mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-23 04:34:11 +08:00
c0e84b9901
Signed-off-by: Amol Lad <amol@verismonetworks.com> Signed-off-by: Andi Kleen <ak@suse.de>
498 lines
12 KiB
C
498 lines
12 KiB
C
/*
|
|
* linux/arch/i386/kernel/time_hpet.c
|
|
* This code largely copied from arch/x86_64/kernel/time.c
|
|
* See that file for credits.
|
|
*
|
|
* 2003-06-30 Venkatesh Pallipadi - Additional changes for HPET support
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
|
|
#include <asm/timer.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/apic.h>
|
|
|
|
#include <linux/timex.h>
|
|
|
|
#include <asm/hpet.h>
|
|
#include <linux/hpet.h>
|
|
|
|
static unsigned long hpet_period; /* fsecs / HPET clock */
|
|
unsigned long hpet_tick; /* hpet clks count per tick */
|
|
unsigned long hpet_address; /* hpet memory map physical address */
|
|
int hpet_use_timer;
|
|
|
|
static int use_hpet; /* can be used for runtime check of hpet */
|
|
static int boot_hpet_disable; /* boottime override for HPET timer */
|
|
static void __iomem * hpet_virt_address; /* hpet kernel virtual address */
|
|
|
|
#define FSEC_TO_USEC (1000000000UL)
|
|
|
|
int hpet_readl(unsigned long a)
|
|
{
|
|
return readl(hpet_virt_address + a);
|
|
}
|
|
|
|
static void hpet_writel(unsigned long d, unsigned long a)
|
|
{
|
|
writel(d, hpet_virt_address + a);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
/*
|
|
* HPET counters dont wrap around on every tick. They just change the
|
|
* comparator value and continue. Next tick can be caught by checking
|
|
* for a change in the comparator value. Used in apic.c.
|
|
*/
|
|
static void __devinit wait_hpet_tick(void)
|
|
{
|
|
unsigned int start_cmp_val, end_cmp_val;
|
|
|
|
start_cmp_val = hpet_readl(HPET_T0_CMP);
|
|
do {
|
|
end_cmp_val = hpet_readl(HPET_T0_CMP);
|
|
} while (start_cmp_val == end_cmp_val);
|
|
}
|
|
#endif
|
|
|
|
static int hpet_timer_stop_set_go(unsigned long tick)
|
|
{
|
|
unsigned int cfg;
|
|
|
|
/*
|
|
* Stop the timers and reset the main counter.
|
|
*/
|
|
cfg = hpet_readl(HPET_CFG);
|
|
cfg &= ~HPET_CFG_ENABLE;
|
|
hpet_writel(cfg, HPET_CFG);
|
|
hpet_writel(0, HPET_COUNTER);
|
|
hpet_writel(0, HPET_COUNTER + 4);
|
|
|
|
if (hpet_use_timer) {
|
|
/*
|
|
* Set up timer 0, as periodic with first interrupt to happen at
|
|
* hpet_tick, and period also hpet_tick.
|
|
*/
|
|
cfg = hpet_readl(HPET_T0_CFG);
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
|
|
HPET_TN_SETVAL | HPET_TN_32BIT;
|
|
hpet_writel(cfg, HPET_T0_CFG);
|
|
|
|
/*
|
|
* The first write after writing TN_SETVAL to the config register sets
|
|
* the counter value, the second write sets the threshold.
|
|
*/
|
|
hpet_writel(tick, HPET_T0_CMP);
|
|
hpet_writel(tick, HPET_T0_CMP);
|
|
}
|
|
/*
|
|
* Go!
|
|
*/
|
|
cfg = hpet_readl(HPET_CFG);
|
|
if (hpet_use_timer)
|
|
cfg |= HPET_CFG_LEGACY;
|
|
cfg |= HPET_CFG_ENABLE;
|
|
hpet_writel(cfg, HPET_CFG);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check whether HPET was found by ACPI boot parse. If yes setup HPET
|
|
* counter 0 for kernel base timer.
