2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/drivers/base/dd.c
Ulf Hansson fa180eb448 PM / Runtime: Idle devices asynchronously after probe|release
Putting devices into idle|suspend in a synchronous manner means we are
waiting for each device to become idle|suspended before the probe|release
is fully done.

This patch switch to use the asynchronous runtime PM API:s instead and
thus improves the parallelism since we can move on and handle the next
device in queue in an earlier phase.

Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Kevin Hilman <khilman@linaro.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-04-11 12:42:52 -07:00

599 lines
16 KiB
C

/*
* drivers/base/dd.c - The core device/driver interactions.
*
* This file contains the (sometimes tricky) code that controls the
* interactions between devices and drivers, which primarily includes
* driver binding and unbinding.
*
* All of this code used to exist in drivers/base/bus.c, but was
* relocated to here in the name of compartmentalization (since it wasn't
* strictly code just for the 'struct bus_type'.
*
* Copyright (c) 2002-5 Patrick Mochel
* Copyright (c) 2002-3 Open Source Development Labs
* Copyright (c) 2007-2009 Greg Kroah-Hartman <gregkh@suse.de>
* Copyright (c) 2007-2009 Novell Inc.
*
* This file is released under the GPLv2
*/
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/async.h>
#include <linux/pm_runtime.h>
#include <linux/pinctrl/devinfo.h>
#include "base.h"
#include "power/power.h"
/*
* Deferred Probe infrastructure.
*
* Sometimes driver probe order matters, but the kernel doesn't always have
* dependency information which means some drivers will get probed before a
* resource it depends on is available. For example, an SDHCI driver may
* first need a GPIO line from an i2c GPIO controller before it can be
* initialized. If a required resource is not available yet, a driver can
* request probing to be deferred by returning -EPROBE_DEFER from its probe hook
*
* Deferred probe maintains two lists of devices, a pending list and an active
* list. A driver returning -EPROBE_DEFER causes the device to be added to the
* pending list. A successful driver probe will trigger moving all devices
* from the pending to the active list so that the workqueue will eventually
* retry them.
*
* The deferred_probe_mutex must be held any time the deferred_probe_*_list
* of the (struct device*)->p->deferred_probe pointers are manipulated
*/
static DEFINE_MUTEX(deferred_probe_mutex);
static LIST_HEAD(deferred_probe_pending_list);
static LIST_HEAD(deferred_probe_active_list);
static struct workqueue_struct *deferred_wq;
/**
* deferred_probe_work_func() - Retry probing devices in the active list.
*/
static void deferred_probe_work_func(struct work_struct *work)
{
struct device *dev;
struct device_private *private;
/*
* This block processes every device in the deferred 'active' list.
* Each device is removed from the active list and passed to
* bus_probe_device() to re-attempt the probe. The loop continues
* until every device in the active list is removed and retried.
*
* Note: Once the device is removed from the list and the mutex is
* released, it is possible for the device get freed by another thread
* and cause a illegal pointer dereference. This code uses
* get/put_device() to ensure the device structure cannot disappear
* from under our feet.
*/
mutex_lock(&deferred_probe_mutex);
while (!list_empty(&deferred_probe_active_list)) {
private = list_first_entry(&deferred_probe_active_list,
typeof(*dev->p), deferred_probe);
dev = private->device;
list_del_init(&private->deferred_probe);
get_device(dev);
/*
* Drop the mutex while probing each device; the probe path may
* manipulate the deferred list
*/
mutex_unlock(&deferred_probe_mutex);
/*
* Force the device to the end of the dpm_list since
* the PM code assumes that the order we add things to
* the list is a good order for suspend but deferred
* probe makes that very unsafe.
