mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-15 17:14:00 +08:00
517efa89ac
For i2c normal work, we need to slow down the bus speed. However, the slow down breaks the eeprom firmware load. So, use normal speed for eeprom booting and then restore the i2c speed after that. It should also be noticed that no other I2C transfer should be in course while booting from eeprom, otherwise, tda10046 goes into an instable state. So, proper locking are needed at the i2c bus master. Tested with saa7134 MSI TV @nyware A/D board, that comes with an eeprom with firmware version 29. Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
1381 lines
39 KiB
C
1381 lines
39 KiB
C
/*
|
|
Driver for Philips tda1004xh OFDM Demodulator
|
|
|
|
(c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*/
|
|
/*
|
|
* This driver needs external firmware. Please use the commands
|
|
* "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
|
|
* "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
|
|
* download/extract them, and then copy them to /usr/lib/hotplug/firmware
|
|
* or /lib/firmware (depending on configuration of firmware hotplug).
|
|
*/
|
|
#define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
|
|
#define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "dvb_frontend.h"
|
|
#include "tda1004x.h"
|
|
|
|
static int debug;
|
|
#define dprintk(args...) \
|
|
do { \
|
|
if (debug) printk(KERN_DEBUG "tda1004x: " args); \
|
|
} while (0)
|
|
|
|
#define TDA1004X_CHIPID 0x00
|
|
#define TDA1004X_AUTO 0x01
|
|
#define TDA1004X_IN_CONF1 0x02
|
|
#define TDA1004X_IN_CONF2 0x03
|
|
#define TDA1004X_OUT_CONF1 0x04
|
|
#define TDA1004X_OUT_CONF2 0x05
|
|
#define TDA1004X_STATUS_CD 0x06
|
|
#define TDA1004X_CONFC4 0x07
|
|
#define TDA1004X_DSSPARE2 0x0C
|
|
#define TDA10045H_CODE_IN 0x0D
|
|
#define TDA10045H_FWPAGE 0x0E
|
|
#define TDA1004X_SCAN_CPT 0x10
|
|
#define TDA1004X_DSP_CMD 0x11
|
|
#define TDA1004X_DSP_ARG 0x12
|
|
#define TDA1004X_DSP_DATA1 0x13
|
|
#define TDA1004X_DSP_DATA2 0x14
|
|
#define TDA1004X_CONFADC1 0x15
|
|
#define TDA1004X_CONFC1 0x16
|
|
#define TDA10045H_S_AGC 0x1a
|
|
#define TDA10046H_AGC_TUN_LEVEL 0x1a
|
|
#define TDA1004X_SNR 0x1c
|
|
#define TDA1004X_CONF_TS1 0x1e
|
|
#define TDA1004X_CONF_TS2 0x1f
|
|
#define TDA1004X_CBER_RESET 0x20
|
|
#define TDA1004X_CBER_MSB 0x21
|
|
#define TDA1004X_CBER_LSB 0x22
|
|
#define TDA1004X_CVBER_LUT 0x23
|
|
#define TDA1004X_VBER_MSB 0x24
|
|
#define TDA1004X_VBER_MID 0x25
|
|
#define TDA1004X_VBER_LSB 0x26
|
|
#define TDA1004X_UNCOR 0x27
|
|
|
|
#define TDA10045H_CONFPLL_P 0x2D
|
|
#define TDA10045H_CONFPLL_M_MSB 0x2E
|
|
#define TDA10045H_CONFPLL_M_LSB 0x2F
|
|
#define TDA10045H_CONFPLL_N 0x30
|
|
|
|
#define TDA10046H_CONFPLL1 0x2D
|
|
#define TDA10046H_CONFPLL2 0x2F
|
|
#define TDA10046H_CONFPLL3 0x30
|
|
#define TDA10046H_TIME_WREF1 0x31
|
|
#define TDA10046H_TIME_WREF2 0x32
|
|
#define TDA10046H_TIME_WREF3 0x33
|
|
#define TDA10046H_TIME_WREF4 0x34
|
|
#define TDA10046H_TIME_WREF5 0x35
|
|
|
|
#define TDA10045H_UNSURW_MSB 0x31
|
|
#define TDA10045H_UNSURW_LSB 0x32
|
|
#define TDA10045H_WREF_MSB 0x33
|
|
#define TDA10045H_WREF_MID 0x34
|
|
#define TDA10045H_WREF_LSB 0x35
|
|
#define TDA10045H_MUXOUT 0x36
|
|
#define TDA1004X_CONFADC2 0x37
|
|
|
|
#define TDA10045H_IOFFSET 0x38
|
|
|
|
#define TDA10046H_CONF_TRISTATE1 0x3B
|
|
#define TDA10046H_CONF_TRISTATE2 0x3C
|
|
#define TDA10046H_CONF_POLARITY 0x3D
|
|
#define TDA10046H_FREQ_OFFSET 0x3E
|
|
#define TDA10046H_GPIO_OUT_SEL 0x41
|
|
#define TDA10046H_GPIO_SELECT 0x42
|
|
#define TDA10046H_AGC_CONF 0x43
|
|
#define TDA10046H_AGC_THR 0x44
|
|
#define TDA10046H_AGC_RENORM 0x45
|
|
#define TDA10046H_AGC_GAINS 0x46
|
|
#define TDA10046H_AGC_TUN_MIN 0x47
|
|
#define TDA10046H_AGC_TUN_MAX 0x48
|
|
#define TDA10046H_AGC_IF_MIN 0x49
|
|
#define TDA10046H_AGC_IF_MAX 0x4A
|
|
|
|
#define TDA10046H_FREQ_PHY2_MSB 0x4D
|
|
#define TDA10046H_FREQ_PHY2_LSB 0x4E
|
|
|
|
#define TDA10046H_CVBER_CTRL 0x4F
|
|
#define TDA10046H_AGC_IF_LEVEL 0x52
|
|
#define TDA10046H_CODE_CPT 0x57
|
|
#define TDA10046H_CODE_IN 0x58
|
|
|
|
|
|
static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
|
|
{
|
|
int ret;
|
|
u8 buf[] = { reg, data };
|
|
struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
|
|
|
|
dprintk("%s: reg=0x%x, data=0x%x\n", __func__, reg, data);
|
|
|
|
msg.addr = state->config->demod_address;
|
|
ret = i2c_transfer(state->i2c, &msg, 1);
|
|
|
|
if (ret != 1)
|
|
dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
|
|
__func__, reg, data, ret);
|
|
|
|
dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
|
|
reg, data, ret);
|
|
return (ret != 1) ? -1 : 0;
|
|
}
|
|
|
|
static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
|
|
{
|
|
int ret;
|
|
u8 b0[] = { reg };
|
|
u8 b1[] = { 0 };
|
|
struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
|
|
{ .flags = I2C_M_RD, .buf = b1, .len = 1 }};
|
|
|
|
dprintk("%s: reg=0x%x\n", __func__, reg);
|
|
|
|
msg[0].addr = state->config->demod_address;
|
|
msg[1].addr = state->config->demod_address;
|
|
ret = i2c_transfer(state->i2c, msg, 2);
|
|
|
|
if (ret != 2) {
|
|
dprintk("%s: error reg=0x%x, ret=%i\n", __func__, reg,
|
|
ret);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
|
|
reg, b1[0], ret);
|
|
return b1[0];
|
|
}
|
|
|
|
static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
|
|
{
|
|
int val;
|
|
dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __func__, reg,
|
|
mask, data);
|
|
|
|
// read a byte and check
|
|
val = tda1004x_read_byte(state, reg);
|
|
if (val < 0)
|
|
return val;
|
|
|
|
// mask if off
|
|
val = val & ~mask;
|
|
val |= data & 0xff;
|
|
|
|
// write it out again
|
|
return tda1004x_write_byteI(state, reg, val);
|
|
}
|
|
|
|
static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
|
|
{
|
|
int i;
|
|
int result;
|
|
|
|
dprintk("%s: reg=0x%x, len=0x%x\n", __func__, reg, len);
|
|
|
|
result = 0;
|
|
for (i = 0; i < len; i++) {
|
|
result = tda1004x_write_byteI(state, reg + i, buf[i]);
|
|
if (result != 0)
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
|
|
{
|
|
int result;
|
|
dprintk("%s\n", __func__);
|
|
|
|
result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
|
|
msleep(20);
|
|
return result;
|
|
}
|
|
|
|
static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
|
|
{
|
|
dprintk("%s\n", __func__);
|
|
|
|
return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
|
|
}
|
|
|
|
static int tda10045h_set_bandwidth(struct tda1004x_state *state,
|
|
fe_bandwidth_t bandwidth)
|
|
{
|
|
static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
|
|
static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
|
|
static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
|
|
|
|
switch (bandwidth) {
|
|
case BANDWIDTH_6_MHZ:
|
|
tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
|
|
break;
|
|
|
|
case BANDWIDTH_7_MHZ:
|
|
tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
|
|
break;
|
|
|
|
case BANDWIDTH_8_MHZ:
|
|
tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tda10046h_set_bandwidth(struct tda1004x_state *state,
|
|
fe_bandwidth_t bandwidth)
|
|
{
|
|
static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 };
|
|
static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f };
|
|
static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d };
|
|
|
|
static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 };
|
|
static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab };
|
|
static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 };
|
|
int tda10046_clk53m;
|
|
|
|
if ((state->config->if_freq == TDA10046_FREQ_045) ||
|
|
(state->config->if_freq == TDA10046_FREQ_052))
|
|
tda10046_clk53m = 0;
|
|
else
|
|
tda10046_clk53m = 1;
|
|
switch (bandwidth) {
|
|
case BANDWIDTH_6_MHZ:
|
|
if (tda10046_clk53m)
|
|
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M,
|
|
sizeof(bandwidth_6mhz_53M));
|
|
else
|
|
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M,
|
|
sizeof(bandwidth_6mhz_48M));
|
|
if (state->config->if_freq == TDA10046_FREQ_045) {
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab);
|
|
}
|
|
break;
|
|
|
|
case BANDWIDTH_7_MHZ:
|
|
if (tda10046_clk53m)
|
|
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M,
|
|
sizeof(bandwidth_7mhz_53M));
|
|
else
|
|
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M,
|
|
sizeof(bandwidth_7mhz_48M));
|
|
if (state->config->if_freq == TDA10046_FREQ_045) {
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
|
|
}
|
|
break;
|
|
|
|
case BANDWIDTH_8_MHZ:
|
|
if (tda10046_clk53m)
|
|
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M,
|
|
sizeof(bandwidth_8mhz_53M));
|
|
else
|
|
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M,
|
|
sizeof(bandwidth_8mhz_48M));
|
|
if (state->config->if_freq == TDA10046_FREQ_045) {
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tda1004x_do_upload(struct tda1004x_state *state,
|
|
const unsigned char *mem, unsigned int len,
|
|
u8 dspCodeCounterReg, u8 dspCodeInReg)
|
|
{
|
|
u8 buf[65];
|
|
struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
|
|
int tx_size;
|
|
int pos = 0;
|
|
|
|
/* clear code counter */
|
|
tda1004x_write_byteI(state, dspCodeCounterReg, 0);
|
|
fw_msg.addr = state->config->demod_address;
|
|
|
|
buf[0] = dspCodeInReg;
|
|
while (pos != len) {
|
|
// work out how much to send this time
|
|
tx_size = len - pos;
|
|
if (tx_size > 0x10)
|
|
tx_size = 0x10;
|
|
|
|
// send the chunk
|
|
memcpy(buf + 1, mem + pos, tx_size);
|
|
fw_msg.len = tx_size + 1;
|
|
if (i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
|
|
printk(KERN_ERR "tda1004x: Error during firmware upload\n");