|
|
*/
|
|
int __init hpet_enable(void)
|
|
{
|
|
unsigned int id;
|
|
unsigned long tick_fsec_low, tick_fsec_high; /* tick in femto sec */
|
|
unsigned long hpet_tick_rem;
|
|
|
|
if (boot_hpet_disable)
|
|
return -1;
|
|
|
|
if (!hpet_address) {
|
|
return -1;
|
|
}
|
|
hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
|
|
/*
|
|
* Read the period, compute tick and quotient.
|
|
*/
|
|
id = hpet_readl(HPET_ID);
|
|
|
|
/*
|
|
* We are checking for value '1' or more in number field if
|
|
* CONFIG_HPET_EMULATE_RTC is set because we will need an
|
|
* additional timer for RTC emulation.
|
|
* However, we can do with one timer otherwise using the
|
|
* the single HPET timer for system time.
|
|
*/
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
if (!(id & HPET_ID_NUMBER)) {
|
|
iounmap(hpet_virt_address);
|
|
hpet_virt_address = NULL;
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
|
|
hpet_period = hpet_readl(HPET_PERIOD);
|
|
if ((hpet_period < HPET_MIN_PERIOD) || (hpet_period > HPET_MAX_PERIOD)) {
|
|
iounmap(hpet_virt_address);
|
|
hpet_virt_address = NULL;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* 64 bit math
|
|
* First changing tick into fsec
|
|
* Then 64 bit div to find number of hpet clk per tick
|
|
*/
|
|
ASM_MUL64_REG(tick_fsec_low, tick_fsec_high,
|
|
KERNEL_TICK_USEC, FSEC_TO_USEC);
|
|
ASM_DIV64_REG(hpet_tick, hpet_tick_rem,
|
|
hpet_period, tick_fsec_low, tick_fsec_high);
|
|
|
|
if (hpet_tick_rem > (hpet_period >> 1))
|
|
hpet_tick++; /* rounding the result */
|
|
|
|
hpet_use_timer = id & HPET_ID_LEGSUP;
|
|
|
|
if (hpet_timer_stop_set_go(hpet_tick)) {
|
|
iounmap(hpet_virt_address);
|
|
hpet_virt_address = NULL;
|
|
return -1;
|
|
}
|
|
|
|
use_hpet = 1;
|
|
|
|
#ifdef CONFIG_HPET
|
|
{
|
|
struct hpet_data hd;
|
|
unsigned int ntimer;
|
|
|
|
memset(&hd, 0, sizeof (hd));
|
|
|
|
ntimer = hpet_readl(HPET_ID);
|
|
ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
|
|
ntimer++;
|
|
|
|
/*
|
|
* Register with driver.
|
|
* Timer0 and Timer1 is used by platform.
|
|
*/
|
|
hd.hd_phys_address = hpet_address;
|
|
hd.hd_address = hpet_virt_address;
|
|
hd.hd_nirqs = ntimer;
|
|
hd.hd_flags = HPET_DATA_PLATFORM;
|
|
hpet_reserve_timer(&hd, 0);
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
hpet_reserve_timer(&hd, 1);
|
|
#endif
|
|
hd.hd_irq[0] = HPET_LEGACY_8254;
|
|
hd.hd_irq[1] = HPET_LEGACY_RTC;
|
|
if (ntimer > 2) {
|
|
struct hpet __iomem *hpet;
|
|
struct hpet_timer __iomem *timer;
|
|
int i;
|
|
|
|
hpet = hpet_virt_address;
|
|
|
|
for (i = 2, timer = &hpet->hpet_timers[2]; i < ntimer;
|
|
timer++, i++)
|
|
hd.hd_irq[i] = (timer->hpet_config &
|
|
Tn_INT_ROUTE_CNF_MASK) >>
|
|
Tn_INT_ROUTE_CNF_SHIFT;
|
|
|
|
}
|
|
|
|
hpet_alloc(&hd);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
if (hpet_use_timer)
|
|
wait_timer_tick = wait_hpet_tick;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
int hpet_reenable(void)
|
|
{
|
|
return hpet_timer_stop_set_go(hpet_tick);
|
|
}
|
|
|
|
int is_hpet_enabled(void)
|
|
{
|
|
return use_hpet;
|
|
}
|
|
|
|
int is_hpet_capable(void)
|
|
{
|
|
if (!boot_hpet_disable && hpet_address)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int __init hpet_setup(char* str)
|
|
{
|
|
if (str) {
|
|
if (!strncmp("disable", str, 7))
|
|
boot_hpet_disable = 1;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
__setup("hpet=", hpet_setup);
|
|
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
|
|
* is enabled, we support RTC interrupt functionality in software.
