2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-05 04:04:01 +08:00
linux-next/mm/swap_state.c
Wei Yang cb77445132 mm/swap_state.c: use the same way to count page in [add_to|delete_from]_swap_cache
add_to_swap_cache() and delete_from_swap_cache() are counterparts, while
currently they use different ways to count pages.

It doesn't break anything because we only have two sizes for PageAnon, but
this is confusing and not good practice.

This patch corrects it by making both functions use hpage_nr_pages().

Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: http://lkml.kernel.org/r/20200315012920.2687-1-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00

844 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/mm/swap_state.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
*
* Rewritten to use page cache, (C) 1998 Stephen Tweedie
*/
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
#include <linux/pagevec.h>
#include <linux/migrate.h>
#include <linux/vmalloc.h>
#include <linux/swap_slots.h>
#include <linux/huge_mm.h>
#include <asm/pgtable.h>
/*
* swapper_space is a fiction, retained to simplify the path through
* vmscan's shrink_page_list.
*/
static const struct address_space_operations swap_aops = {
.writepage = swap_writepage,
.set_page_dirty = swap_set_page_dirty,
#ifdef CONFIG_MIGRATION
.migratepage = migrate_page,
#endif
};
struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
static bool enable_vma_readahead __read_mostly = true;
#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
#define SWAP_RA_VAL(addr, win, hits) \
(((addr) & PAGE_MASK) | \
(((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
((hits) & SWAP_RA_HITS_MASK))
/* Initial readahead hits is 4 to start up with a small window */
#define GET_SWAP_RA_VAL(vma) \
(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
#define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
static struct {
unsigned long add_total;
unsigned long del_total;
unsigned long find_success;
unsigned long find_total;
} swap_cache_info;
unsigned long total_swapcache_pages(void)
{
unsigned int i, j, nr;
unsigned long ret = 0;
struct address_space *spaces;
struct swap_info_struct *si;
for (i = 0; i < MAX_SWAPFILES; i++) {
swp_entry_t entry = swp_entry(i, 1);
/* Avoid get_swap_device() to warn for bad swap entry */
if (!swp_swap_info(entry))
continue;
/* Prevent swapoff to free swapper_spaces */
si = get_swap_device(entry);
if (!si)
continue;
nr = nr_swapper_spaces[i];
spaces = swapper_spaces[i];
for (j = 0; j < nr; j++)
ret += spaces[j].nrpages;
put_swap_device(si);
}
return ret;
}
static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
void show_swap_cache_info(void)
{
printk("%lu pages in swap cache\n", total_swapcache_pages());
printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
swap_cache_info.add_total, swap_cache_info.del_total,
swap_cache_info.find_success, swap_cache_info.find_total);
printk("Free swap = %ldkB\n",
get_nr_swap_pages() << (PAGE_SHIFT - 10));
printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
}
/*
* add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
* but sets SwapCache flag and private instead of mapping and index.
*/
int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp)
{
struct address_space *address_space = swap_address_space(entry);
pgoff_t idx = swp_offset(entry);
XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
unsigned long i, nr = hpage_nr_pages(page);
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(PageSwapCache(page), page);
VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
page_ref_add(page, nr);
SetPageSwapCache(page);
do {
xas_lock_irq(&xas);
xas_create_range(&xas);
if (xas_error(&xas))
goto unlock;
for (i = 0; i < nr; i++) {
VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
set_page_private(page + i, entry.val + i);
xas_store(&xas, page);
xas_next(&xas);
}
address_space->nrpages += nr;
__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
ADD_CACHE_INFO(add_total, nr);
unlock:
xas_unlock_irq(&xas);
} while (xas_nomem(&xas, gfp));
if (!xas_error(&xas))
return 0;
ClearPageSwapCache(page);
page_ref_sub(page, nr);
return xas_error(&xas);
}
/*
* This must be called only on pages that have
* been verified to be in the swap cache.