*/
device_pm_lock();
device_pm_move_last(dev);
device_pm_unlock();
dev_dbg(dev, "Retrying from deferred list\n");
bus_probe_device(dev);
mutex_lock(&deferred_probe_mutex);
put_device(dev);
}
mutex_unlock(&deferred_probe_mutex);
}
static DECLARE_WORK(deferred_probe_work, deferred_probe_work_func);
static void driver_deferred_probe_add(struct device *dev)
{
mutex_lock(&deferred_probe_mutex);
if (list_empty(&dev->p->deferred_probe)) {
dev_dbg(dev, "Added to deferred list\n");
list_add_tail(&dev->p->deferred_probe, &deferred_probe_pending_list);
}
mutex_unlock(&deferred_probe_mutex);
}
void driver_deferred_probe_del(struct device *dev)
{
mutex_lock(&deferred_probe_mutex);
if (!list_empty(&dev->p->deferred_probe)) {
dev_dbg(dev, "Removed from deferred list\n");
list_del_init(&dev->p->deferred_probe);
}
mutex_unlock(&deferred_probe_mutex);
}
static bool driver_deferred_probe_enable = false;
/**
* driver_deferred_probe_trigger() - Kick off re-probing deferred devices
*
* This functions moves all devices from the pending list to the active
* list and schedules the deferred probe workqueue to process them. It
* should be called anytime a driver is successfully bound to a device.
*/
static void driver_deferred_probe_trigger(void)
{
if (!driver_deferred_probe_enable)
return;
/*
* A successful probe means that all the devices in the pending list
* should be triggered to be reprobed. Move all the deferred devices
* into the active list so they can be retried by the workqueue
*/
mutex_lock(&deferred_probe_mutex);
list_splice_tail_init(&deferred_probe_pending_list,
&deferred_probe_active_list);
mutex_unlock(&deferred_probe_mutex);
/*
* Kick the re-probe thread. It may already be scheduled, but it is
* safe to kick it again.
*/
queue_work(deferred_wq, &deferred_probe_work);
}
/**
* deferred_probe_initcall() - Enable probing of deferred devices
*
* We don't want to get in the way when the bulk of drivers are getting probed.
* Instead, this initcall makes sure that deferred probing is delayed until
* late_initcall time.
*/
static int deferred_probe_initcall(void)
{
deferred_wq = create_singlethread_workqueue("deferwq");
if (WARN_ON(!deferred_wq))
return -ENOMEM;
driver_deferred_probe_enable = true;
driver_deferred_probe_trigger();
/* Sort as many dependencies as possible before exiting initcalls */
flush_workqueue(deferred_wq);
return 0;
}
late_initcall(deferred_probe_initcall);
static void driver_bound(struct device *dev)
{
if (klist_node_attached(&dev->p->knode_driver)) {
printk(KERN_WARNING "%s: device %s already bound\n",
__func__, kobject_name(&dev->kobj));
return;
}
pr_debug("driver: '%s': %s: bound to device '%s'\n", dev_name(dev),
__func__, dev->driver->name);
klist_add_tail(&dev->p->knode_driver, &dev->driver->p->klist_devices);
/*
* Make sure the device is no longer in one of the deferred lists and
* kick off retrying all pending devices
*/
driver_deferred_probe_del(dev);
driver_deferred_probe_trigger();
if (dev->bus)
blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
BUS_NOTIFY_BOUND_DRIVER, dev);
}
static int driver_sysfs_add(struct device *dev)
{
int ret;
if (dev->bus)
blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
BUS_NOTIFY_BIND_DRIVER, dev);
ret = sysfs_create_link(&dev->driver->p->kobj, &dev->kobj,
kobject_name(&dev->kobj));
if (ret == 0) {
ret = sysfs_create_link(&dev->kobj, &dev->driver->p->kobj,
"driver");
if (ret)
sysfs_remove_link(&dev->driver->p->kobj,
kobject_name(&dev->kobj));
}
return ret;
}
static void driver_sysfs_remove(struct device *dev)
{
struct device_driver *drv = dev->driver;
if (drv) {
sysfs_remove_link(&drv->p->kobj, kobject_name(&dev->kobj));
sysfs_remove_link(&dev->kobj, "driver");
}
}
/**
* device_bind_driver - bind a driver to one device.
* @dev: device.
*
* Allow manual attachment of a driver to a device.
* Caller must have already set @dev->driver.
*
* Note that this does not modify the bus reference count
* nor take the bus's rwsem. Please verify those are accounted
* for before calling this. (It is ok to call with no other effort
* from a driver's probe() method.)
*
* This function must be called with the device lock held.