|
|
return -EIO;
|
|
}
|
|
pos += tx_size;
|
|
|
|
dprintk("%s: fw_pos=0x%x\n", __func__, pos);
|
|
}
|
|
// give the DSP a chance to settle 03/10/05 Hac
|
|
msleep(100);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tda1004x_check_upload_ok(struct tda1004x_state *state)
|
|
{
|
|
u8 data1, data2;
|
|
unsigned long timeout;
|
|
|
|
if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
|
|
timeout = jiffies + 2 * HZ;
|
|
while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
|
|
if (time_after(jiffies, timeout)) {
|
|
printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
|
|
break;
|
|
}
|
|
msleep(1);
|
|
}
|
|
} else
|
|
msleep(100);
|
|
|
|
// check upload was OK
|
|
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
|
|
tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
|
|
|
|
data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
|
|
data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
|
|
if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
|
|
printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
|
|
return -EIO;
|
|
}
|
|
printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
|
|
return 0;
|
|
}
|
|
|
|
static int tda10045_fwupload(struct dvb_frontend* fe)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
int ret;
|
|
const struct firmware *fw;
|
|
|
|
/* don't re-upload unless necessary */
|
|
if (tda1004x_check_upload_ok(state) == 0)
|
|
return 0;
|
|
|
|
/* request the firmware, this will block until someone uploads it */
|
|
printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
|
|
ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
|
|
if (ret) {
|
|
printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
|
|
return ret;
|
|
}
|
|
|
|
/* reset chip */
|
|
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
|
|
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
|
|
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
|
|
msleep(10);
|
|
|
|
/* set parameters */
|
|
tda10045h_set_bandwidth(state, BANDWIDTH_8_MHZ);
|
|
|
|
ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
|
|
release_firmware(fw);
|
|
if (ret)
|
|
return ret;
|
|
printk(KERN_INFO "tda1004x: firmware upload complete\n");
|
|
|
|
/* wait for DSP to initialise */
|
|
/* DSPREADY doesn't seem to work on the TDA10045H */
|
|
msleep(100);
|
|
|
|
return tda1004x_check_upload_ok(state);
|
|
}
|
|
|
|
static void tda10046_init_plls(struct dvb_frontend* fe)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
int tda10046_clk53m;
|
|
|
|
if ((state->config->if_freq == TDA10046_FREQ_045) ||
|
|
(state->config->if_freq == TDA10046_FREQ_052))
|
|
tda10046_clk53m = 0;
|
|
else
|
|
tda10046_clk53m = 1;
|
|
|
|
tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
|
|
if(tda10046_clk53m) {
|
|
printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n");
|
|
tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8
|
|
} else {
|
|
printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n");
|
|
tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3
|
|
}
|
|
if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
|
|
dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __func__);
|
|
tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
|
|
} else {
|
|
dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __func__);
|
|
tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
|
|
}
|
|
if(tda10046_clk53m)
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67);
|
|
else
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72);
|
|
/* Note clock frequency is handled implicitly */
|
|
switch (state->config->if_freq) {
|
|
case TDA10046_FREQ_045:
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
|
|
break;
|
|
case TDA10046_FREQ_052:
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7);
|
|
break;
|
|
case TDA10046_FREQ_3617:
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59);
|
|
break;
|
|
case TDA10046_FREQ_3613:
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
|
|
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f);
|
|
break;
|
|
}
|
|
tda10046h_set_bandwidth(state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz
|
|
/* let the PLLs settle */
|
|
msleep(120);
|
|
}
|
|
|
|
static int tda10046_fwupload(struct dvb_frontend* fe)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
int ret, confc4;
|
|
const struct firmware *fw;
|
|
|
|
/* reset + wake up chip */
|
|
if (state->config->xtal_freq == TDA10046_XTAL_4M) {
|
|
confc4 = 0;
|
|
} else {
|
|
dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __func__);
|
|
confc4 = 0x80;
|
|
}
|
|
tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
|
|
|
|
tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
|
|
/* set GPIO 1 and 3 */
|
|
if (state->config->gpio_config != TDA10046_GPTRI) {