*/
void __delete_from_swap_cache(struct page *page, swp_entry_t entry)
{
struct address_space *address_space = swap_address_space(entry);
int i, nr = hpage_nr_pages(page);
pgoff_t idx = swp_offset(entry);
XA_STATE(xas, &address_space->i_pages, idx);
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(!PageSwapCache(page), page);
VM_BUG_ON_PAGE(PageWriteback(page), page);
for (i = 0; i < nr; i++) {
void *entry = xas_store(&xas, NULL);
VM_BUG_ON_PAGE(entry != page, entry);
set_page_private(page + i, 0);
xas_next(&xas);
}
ClearPageSwapCache(page);
address_space->nrpages -= nr;
__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
ADD_CACHE_INFO(del_total, nr);
}
/**
* add_to_swap - allocate swap space for a page
* @page: page we want to move to swap
*
* Allocate swap space for the page and add the page to the
* swap cache. Caller needs to hold the page lock.
*/
int add_to_swap(struct page *page)
{
swp_entry_t entry;
int err;
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(!PageUptodate(page), page);
entry = get_swap_page(page);
if (!entry.val)
return 0;
/*
* XArray node allocations from PF_MEMALLOC contexts could
* completely exhaust the page allocator. __GFP_NOMEMALLOC
* stops emergency reserves from being allocated.
*
* TODO: this could cause a theoretical memory reclaim
* deadlock in the swap out path.
*/
/*
* Add it to the swap cache.
*/
err = add_to_swap_cache(page, entry,
__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
if (err)
/*
* add_to_swap_cache() doesn't return -EEXIST, so we can safely
* clear SWAP_HAS_CACHE flag.
*/
goto fail;
/*
* Normally the page will be dirtied in unmap because its pte should be
* dirty. A special case is MADV_FREE page. The page'e pte could have
* dirty bit cleared but the page's SwapBacked bit is still set because
* clearing the dirty bit and SwapBacked bit has no lock protected. For
* such page, unmap will not set dirty bit for it, so page reclaim will
* not write the page out. This can cause data corruption when the page
* is swap in later. Always setting the dirty bit for the page solves
* the problem.
*/
set_page_dirty(page);
return 1;
fail:
put_swap_page(page, entry);
return 0;
}
/*
* This must be called only on pages that have
* been verified to be in the swap cache and locked.
* It will never put the page into the free list,
* the caller has a reference on the page.
*/
void delete_from_swap_cache(struct page *page)
{
swp_entry_t entry = { .val = page_private(page) };
struct address_space *address_space = swap_address_space(entry);
xa_lock_irq(&address_space->i_pages);
__delete_from_swap_cache(page, entry);
xa_unlock_irq(&address_space->i_pages);
put_swap_page(page, entry);
page_ref_sub(page, hpage_nr_pages(page));
}
/*
* If we are the only user, then try to free up the swap cache.
*
* Its ok to check for PageSwapCache without the page lock
* here because we are going to recheck again inside
* try_to_free_swap() _with_ the lock.
* - Marcelo
*/
static inline void free_swap_cache(struct page *page)
{
if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
try_to_free_swap(page);
unlock_page(page);
}
}
/*
* Perform a free_page(), also freeing any swap cache associated with
* this page if it is the last user of the page.
*/
void free_page_and_swap_cache(struct page *page)
{
free_swap_cache(page);
if (!is_huge_zero_page(page))
put_page(page);
}
/*
* Passed an array of pages, drop them all from swapcache and then release
* them. They are removed from the LRU and freed if this is their last use.
*/
void free_pages_and_swap_cache(struct page **pages, int nr)
{
struct page **pagep = pages;
int i;
lru_add_drain();
for (i = 0; i < nr; i++)
free_swap_cache(pagep[i]);
release_pages(pagep, nr);
}
static inline bool swap_use_vma_readahead(void)
{
return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
}
/*
* Lookup a swap entry in the swap cache. A found page will be returned
* unlocked and with its refcount incremented - we rely on the kernel
* lock getting page table operations atomic even if we drop the page
* lock before returning.
*/
struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
unsigned long addr)
{
struct page *page;
struct swap_info_struct *si;
si = get_swap_device(entry);
if (!si)
return NULL;
page = find_get_page(swap_address_space(entry), swp_offset(entry));
put_swap_device(si);
INC_CACHE_INFO(find_total);
if (page) {
bool vma_ra = swap_use_vma_readahead();
bool readahead;
INC_CACHE_INFO(find_success);
/*
* At the moment, we don't support PG_readahead for anon THP
* so let's bail out rather than confusing the readahead stat.