*/
int device_bind_driver(struct device *dev)
{
int ret;
ret = driver_sysfs_add(dev);
if (!ret)
driver_bound(dev);
return ret;
}
EXPORT_SYMBOL_GPL(device_bind_driver);
static atomic_t probe_count = ATOMIC_INIT(0);
static DECLARE_WAIT_QUEUE_HEAD(probe_waitqueue);
static int really_probe(struct device *dev, struct device_driver *drv)
{
int ret = 0;
atomic_inc(&probe_count);
pr_debug("bus: '%s': %s: probing driver %s with device %s\n",
drv->bus->name, __func__, drv->name, dev_name(dev));
WARN_ON(!list_empty(&dev->devres_head));
dev->driver = drv;
/* If using pinctrl, bind pins now before probing */
ret = pinctrl_bind_pins(dev);
if (ret)
goto probe_failed;
if (driver_sysfs_add(dev)) {
printk(KERN_ERR "%s: driver_sysfs_add(%s) failed\n",
__func__, dev_name(dev));
goto probe_failed;
}
if (dev->bus->probe) {
ret = dev->bus->probe(dev);
if (ret)
goto probe_failed;
} else if (drv->probe) {
ret = drv->probe(dev);
if (ret)
goto probe_failed;
}
driver_bound(dev);
ret = 1;
pr_debug("bus: '%s': %s: bound device %s to driver %s\n",
drv->bus->name, __func__, dev_name(dev), drv->name);
goto done;
probe_failed:
devres_release_all(dev);
driver_sysfs_remove(dev);
dev->driver = NULL;
dev_set_drvdata(dev, NULL);
if (ret == -EPROBE_DEFER) {
/* Driver requested deferred probing */
dev_info(dev, "Driver %s requests probe deferral\n", drv->name);
driver_deferred_probe_add(dev);
} else if (ret != -ENODEV && ret != -ENXIO) {
/* driver matched but the probe failed */
printk(KERN_WARNING
"%s: probe of %s failed with error %d\n",
drv->name, dev_name(dev), ret);
} else {
pr_debug("%s: probe of %s rejects match %d\n",
drv->name, dev_name(dev), ret);
}
/*
* Ignore errors returned by ->probe so that the next driver can try
* its luck.
*/
ret = 0;
done:
atomic_dec(&probe_count);
wake_up(&probe_waitqueue);
return ret;
}
/**
* driver_probe_done
* Determine if the probe sequence is finished or not.
*
* Should somehow figure out how to use a semaphore, not an atomic variable...
*/
int driver_probe_done(void)
{
pr_debug("%s: probe_count = %d\n", __func__,
atomic_read(&probe_count));
if (atomic_read(&probe_count))
return -EBUSY;
return 0;
}
/**
* wait_for_device_probe
* Wait for device probing to be completed.
*/
void wait_for_device_probe(void)
{
/* wait for the known devices to complete their probing */
wait_event(probe_waitqueue, atomic_read(&probe_count) == 0);
async_synchronize_full();
}
EXPORT_SYMBOL_GPL(wait_for_device_probe);
/**
* driver_probe_device - attempt to bind device & driver together
* @drv: driver to bind a device to
* @dev: device to try to bind to the driver
*
* This function returns -ENODEV if the device is not registered,
* 1 if the device is bound successfully and 0 otherwise.
*
* This function must be called with @dev lock held. When called for a
* USB interface, @dev->parent lock must be held as well.
*/
int driver_probe_device(struct device_driver *drv, struct device *dev)
{
int ret = 0;
if (!device_is_registered(dev))
return -ENODEV;
pr_debug("bus: '%s': %s: matched device %s with driver %s\n",
drv->bus->name, __func__, dev_name(dev), drv->name);
pm_runtime_barrier(dev);
ret = really_probe(dev, drv);
pm_request_idle(dev);
return ret;
}
static int __device_attach(struct device_driver *drv, void *data)
{
struct device *dev = data;
if (!driver_match_device(drv, dev))
return 0;
return driver_probe_device(drv, dev);
}
/**
* device_attach - try to attach device to a driver.
* @dev: device.
*
* Walk the list of drivers that the bus has and call
* driver_probe_device() for each pair. If a compatible
* pair is found, break out and return.
*
* Returns 1 if the device was bound to a driver;
* 0 if no matching driver was found;
* -ENODEV if the device is not registered.
*
* When called for a USB interface, @dev->parent lock must be held.