|
|
tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE2, 0x33);
|
|
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f, state->config->gpio_config &0x0f);
|
|
}
|
|
/* let the clocks recover from sleep */
|
|
msleep(10);
|
|
|
|
/* The PLLs need to be reprogrammed after sleep */
|
|
tda10046_init_plls(fe);
|
|
tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0);
|
|
|
|
/* don't re-upload unless necessary */
|
|
if (tda1004x_check_upload_ok(state) == 0)
|
|
return 0;
|
|
|
|
/*
|
|
For i2c normal work, we need to slow down the bus speed.
|
|
However, the slow down breaks the eeprom firmware load.
|
|
So, use normal speed for eeprom booting and then restore the
|
|
i2c speed after that. Tested with MSI TV @nyware A/D board,
|
|
that comes with firmware version 29 inside their eeprom.
|
|
|
|
It should also be noticed that no other I2C transfer should
|
|
be in course while booting from eeprom, otherwise, tda10046
|
|
goes into an instable state. So, proper locking are needed
|
|
at the i2c bus master.
|
|
*/
|
|
printk(KERN_INFO "tda1004x: trying to boot from eeprom\n");
|
|
tda1004x_write_byteI(state, TDA1004X_CONFC4, 4);
|
|
msleep(300);
|
|
tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
|
|
|
|
/* Checks if eeprom firmware went without troubles */
|
|
if (tda1004x_check_upload_ok(state) == 0)
|
|
return 0;
|
|
|
|
/* eeprom firmware didn't work. Load one manually. */
|
|
|
|
if (state->config->request_firmware != NULL) {
|
|
/* request the firmware, this will block until someone uploads it */
|
|
printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
|
|
ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
|
|
if (ret) {
|
|
/* remain compatible to old bug: try to load with tda10045 image name */
|
|
ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
|
|
if (ret) {
|
|
printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
|
|
return ret;
|
|
} else {
|
|
printk(KERN_INFO "tda1004x: please rename the firmware file to %s\n",
|
|
TDA10046_DEFAULT_FIRMWARE);
|
|
}
|
|
}
|
|
} else {
|
|
printk(KERN_ERR "tda1004x: no request function defined, can't upload from file\n");
|
|
return -EIO;
|
|
}
|
|
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
|
|
ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
|
|
release_firmware(fw);
|
|
return tda1004x_check_upload_ok(state);
|
|
}
|
|
|
|
static int tda1004x_encode_fec(int fec)
|
|
{
|
|
// convert known FEC values
|
|
switch (fec) {
|
|
case FEC_1_2:
|
|
return 0;
|
|
case FEC_2_3:
|
|
return 1;
|
|
case FEC_3_4:
|
|
return 2;
|
|
case FEC_5_6:
|
|
return 3;
|
|
case FEC_7_8:
|
|
return 4;
|
|
}
|
|
|
|
// unsupported
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int tda1004x_decode_fec(int tdafec)
|
|
{
|
|
// convert known FEC values
|
|
switch (tdafec) {
|
|
case 0:
|
|
return FEC_1_2;
|
|
case 1:
|
|
return FEC_2_3;
|
|
case 2:
|
|
return FEC_3_4;
|
|
case 3:
|
|
return FEC_5_6;
|
|
case 4:
|
|
return FEC_7_8;
|
|
}
|
|
|
|
// unsupported
|
|
return -1;
|
|
}
|
|
|
|
static int tda1004x_write(struct dvb_frontend* fe, u8 *buf, int len)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
|
|
if (len != 2)
|
|
return -EINVAL;
|
|
|
|
return tda1004x_write_byteI(state, buf[0], buf[1]);
|
|
}
|
|
|
|
static int tda10045_init(struct dvb_frontend* fe)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
|
|
dprintk("%s\n", __func__);
|
|
|
|
if (tda10045_fwupload(fe)) {
|
|
printk("tda1004x: firmware upload failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
|
|
|
|
// tda setup
|
|
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
|
|
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
|
|
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
|
|
tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
|
|
tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
|
|
tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
|
|
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
|
|
tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
|
|
|
|
tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tda10046_init(struct dvb_frontend* fe)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
dprintk("%s\n", __func__);
|
|
|
|
if (tda10046_fwupload(fe)) {
|
|
printk("tda1004x: firmware upload failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
// tda setup
|
|
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
|
|
tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87); // 100 ppm crystal, select HP stream
|
|
tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88); // enable pulse killer
|
|
|
|
switch (state->config->agc_config) {
|
|
case TDA10046_AGC_DEFAULT:
|
|
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
|
|
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
|
|
break;
|
|
case TDA10046_AGC_IFO_AUTO_NEG:
|
|
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
|
|
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
|
|
break;
|
|
case TDA10046_AGC_IFO_AUTO_POS:
|
|
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
|
|
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x00); // set AGC polarities
|
|
break;
|
|
case TDA10046_AGC_TDA827X:
|
|
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02); // AGC setup
|
|
tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70); // AGC Threshold
|
|
tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
|
|
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
|
|
break;
|
|
}
|
|
if (state->config->ts_mode == 0) {
|
|
tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x40);
|
|
tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
|
|
} else {
|
|
tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x80);
|
|
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x10,
|
|
state->config->invert_oclk << 4);
|
|
}
|
|
tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38);
|
|
tda1004x_write_mask (state, TDA10046H_CONF_TRISTATE1, 0x3e, 0x38); // Turn IF AGC output on
|
|
tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0); // }
|
|
tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
|
|
tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0); // }
|
|
tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff); // }
|
|
tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1
|
|
tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
|
|
tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
|
|
tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
|
|
// tda1004x_write_mask(state, 0x50, 0x80, 0x80); // handle out of guard echoes
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tda1004x_set_fe(struct dvb_frontend* fe,
|
|
struct dvb_frontend_parameters *fe_params)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
int tmp;
|
|
int inversion;
|
|
|
|
dprintk("%s\n", __func__);
|
|
|
|
if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
|
|
// setup auto offset
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
|
|
|
|
// disable agc_conf[2]
|
|
tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
|
|
}
|
|
|
|
// set frequency
|
|
if (fe->ops.tuner_ops.set_params) {
|
|
fe->ops.tuner_ops.set_params(fe, fe_params);
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
}
|
|
|
|
// Hardcoded to use auto as much as possible on the TDA10045 as it
|
|
// is very unreliable if AUTO mode is _not_ used.
|
|
if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
|
|
fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
|
|
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
|
|
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
|
|
}
|
|
|
|
// Set standard params.. or put them to auto
|
|
if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
|
|
(fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
|
|
(fe_params->u.ofdm.constellation == QAM_AUTO) ||
|
|
(fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) {
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1); // enable auto
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
|
|
} else {
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0); // disable auto
|
|
|
|
// set HP FEC
|
|
tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
|
|
if (tmp < 0)
|
|
return tmp;
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
|
|
|
|
// set LP FEC
|
|
tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
|
|
if (tmp < 0)
|
|
return tmp;
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
|
|
|
|
// set constellation
|
|
switch (fe_params->u.ofdm.constellation) {
|
|
case QPSK:
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
|
|
break;
|
|
|
|
case QAM_16:
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
|
|
break;
|
|
|
|
case QAM_64:
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
// set hierarchy
|
|
switch (fe_params->u.ofdm.hierarchy_information) {
|
|
case HIERARCHY_NONE:
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
|
|
break;
|
|
|
|
case HIERARCHY_1:
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
|
|
break;
|
|
|
|
case HIERARCHY_2:
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
|
|
break;
|
|
|
|
case HIERARCHY_4:
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
// set bandwidth
|
|
switch (state->demod_type) {
|
|
case TDA1004X_DEMOD_TDA10045:
|
|
tda10045h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
|
|
break;
|
|
|
|
case TDA1004X_DEMOD_TDA10046:
|
|
tda10046h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
|
|
break;
|
|
}
|
|
|
|
// set inversion
|
|
inversion = fe_params->inversion;
|
|
if (state->config->invert)
|
|
inversion = inversion ? INVERSION_OFF : INVERSION_ON;
|
|
switch (inversion) {
|
|
case INVERSION_OFF:
|
|
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
|
|
break;
|
|
|
|
case INVERSION_ON:
|
|
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
// set guard interval
|
|
switch (fe_params->u.ofdm.guard_interval) {
|
|
case GUARD_INTERVAL_1_32:
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
|
|
break;
|
|
|
|
case GUARD_INTERVAL_1_16:
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
|
|
break;
|
|
|
|
case GUARD_INTERVAL_1_8:
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
|
|
break;
|
|
|
|
case GUARD_INTERVAL_1_4:
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
|
|
break;
|
|
|
|
case GUARD_INTERVAL_AUTO:
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
// set transmission mode
|
|
switch (fe_params->u.ofdm.transmission_mode) {
|
|
case TRANSMISSION_MODE_2K:
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
|
|
break;
|
|
|
|
case TRANSMISSION_MODE_8K:
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
|
|
break;
|
|
|
|
case TRANSMISSION_MODE_AUTO:
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
|
|
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
// start the lock
|
|
switch (state->demod_type) {
|
|
case TDA1004X_DEMOD_TDA10045:
|
|
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
|
|
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
|
|
break;
|
|
|
|
case TDA1004X_DEMOD_TDA10046:
|
|
tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
|
|
msleep(1);
|
|
tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1);
|
|
break;
|
|
}
|
|
|
|
msleep(10);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tda1004x_get_fe(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
|
|
dprintk("%s\n", __func__);
|
|
|
|
// inversion status
|
|
fe_params->inversion = INVERSION_OFF;
|
|
if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
|
|
fe_params->inversion = INVERSION_ON;
|
|
if (state->config->invert)
|
|
fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
|
|
|
|
// bandwidth
|
|
switch (state->demod_type) {
|
|
case TDA1004X_DEMOD_TDA10045:
|
|
switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
|
|
case 0x14:
|
|
fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
|
|
break;
|
|
case 0xdb:
|
|
fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
|
|
break;
|
|
case 0x4f:
|
|
fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
|
|
break;
|
|
}
|
|
break;
|
|
case TDA1004X_DEMOD_TDA10046:
|
|
switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
|
|
case 0x5c:
|
|
case 0x54:
|
|
fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
|
|
break;
|
|
case 0x6a:
|
|
case 0x60:
|
|
fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
|
|
break;
|
|
case 0x7b:
|
|
case 0x70:
|
|
fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// FEC
|
|
fe_params->u.ofdm.code_rate_HP =
|
|
tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
|
|
fe_params->u.ofdm.code_rate_LP =
|
|
tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
|
|
|
|
// constellation
|
|
switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
|
|
case 0:
|
|
fe_params->u.ofdm.constellation = QPSK;
|
|
break;
|
|
case 1:
|
|
fe_params->u.ofdm.constellation = QAM_16;
|
|
break;
|
|
case 2:
|
|
fe_params->u.ofdm.constellation = QAM_64;
|
|
break;
|
|
}
|
|
|
|
// transmission mode
|
|
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
|
|
if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
|
|
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
|
|
|
|
// guard interval
|
|
switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
|
|
case 0:
|
|
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
|
|
break;
|
|
case 1:
|
|
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
|
|
break;
|
|
case 2:
|
|
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
|
|
break;
|
|
case 3:
|
|
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
|
|
break;
|
|
}
|
|
|
|
// hierarchy
|
|
switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
|
|
case 0:
|
|
fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
|
|
break;
|
|
case 1:
|
|
fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
|
|
break;
|
|
case 2:
|
|
fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
|
|
break;
|
|
case 3:
|
|
fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
int status;
|
|
int cber;
|
|
int vber;
|
|
|
|
dprintk("%s\n", __func__);
|
|
|
|
// read status
|
|
status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
|
|
if (status == -1)
|
|
return -EIO;
|
|
|
|
// decode
|
|
*fe_status = 0;
|
|
if (status & 4)
|
|
*fe_status |= FE_HAS_SIGNAL;
|
|
if (status & 2)
|
|
*fe_status |= FE_HAS_CARRIER;
|
|
if (status & 8)
|
|
*fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
|
|
|
|
// if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
|
|
// is getting anything valid