*/
if (unlikely(PageTransCompound(page)))
return page;
readahead = TestClearPageReadahead(page);
if (vma && vma_ra) {
unsigned long ra_val;
int win, hits;
ra_val = GET_SWAP_RA_VAL(vma);
win = SWAP_RA_WIN(ra_val);
hits = SWAP_RA_HITS(ra_val);
if (readahead)
hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
atomic_long_set(&vma->swap_readahead_info,
SWAP_RA_VAL(addr, win, hits));
}
if (readahead) {
count_vm_event(SWAP_RA_HIT);
if (!vma || !vma_ra)
atomic_inc(&swapin_readahead_hits);
}
}
return page;
}
struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr,
bool *new_page_allocated)
{
struct page *found_page = NULL, *new_page = NULL;
struct swap_info_struct *si;
int err;
*new_page_allocated = false;
do {
/*
* First check the swap cache. Since this is normally
* called after lookup_swap_cache() failed, re-calling
* that would confuse statistics.
*/
si = get_swap_device(entry);
if (!si)
break;
found_page = find_get_page(swap_address_space(entry),
swp_offset(entry));
put_swap_device(si);
if (found_page)
break;
/*
* Just skip read ahead for unused swap slot.
* During swap_off when swap_slot_cache is disabled,
* we have to handle the race between putting
* swap entry in swap cache and marking swap slot
* as SWAP_HAS_CACHE. That's done in later part of code or
* else swap_off will be aborted if we return NULL.
*/
if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
break;
/*
* Get a new page to read into from swap.
*/
if (!new_page) {
new_page = alloc_page_vma(gfp_mask, vma, addr);
if (!new_page)
break; /* Out of memory */
}
/*
* Swap entry may have been freed since our caller observed it.
*/
err = swapcache_prepare(entry);
if (err == -EEXIST) {
/*
* We might race against get_swap_page() and stumble
* across a SWAP_HAS_CACHE swap_map entry whose page
* has not been brought into the swapcache yet.
*/
cond_resched();
continue;
} else if (err) /* swp entry is obsolete ? */
break;
/* May fail (-ENOMEM) if XArray node allocation failed. */
__SetPageLocked(new_page);
__SetPageSwapBacked(new_page);
err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
if (likely(!err)) {
/* Initiate read into locked page */
SetPageWorkingset(new_page);
lru_cache_add_anon(new_page);
*new_page_allocated = true;
return new_page;
}
__ClearPageLocked(new_page);
/*
* add_to_swap_cache() doesn't return -EEXIST, so we can safely
* clear SWAP_HAS_CACHE flag.
*/
put_swap_page(new_page, entry);
} while (err != -ENOMEM);
if (new_page)
put_page(new_page);
return found_page;
}
/*
* Locate a page of swap in physical memory, reserving swap cache space
* and reading the disk if it is not already cached.
* A failure return means that either the page allocation failed or that
* the swap entry is no longer in use.
*/
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr, bool do_poll)
{
bool page_was_allocated;
struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
vma, addr, &page_was_allocated);
if (page_was_allocated)
swap_readpage(retpage, do_poll);
return retpage;
}
static unsigned int __swapin_nr_pages(unsigned long prev_offset,
unsigned long offset,
int hits,
int max_pages,
int prev_win)
{
unsigned int pages, last_ra;
/*
* This heuristic has been found to work well on both sequential and
* random loads, swapping to hard disk or to SSD: please don't ask
* what the "+ 2" means, it just happens to work well, that's all.
*/
pages = hits + 2;
if (pages == 2) {
/*
* We can have no readahead hits to judge by: but must not get
* stuck here forever, so check for an adjacent offset instead
* (and don't even bother to check whether swap type is same).
*/
if (offset != prev_offset + 1 && offset != prev_offset - 1)
pages = 1;
} else {
unsigned int roundup = 4;
while (roundup < pages)
roundup <<= 1;
pages = roundup;
}
if (pages > max_pages)
pages = max_pages;
/* Don't shrink readahead too fast */
last_ra = prev_win / 2;
if (pages < last_ra)
pages = last_ra;
return pages;
}
static unsigned long swapin_nr_pages(unsigned long offset)
{
static unsigned long prev_offset;
unsigned int hits, pages, max_pages;
static atomic_t last_readahead_pages;
max_pages = 1 << READ_ONCE(page_cluster);
if (max_pages <= 1)
return 1;
hits = atomic_xchg(&swapin_readahead_hits, 0);
pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
atomic_read(&last_readahead_pages));
if (!hits)
prev_offset = offset;
atomic_set(&last_readahead_pages, pages);
return pages;
}
/**
* swap_cluster_readahead - swap in pages in hope we need them soon
* @entry: swap entry of this memory
* @gfp_mask: memory allocation flags
* @vmf: fault information
*
* Returns the struct page for entry and addr, after queueing swapin.