*/
int device_attach(struct device *dev)
{
int ret = 0;
device_lock(dev);
if (dev->driver) {
if (klist_node_attached(&dev->p->knode_driver)) {
ret = 1;
goto out_unlock;
}
ret = device_bind_driver(dev);
if (ret == 0)
ret = 1;
else {
dev->driver = NULL;
ret = 0;
}
} else {
ret = bus_for_each_drv(dev->bus, NULL, dev, __device_attach);
pm_request_idle(dev);
}
out_unlock:
device_unlock(dev);
return ret;
}
EXPORT_SYMBOL_GPL(device_attach);
static int __driver_attach(struct device *dev, void *data)
{
struct device_driver *drv = data;
/*
* Lock device and try to bind to it. We drop the error
* here and always return 0, because we need to keep trying
* to bind to devices and some drivers will return an error
* simply if it didn't support the device.
*
* driver_probe_device() will spit a warning if there
* is an error.
*/
if (!driver_match_device(drv, dev))
return 0;
if (dev->parent) /* Needed for USB */
device_lock(dev->parent);
device_lock(dev);
if (!dev->driver)
driver_probe_device(drv, dev);
device_unlock(dev);
if (dev->parent)
device_unlock(dev->parent);
return 0;
}
/**
* driver_attach - try to bind driver to devices.
* @drv: driver.
*
* Walk the list of devices that the bus has on it and try to
* match the driver with each one. If driver_probe_device()
* returns 0 and the @dev->driver is set, we've found a
* compatible pair.
*/
int driver_attach(struct device_driver *drv)
{
return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);
}
EXPORT_SYMBOL_GPL(driver_attach);
/*
* __device_release_driver() must be called with @dev lock held.
* When called for a USB interface, @dev->parent lock must be held as well.
*/
static void __device_release_driver(struct device *dev)
{
struct device_driver *drv;
drv = dev->driver;
if (drv) {
pm_runtime_get_sync(dev);
driver_sysfs_remove(dev);
if (dev->bus)
blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
BUS_NOTIFY_UNBIND_DRIVER,
dev);
pm_runtime_put(dev);
if (dev->bus && dev->bus->remove)
dev->bus->remove(dev);
else if (drv->remove)
drv->remove(dev);
devres_release_all(dev);
dev->driver = NULL;
dev_set_drvdata(dev, NULL);
klist_remove(&dev->p->knode_driver);
if (dev->bus)
blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
BUS_NOTIFY_UNBOUND_DRIVER,
dev);
}
}
/**
* device_release_driver - manually detach device from driver.
* @dev: device.
*
* Manually detach device from driver.
* When called for a USB interface, @dev->parent lock must be held.
*/
void device_release_driver(struct device *dev)
{
/*
* If anyone calls device_release_driver() recursively from
* within their ->remove callback for the same device, they
* will deadlock right here.
*/
device_lock(dev);
__device_release_driver(dev);
device_unlock(dev);
}
EXPORT_SYMBOL_GPL(device_release_driver);
/**
* driver_detach - detach driver from all devices it controls.
* @drv: driver.
*/
void driver_detach(struct device_driver *drv)
{
struct device_private *dev_prv;
struct device *dev;
for (;;) {
spin_lock(&drv->p->klist_devices.k_lock);
if (list_empty(&drv->p->klist_devices.k_list)) {
spin_unlock(&drv->p->klist_devices.k_lock);
break;
}
dev_prv = list_entry(drv->p->klist_devices.k_list.prev,
struct device_private,
knode_driver.n_node);
dev = dev_prv->device;
get_device(dev);
spin_unlock(&drv->p->klist_devices.k_lock);
if (dev->parent) /* Needed for USB */
device_lock(dev->parent);
device_lock(dev);
if (dev->driver == drv)
__device_release_driver(dev);
device_unlock(dev);
if (dev->parent)
device_unlock(dev->parent);
put_device(dev);
}
}
/*
* These exports can't be _GPL due to .h files using this within them, and it
* might break something that was previously working...
*/
void *dev_get_drvdata(const struct device *dev)
{
if (dev && dev->p)
return dev->p->driver_data;
return NULL;
}
EXPORT_SYMBOL(dev_get_drvdata);
int dev_set_drvdata(struct device *dev, void *data)
{
int error;
if (!dev->p) {
error = device_private_init(dev);
if (error)
return error;
}
dev->p->driver_data = data;
return 0;
}
EXPORT_SYMBOL(dev_set_drvdata);