
|
|
bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
|
|
return true;
|
|
else
|
|
return !kvm_event_needs_reinjection(vcpu) &&
|
|
kvm_x86_ops->interrupt_allowed(vcpu);
|
|
}
|
|
|
|
void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
|
|
{
|
|
atomic_inc(&kvm->arch.noncoherent_dma_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
|
|
|
|
void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
|
|
{
|
|
atomic_dec(&kvm->arch.noncoherent_dma_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
|
|
|
|
bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
|
|
{
|
|
return atomic_read(&kvm->arch.noncoherent_dma_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
|
|
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
|