mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-25 05:34:00 +08:00
7462141787
With the change to the new firmware, there was a change to firmware memory partitioning. Along with that change, the translation of all partitions was unified, and separate functions for reg and mem access became unnecessary. Cleanup the unnecessary functions. Signed-off-by: Juuso Oikarinen <juuso.oikarinen@nokia.com> Reviewed-by: Luciano Coelho <luciano.coelho@nokia.com> Signed-off-by: Luciano Coelho <luciano.coelho@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
413 lines
11 KiB
C
413 lines
11 KiB
C
/*
|
|
* This file is part of wl1271
|
|
*
|
|
* Copyright (C) 2008-2009 Nokia Corporation
|
|
*
|
|
* Contact: Luciano Coelho <luciano.coelho@nokia.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
|
|
* 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/crc7.h>
|
|
#include <linux/spi/spi.h>
|
|
|
|
#include "wl1271.h"
|
|
#include "wl12xx_80211.h"
|
|
#include "wl1271_spi.h"
|
|
|
|
static int wl1271_translate_addr(struct wl1271 *wl, int addr)
|
|
{
|
|
/*
|
|
* To translate, first check to which window of addresses the
|
|
* particular address belongs. Then subtract the starting address
|
|
* of that window from the address. Then, add offset of the
|
|
* translated region.
|
|
*
|
|
* The translated regions occur next to each other in physical device
|
|
* memory, so just add the sizes of the preceeding address regions to
|
|
* get the offset to the new region.
|
|
*
|
|
* Currently, only the two first regions are addressed, and the
|
|
* assumption is that all addresses will fall into either of those
|
|
* two.
|
|
*/
|
|
if ((addr >= wl->part.reg.start) &&
|
|
(addr < wl->part.reg.start + wl->part.reg.size))
|
|
return addr - wl->part.reg.start + wl->part.mem.size;
|
|
else
|
|
return addr - wl->part.mem.start;
|
|
}
|
|
|
|
void wl1271_spi_reset(struct wl1271 *wl)
|
|
{
|
|
u8 *cmd;
|
|
struct spi_transfer t;
|
|
struct spi_message m;
|
|
|
|
cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
|
|
if (!cmd) {
|
|
wl1271_error("could not allocate cmd for spi reset");
|
|
return;
|
|
}
|
|
|
|
memset(&t, 0, sizeof(t));
|
|
spi_message_init(&m);
|
|
|
|
memset(cmd, 0xff, WSPI_INIT_CMD_LEN);
|
|
|
|
t.tx_buf = cmd;
|
|
t.len = WSPI_INIT_CMD_LEN;
|
|
spi_message_add_tail(&t, &m);
|
|
|
|
spi_sync(wl->spi, &m);
|
|
|
|
wl1271_dump(DEBUG_SPI, "spi reset -> ", cmd, WSPI_INIT_CMD_LEN);
|
|
}
|
|
|
|
void wl1271_spi_init(struct wl1271 *wl)
|
|
{
|
|
u8 crc[WSPI_INIT_CMD_CRC_LEN], *cmd;
|
|
struct spi_transfer t;
|
|
struct spi_message m;
|
|
|
|
cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
|
|
if (!cmd) {
|
|
wl1271_error("could not allocate cmd for spi init");
|
|
return;
|
|
}
|
|
|
|
memset(crc, 0, sizeof(crc));
|
|
memset(&t, 0, sizeof(t));
|
|
spi_message_init(&m);
|
|
|
|
/*
|
|
* Set WSPI_INIT_COMMAND
|
|
* the data is being send from the MSB to LSB
|
|
*/
|
|
cmd[2] = 0xff;
|
|
cmd[3] = 0xff;
|
|
cmd[1] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX;
|
|
cmd[0] = 0;
|
|
cmd[7] = 0;
|
|
cmd[6] |= HW_ACCESS_WSPI_INIT_CMD_MASK << 3;
|
|
cmd[6] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN;
|
|
|
|
if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0)
|
|
cmd[5] |= WSPI_INIT_CMD_DIS_FIXEDBUSY;
|
|
else
|
|
cmd[5] |= WSPI_INIT_CMD_EN_FIXEDBUSY;
|
|
|
|
cmd[5] |= WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS
|
|
| WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS;
|
|
|
|
crc[0] = cmd[1];
|
|
crc[1] = cmd[0];
|
|
crc[2] = cmd[7];
|
|
crc[3] = cmd[6];
|
|
crc[4] = cmd[5];
|
|
|
|
cmd[4] |= crc7(0, crc, WSPI_INIT_CMD_CRC_LEN) << 1;
|
|
cmd[4] |= WSPI_INIT_CMD_END;
|
|
|
|
t.tx_buf = cmd;
|
|
t.len = WSPI_INIT_CMD_LEN;
|
|
spi_message_add_tail(&t, &m);
|
|
|
|
spi_sync(wl->spi, &m);
|
|
|
|
wl1271_dump(DEBUG_SPI, "spi init -> ", cmd, WSPI_INIT_CMD_LEN);
|
|
}
|
|
|
|
/* Set the SPI partitions to access the chip addresses
|
|
*
|
|
* To simplify driver code, a fixed (virtual) memory map is defined for
|
|
* register and memory addresses. Because in the chipset, in different stages
|
|
* of operation, those addresses will move around, an address translation
|
|
* mechanism is required.