|
|
if (!(*fe_status & FE_HAS_VITERBI)) {
|
|
// read the CBER
|
|
cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
|
|
if (cber == -1)
|
|
return -EIO;
|
|
status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
|
|
if (status == -1)
|
|
return -EIO;
|
|
cber |= (status << 8);
|
|
// The address 0x20 should be read to cope with a TDA10046 bug
|
|
tda1004x_read_byte(state, TDA1004X_CBER_RESET);
|
|
|
|
if (cber != 65535)
|
|
*fe_status |= FE_HAS_VITERBI;
|
|
}
|
|
|
|
// if we DO have some valid VITERBI output, but don't already have SYNC
|
|
// bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
|
|
if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
|
|
// read the VBER
|
|
vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
|
|
if (vber == -1)
|
|
return -EIO;
|
|
status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
|
|
if (status == -1)
|
|
return -EIO;
|
|
vber |= (status << 8);
|
|
status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
|
|
if (status == -1)
|
|
return -EIO;
|
|
vber |= (status & 0x0f) << 16;
|
|
// The CVBER_LUT should be read to cope with TDA10046 hardware bug
|
|
tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
|
|
|
|
// if RS has passed some valid TS packets, then we must be
|
|
// getting some SYNC bytes
|
|
if (vber < 16632)
|
|
*fe_status |= FE_HAS_SYNC;
|
|
}
|
|
|
|
// success
|
|
dprintk("%s: fe_status=0x%x\n", __func__, *fe_status);
|
|
return 0;
|
|
}
|
|
|
|
static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
int tmp;
|
|
int reg = 0;
|
|
|
|
dprintk("%s\n", __func__);
|
|
|
|
// determine the register to use
|
|
switch (state->demod_type) {
|
|
case TDA1004X_DEMOD_TDA10045:
|
|
reg = TDA10045H_S_AGC;
|
|
break;
|
|
|
|
case TDA1004X_DEMOD_TDA10046:
|
|
reg = TDA10046H_AGC_IF_LEVEL;
|
|
break;
|
|
}
|
|
|
|
// read it
|
|
tmp = tda1004x_read_byte(state, reg);
|
|
if (tmp < 0)
|
|
return -EIO;
|
|
|
|
*signal = (tmp << 8) | tmp;
|
|
dprintk("%s: signal=0x%x\n", __func__, *signal);
|
|
return 0;
|
|
}
|
|
|
|
static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
int tmp;
|
|
|
|
dprintk("%s\n", __func__);
|
|
|
|
// read it
|
|
tmp = tda1004x_read_byte(state, TDA1004X_SNR);
|
|
if (tmp < 0)
|
|
return -EIO;
|
|
tmp = 255 - tmp;
|
|
|
|
*snr = ((tmp << 8) | tmp);
|
|
dprintk("%s: snr=0x%x\n", __func__, *snr);
|
|
return 0;
|
|
}
|
|
|
|
static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
int tmp;
|
|
int tmp2;
|
|
int counter;
|
|
|
|
dprintk("%s\n", __func__);
|
|
|
|
// read the UCBLOCKS and reset
|
|
counter = 0;
|
|
tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
|
|
if (tmp < 0)
|
|
return -EIO;
|
|
tmp &= 0x7f;
|
|
while (counter++ < 5) {
|
|
tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
|
|
tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
|
|
tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
|
|
|
|
tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
|
|
if (tmp2 < 0)
|
|
return -EIO;
|
|
tmp2 &= 0x7f;
|
|
if ((tmp2 < tmp) || (tmp2 == 0))
|
|
break;
|
|
}
|
|
|
|
if (tmp != 0x7f)
|
|
*ucblocks = tmp;
|
|
else
|
|
*ucblocks = 0xffffffff;
|
|
|
|
dprintk("%s: ucblocks=0x%x\n", __func__, *ucblocks);
|
|
return 0;
|
|
}
|
|
|
|
static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
int tmp;
|
|
|
|
dprintk("%s\n", __func__);
|
|
|
|
// read it in
|
|
tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
|
|
if (tmp < 0)
|
|
return -EIO;
|
|
*ber = tmp << 1;
|
|
tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
|
|
if (tmp < 0)
|
|
return -EIO;
|
|
*ber |= (tmp << 9);
|
|
// The address 0x20 should be read to cope with a TDA10046 bug
|
|
tda1004x_read_byte(state, TDA1004X_CBER_RESET);
|
|
|
|
dprintk("%s: ber=0x%x\n", __func__, *ber);
|
|
return 0;
|
|
}
|
|
|
|
static int tda1004x_sleep(struct dvb_frontend* fe)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
int gpio_conf;
|
|
|
|
switch (state->demod_type) {
|
|
case TDA1004X_DEMOD_TDA10045:
|
|
tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
|
|
break;
|
|
|
|
case TDA1004X_DEMOD_TDA10046:
|
|
/* set outputs to tristate */
|
|
tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff);
|
|
/* invert GPIO 1 and 3 if desired*/
|
|
gpio_conf = state->config->gpio_config;
|
|
if (gpio_conf >= TDA10046_GP00_I)
|
|
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f,
|
|
(gpio_conf & 0x0f) ^ 0x0a);
|
|
|
|
tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0xc0);
|
|
tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tda1004x_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
|
|
{
|
|
struct tda1004x_state* state = fe->demodulator_priv;
|
|
|
|
if (enable) {
|
|
return tda1004x_enable_tuner_i2c(state);
|
|
} else {
|
|
return tda1004x_disable_tuner_i2c(state);
|
|
}
|
|
}
|
|
|
|
static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