*
* Primitive swap readahead code. We simply read an aligned block of
* (1 << page_cluster) entries in the swap area. This method is chosen
* because it doesn't cost us any seek time. We also make sure to queue
* the 'original' request together with the readahead ones...
*
* This has been extended to use the NUMA policies from the mm triggering
* the readahead.
*
* Caller must hold read mmap_sem if vmf->vma is not NULL.
*/
struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
struct vm_fault *vmf)
{
struct page *page;
unsigned long entry_offset = swp_offset(entry);
unsigned long offset = entry_offset;
unsigned long start_offset, end_offset;
unsigned long mask;
struct swap_info_struct *si = swp_swap_info(entry);
struct blk_plug plug;
bool do_poll = true, page_allocated;
struct vm_area_struct *vma = vmf->vma;
unsigned long addr = vmf->address;
mask = swapin_nr_pages(offset) - 1;
if (!mask)
goto skip;
/* Test swap type to make sure the dereference is safe */
if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) {
struct inode *inode = si->swap_file->f_mapping->host;
if (inode_read_congested(inode))
goto skip;
}
do_poll = false;
/* Read a page_cluster sized and aligned cluster around offset. */
start_offset = offset & ~mask;
end_offset = offset | mask;
if (!start_offset) /* First page is swap header. */
start_offset++;
if (end_offset >= si->max)
end_offset = si->max - 1;
blk_start_plug(&plug);
for (offset = start_offset; offset <= end_offset ; offset++) {
/* Ok, do the async read-ahead now */
page = __read_swap_cache_async(
swp_entry(swp_type(entry), offset),
gfp_mask, vma, addr, &page_allocated);
if (!page)
continue;
if (page_allocated) {
swap_readpage(page, false);
if (offset != entry_offset) {
SetPageReadahead(page);
count_vm_event(SWAP_RA);
}
}
put_page(page);
}
blk_finish_plug(&plug);
lru_add_drain(); /* Push any new pages onto the LRU now */
skip:
return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
}
int init_swap_address_space(unsigned int type, unsigned long nr_pages)
{
struct address_space *spaces, *space;
unsigned int i, nr;
nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
if (!spaces)
return -ENOMEM;
for (i = 0; i < nr; i++) {
space = spaces + i;
xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
atomic_set(&space->i_mmap_writable, 0);
space->a_ops = &swap_aops;
/* swap cache doesn't use writeback related tags */
mapping_set_no_writeback_tags(space);
}
nr_swapper_spaces[type] = nr;
swapper_spaces[type] = spaces;
return 0;
}
void exit_swap_address_space(unsigned int type)
{
kvfree(swapper_spaces[type]);
nr_swapper_spaces[type] = 0;
swapper_spaces[type] = NULL;
}
static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
unsigned long faddr,
unsigned long lpfn,
unsigned long rpfn,
unsigned long *start,
unsigned long *end)
{
*start = max3(lpfn, PFN_DOWN(vma->vm_start),
PFN_DOWN(faddr & PMD_MASK));
*end = min3(rpfn, PFN_DOWN(vma->vm_end),
PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
}
static void swap_ra_info(struct vm_fault *vmf,
struct vma_swap_readahead *ra_info)
{
struct vm_area_struct *vma = vmf->vma;
unsigned long ra_val;
swp_entry_t entry;
unsigned long faddr, pfn, fpfn;
unsigned long start, end;
pte_t *pte, *orig_pte;
unsigned int max_win, hits, prev_win, win, left;
#ifndef CONFIG_64BIT
pte_t *tpte;
#endif
max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
SWAP_RA_ORDER_CEILING);
if (max_win == 1) {
ra_info->win = 1;
return;
}
faddr = vmf->address;
orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
entry = pte_to_swp_entry(*pte);
if ((unlikely(non_swap_entry(entry)))) {
pte_unmap(orig_pte);
return;
}
fpfn = PFN_DOWN(faddr);
ra_val = GET_SWAP_RA_VAL(vma);
pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
prev_win = SWAP_RA_WIN(ra_val);
hits = SWAP_RA_HITS(ra_val);
ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
max_win, prev_win);
atomic_long_set(&vma->swap_readahead_info,
SWAP_RA_VAL(faddr, win, 0));
if (win == 1) {
pte_unmap(orig_pte);
return;
}
/* Copy the PTEs because the page table may be unmapped */
if (fpfn == pfn + 1)
swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
else if (pfn == fpfn + 1)
swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
&start, &end);
else {
left = (win - 1) / 2;
swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
&start, &end);
}
ra_info->nr_pte = end - start;
ra_info->offset = fpfn - start;
pte -= ra_info->offset;
#ifdef CONFIG_64BIT
ra_info->ptes = pte;
#else
tpte = ra_info->ptes;
for (pfn = start; pfn != end; pfn++)
*tpte++ = *pte++;
#endif
pte_unmap(orig_pte);
}
/**
* swap_vma_readahead - swap in pages in hope we need them soon
* @entry: swap entry of this memory
* @gfp_mask: memory allocation flags
* @vmf: fault information
*
* Returns the struct page for entry and addr, after queueing swapin.