|
|
* RTC has 3 kinds of interrupts:
|
|
* 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
|
|
* is updated
|
|
* 2) Alarm Interrupt - generate an interrupt at a specific time of day
|
|
* 3) Periodic Interrupt - generate periodic interrupt, with frequencies
|
|
* 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
|
|
* (1) and (2) above are implemented using polling at a frequency of
|
|
* 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
|
|
* overhead. (DEFAULT_RTC_INT_FREQ)
|
|
* For (3), we use interrupts at 64Hz or user specified periodic
|
|
* frequency, whichever is higher.
|
|
*/
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/rtc.h>
|
|
|
|
#define DEFAULT_RTC_INT_FREQ 64
|
|
#define RTC_NUM_INTS 1
|
|
|
|
static unsigned long UIE_on;
|
|
static unsigned long prev_update_sec;
|
|
|
|
static unsigned long AIE_on;
|
|
static struct rtc_time alarm_time;
|
|
|
|
static unsigned long PIE_on;
|
|
static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
|
|
static unsigned long PIE_count;
|
|
|
|
static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
|
|
static unsigned int hpet_t1_cmp; /* cached comparator register */
|
|
|
|
/*
|
|
* Timer 1 for RTC, we do not use periodic interrupt feature,
|
|
* even if HPET supports periodic interrupts on Timer 1.
|
|
* The reason being, to set up a periodic interrupt in HPET, we need to
|
|
* stop the main counter. And if we do that everytime someone diables/enables
|
|
* RTC, we will have adverse effect on main kernel timer running on Timer 0.
|
|
* So, for the time being, simulate the periodic interrupt in software.
|
|
*
|
|
* hpet_rtc_timer_init() is called for the first time and during subsequent
|
|
* interuppts reinit happens through hpet_rtc_timer_reinit().
|
|
*/
|
|
int hpet_rtc_timer_init(void)
|
|
{
|
|
unsigned int cfg, cnt;
|
|
unsigned long flags;
|
|
|
|
if (!is_hpet_enabled())
|
|
return 0;
|
|
/*
|
|
* Set the counter 1 and enable the interrupts.
|
|
*/
|
|
if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
|
|
hpet_rtc_int_freq = PIE_freq;
|
|
else
|
|
hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cnt = hpet_readl(HPET_COUNTER);
|
|
cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
|
|
hpet_writel(cnt, HPET_T1_CMP);
|
|
hpet_t1_cmp = cnt;
|
|
|
|
cfg = hpet_readl(HPET_T1_CFG);
|
|
cfg &= ~HPET_TN_PERIODIC;
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
|
|
hpet_writel(cfg, HPET_T1_CFG);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void hpet_rtc_timer_reinit(void)
|
|
{
|
|
unsigned int cfg, cnt, ticks_per_int, lost_ints;
|
|
|
|
if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
|
|
cfg = hpet_readl(HPET_T1_CFG);
|
|
cfg &= ~HPET_TN_ENABLE;
|
|
hpet_writel(cfg, HPET_T1_CFG);
|
|
return;
|
|
}
|
|
|
|
if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
|
|
hpet_rtc_int_freq = PIE_freq;
|
|
else
|
|
hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
|
|
|
|
/* It is more accurate to use the comparator value than current count.*/
|
|
ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq;
|
|
hpet_t1_cmp += ticks_per_int;
|
|
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
|
|
|
|
/*
|
|
* If the interrupt handler was delayed too long, the write above tries
|
|
* to schedule the next interrupt in the past and the hardware would
|
|
* not interrupt until the counter had wrapped around.
|
|
* So we have to check that the comparator wasn't set to a past time.