|
|
{
|
|
fesettings->min_delay_ms = 800;
|
|
/* Drift compensation makes no sense for DVB-T */
|
|
fesettings->step_size = 0;
|
|
fesettings->max_drift = 0;
|
|
return 0;
|
|
}
|
|
|
|
static void tda1004x_release(struct dvb_frontend* fe)
|
|
{
|
|
struct tda1004x_state *state = fe->demodulator_priv;
|
|
kfree(state);
|
|
}
|
|
|
|
static struct dvb_frontend_ops tda10045_ops = {
|
|
.info = {
|
|
.name = "Philips TDA10045H DVB-T",
|
|
.type = FE_OFDM,
|
|
.frequency_min = 51000000,
|
|
.frequency_max = 858000000,
|
|
.frequency_stepsize = 166667,
|
|
.caps =
|
|
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
|
|
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
|
|
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
|
|
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
|
|
},
|
|
|
|
.release = tda1004x_release,
|
|
|
|
.init = tda10045_init,
|
|
.sleep = tda1004x_sleep,
|
|
.write = tda1004x_write,
|
|
.i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
|
|
|
|
.set_frontend = tda1004x_set_fe,
|
|
.get_frontend = tda1004x_get_fe,
|
|
.get_tune_settings = tda1004x_get_tune_settings,
|
|
|
|
.read_status = tda1004x_read_status,
|
|
.read_ber = tda1004x_read_ber,
|
|
.read_signal_strength = tda1004x_read_signal_strength,
|
|
.read_snr = tda1004x_read_snr,
|
|
.read_ucblocks = tda1004x_read_ucblocks,
|
|
};
|
|
|
|
struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
|
|
struct i2c_adapter* i2c)
|
|
{
|
|
struct tda1004x_state *state;
|
|
int id;
|
|
|
|
/* allocate memory for the internal state */
|
|
state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
|
|
if (!state) {
|
|
printk(KERN_ERR "Can't alocate memory for tda10045 state\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* setup the state */
|
|
state->config = config;
|
|
state->i2c = i2c;
|
|
state->demod_type = TDA1004X_DEMOD_TDA10045;
|
|
|
|
/* check if the demod is there */
|
|
id = tda1004x_read_byte(state, TDA1004X_CHIPID);
|
|
if (id < 0) {
|
|
printk(KERN_ERR "tda10045: chip is not answering. Giving up.\n");
|
|
kfree(state);
|
|
return NULL;
|
|
}
|
|
|
|
if (id != 0x25) {
|
|
printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
|
|
kfree(state);
|
|
return NULL;
|
|
}
|
|
|
|
/* create dvb_frontend */
|
|
memcpy(&state->frontend.ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
|
|
state->frontend.demodulator_priv = state;
|
|
return &state->frontend;
|
|
}
|
|
|
|
static struct dvb_frontend_ops tda10046_ops = {
|
|
.info = {
|
|
.name = "Philips TDA10046H DVB-T",
|
|
.type = FE_OFDM,
|
|
.frequency_min = 51000000,
|
|
.frequency_max = 858000000,
|
|
.frequency_stepsize = 166667,
|
|
.caps =
|
|
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
|
|
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
|
|
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
|
|
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
|
|
},
|
|
|
|
.release = tda1004x_release,
|
|
|
|
.init = tda10046_init,
|
|
.sleep = tda1004x_sleep,
|
|
.write = tda1004x_write,
|
|
.i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
|
|
|
|
.set_frontend = tda1004x_set_fe,
|
|
.get_frontend = tda1004x_get_fe,
|
|
.get_tune_settings = tda1004x_get_tune_settings,
|
|
|
|
.read_status = tda1004x_read_status,
|
|
.read_ber = tda1004x_read_ber,
|
|
.read_signal_strength = tda1004x_read_signal_strength,
|
|
.read_snr = tda1004x_read_snr,
|
|
.read_ucblocks = tda1004x_read_ucblocks,
|
|
};
|
|
|
|
struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
|
|
struct i2c_adapter* i2c)
|
|
{
|
|
struct tda1004x_state *state;
|
|
int id;
|
|
|
|
/* allocate memory for the internal state */
|
|
state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
|
|
if (!state) {
|
|
printk(KERN_ERR "Can't alocate memory for tda10046 state\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* setup the state */
|
|
state->config = config;
|
|
state->i2c = i2c;
|
|
state->demod_type = TDA1004X_DEMOD_TDA10046;
|
|
|
|
/* check if the demod is there */
|
|
id = tda1004x_read_byte(state, TDA1004X_CHIPID);
|
|
if (id < 0) {
|
|
printk(KERN_ERR "tda10046: chip is not answering. Giving up.\n");
|
|
kfree(state);
|
|
return NULL;
|
|
}
|
|
if (id != 0x46) {
|
|
printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
|
|
kfree(state);
|
|
return NULL;
|
|
}
|
|
|
|
/* create dvb_frontend */
|
|
memcpy(&state->frontend.ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
|
|
state->frontend.demodulator_priv = state;
|
|
return &state->frontend;
|
|
}
|
|
|
|
module_param(debug, int, 0644);
|
|
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
|
|
|
|
MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
|
|
MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
EXPORT_SYMBOL(tda10045_attach);
|
|
EXPORT_SYMBOL(tda10046_attach);
|