*
* Primitive swap readahead code. We simply read in a few pages whoes
* virtual addresses are around the fault address in the same vma.
*
* Caller must hold read mmap_sem if vmf->vma is not NULL.
*
*/
static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
struct vm_fault *vmf)
{
struct blk_plug plug;
struct vm_area_struct *vma = vmf->vma;
struct page *page;
pte_t *pte, pentry;
swp_entry_t entry;
unsigned int i;
bool page_allocated;
struct vma_swap_readahead ra_info = {0,};
swap_ra_info(vmf, &ra_info);
if (ra_info.win == 1)
goto skip;
blk_start_plug(&plug);
for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
i++, pte++) {
pentry = *pte;
if (pte_none(pentry))
continue;
if (pte_present(pentry))
continue;
entry = pte_to_swp_entry(pentry);
if (unlikely(non_swap_entry(entry)))
continue;
page = __read_swap_cache_async(entry, gfp_mask, vma,
vmf->address, &page_allocated);
if (!page)
continue;
if (page_allocated) {
swap_readpage(page, false);
if (i != ra_info.offset) {
SetPageReadahead(page);
count_vm_event(SWAP_RA);
}
}
put_page(page);
}
blk_finish_plug(&plug);
lru_add_drain();
skip:
return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
ra_info.win == 1);
}
/**
* swapin_readahead - swap in pages in hope we need them soon
* @entry: swap entry of this memory
* @gfp_mask: memory allocation flags
* @vmf: fault information
*
* Returns the struct page for entry and addr, after queueing swapin.
*
* It's a main entry function for swap readahead. By the configuration,
* it will read ahead blocks by cluster-based(ie, physical disk based)
* or vma-based(ie, virtual address based on faulty address) readahead.
*/
struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
struct vm_fault *vmf)
{
return swap_use_vma_readahead() ?
swap_vma_readahead(entry, gfp_mask, vmf) :
swap_cluster_readahead(entry, gfp_mask, vmf);
}
#ifdef CONFIG_SYSFS
static ssize_t vma_ra_enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
}
static ssize_t vma_ra_enabled_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
enable_vma_readahead = true;
else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
enable_vma_readahead = false;
else
return -EINVAL;
return count;
}
static struct kobj_attribute vma_ra_enabled_attr =
__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
vma_ra_enabled_store);
static struct attribute *swap_attrs[] = {
&vma_ra_enabled_attr.attr,
NULL,
};
static struct attribute_group swap_attr_group = {
.attrs = swap_attrs,
};
static int __init swap_init_sysfs(void)
{
int err;
struct kobject *swap_kobj;
swap_kobj = kobject_create_and_add("swap", mm_kobj);
if (!swap_kobj) {
pr_err("failed to create swap kobject\n");
return -ENOMEM;
}
err = sysfs_create_group(swap_kobj, &swap_attr_group);
if (err) {
pr_err("failed to register swap group\n");
goto delete_obj;
}
return 0;
delete_obj:
kobject_put(swap_kobj);
return err;
}
subsys_initcall(swap_init_sysfs);
#endif