|
|
*/
|
|
cnt = hpet_readl(HPET_COUNTER);
|
|
if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) {
|
|
lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1;
|
|
/* Make sure that, even with the time needed to execute
|
|
* this code, the next scheduled interrupt has been moved
|
|
* back to the future: */
|
|
lost_ints++;
|
|
|
|
hpet_t1_cmp += lost_ints * ticks_per_int;
|
|
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
|
|
|
|
if (PIE_on)
|
|
PIE_count += lost_ints;
|
|
|
|
printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
|
|
hpet_rtc_int_freq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The functions below are called from rtc driver.
|
|
* Return 0 if HPET is not being used.
|
|
* Otherwise do the necessary changes and return 1.
|
|
*/
|
|
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
|
|
{
|
|
if (!is_hpet_enabled())
|
|
return 0;
|
|
|
|
if (bit_mask & RTC_UIE)
|
|
UIE_on = 0;
|
|
if (bit_mask & RTC_PIE)
|
|
PIE_on = 0;
|
|
if (bit_mask & RTC_AIE)
|
|
AIE_on = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int hpet_set_rtc_irq_bit(unsigned long bit_mask)
|
|
{
|
|
int timer_init_reqd = 0;
|
|
|
|
if (!is_hpet_enabled())
|
|
return 0;
|
|
|
|
if (!(PIE_on | AIE_on | UIE_on))
|
|
timer_init_reqd = 1;
|
|
|
|
if (bit_mask & RTC_UIE) {
|
|
UIE_on = 1;
|
|
}
|
|
if (bit_mask & RTC_PIE) {
|
|
PIE_on = 1;
|
|
PIE_count = 0;
|
|
}
|
|
if (bit_mask & RTC_AIE) {
|
|
AIE_on = 1;
|
|
}
|
|
|
|
if (timer_init_reqd)
|
|
hpet_rtc_timer_init();
|
|
|
|
return 1;
|
|
}
|
|
|
|
int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
|
|
{
|
|
if (!is_hpet_enabled())
|
|
return 0;
|
|
|
|
alarm_time.tm_hour = hrs;
|
|
alarm_time.tm_min = min;
|
|
alarm_time.tm_sec = sec;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int hpet_set_periodic_freq(unsigned long freq)
|
|
{
|
|
if (!is_hpet_enabled())
|
|
return 0;
|
|
|
|
PIE_freq = freq;
|
|
PIE_count = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int hpet_rtc_dropped_irq(void)
|
|
{
|
|
if (!is_hpet_enabled())
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct rtc_time curr_time;
|
|
unsigned long rtc_int_flag = 0;
|
|
int call_rtc_interrupt = 0;
|
|
|
|
hpet_rtc_timer_reinit();
|
|
|
|
if (UIE_on | AIE_on) {
|
|
rtc_get_rtc_time(&curr_time);
|
|
}
|
|
if (UIE_on) {
|
|
if (curr_time.tm_sec != prev_update_sec) {
|
|
/* Set update int info, call real rtc int routine */
|
|
call_rtc_interrupt = 1;
|
|
rtc_int_flag = RTC_UF;
|
|
prev_update_sec = curr_time.tm_sec;
|
|
}
|
|
}
|
|
if (PIE_on) {
|
|
PIE_count++;
|
|
if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
|
|
/* Set periodic int info, call real rtc int routine */
|
|
call_rtc_interrupt = 1;
|
|
rtc_int_flag |= RTC_PF;
|
|
PIE_count = 0;
|
|
}
|
|
}
|
|
if (AIE_on) {
|
|
if ((curr_time.tm_sec == alarm_time.tm_sec) &&
|
|
(curr_time.tm_min == alarm_time.tm_min) &&
|
|
(curr_time.tm_hour == alarm_time.tm_hour)) {
|
|
/* Set alarm int info, call real rtc int routine */
|
|
call_rtc_interrupt = 1;
|
|
rtc_int_flag |= RTC_AF;
|
|
}
|
|
}
|
|
if (call_rtc_interrupt) {
|
|
rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
|
|
rtc_interrupt(rtc_int_flag, dev_id);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
#endif
|
|
|