|
|
*
|
|
* There are four partitions (three memory and one register partition),
|
|
* which are mapped to two different areas of the hardware memory.
|
|
*
|
|
* Virtual address
|
|
* space
|
|
*
|
|
* | |
|
|
* ...+----+--> mem.start
|
|
* Physical address ... | |
|
|
* space ... | | [PART_0]
|
|
* ... | |
|
|
* 00000000 <--+----+... ...+----+--> mem.start + mem.size
|
|
* | | ... | |
|
|
* |MEM | ... | |
|
|
* | | ... | |
|
|
* mem.size <--+----+... | | {unused area)
|
|
* | | ... | |
|
|
* |REG | ... | |
|
|
* mem.size | | ... | |
|
|
* + <--+----+... ...+----+--> reg.start
|
|
* reg.size | | ... | |
|
|
* |MEM2| ... | | [PART_1]
|
|
* | | ... | |
|
|
* ...+----+--> reg.start + reg.size
|
|
* | |
|
|
*
|
|
*/
|
|
int wl1271_set_partition(struct wl1271 *wl,
|
|
struct wl1271_partition_set *p)
|
|
{
|
|
/* copy partition info */
|
|
memcpy(&wl->part, p, sizeof(*p));
|
|
|
|
wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
|
|
p->mem.start, p->mem.size);
|
|
wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
|
|
p->reg.start, p->reg.size);
|
|
wl1271_debug(DEBUG_SPI, "mem2_start %08X mem2_size %08X",
|
|
p->mem2.start, p->mem2.size);
|
|
wl1271_debug(DEBUG_SPI, "mem3_start %08X mem3_size %08X",
|
|
p->mem3.start, p->mem3.size);
|
|
|
|
/* write partition info to the chipset */
|
|
wl1271_raw_write32(wl, HW_PART0_START_ADDR, p->mem.start);
|
|
wl1271_raw_write32(wl, HW_PART0_SIZE_ADDR, p->mem.size);
|
|
wl1271_raw_write32(wl, HW_PART1_START_ADDR, p->reg.start);
|
|
wl1271_raw_write32(wl, HW_PART1_SIZE_ADDR, p->reg.size);
|
|
wl1271_raw_write32(wl, HW_PART2_START_ADDR, p->mem2.start);
|
|
wl1271_raw_write32(wl, HW_PART2_SIZE_ADDR, p->mem2.size);
|
|
wl1271_raw_write32(wl, HW_PART3_START_ADDR, p->mem3.start);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define WL1271_BUSY_WORD_TIMEOUT 1000
|
|
|
|
void wl1271_spi_read_busy(struct wl1271 *wl, void *buf, size_t len)
|
|
{
|
|
struct spi_transfer t[1];
|
|
struct spi_message m;
|
|
u32 *busy_buf;
|
|
int num_busy_bytes = 0;
|
|
|
|
wl1271_info("spi read BUSY!");
|
|
|
|
/*
|
|
* Look for the non-busy word in the read buffer, and if found,
|
|
* read in the remaining data into the buffer.
|
|
*/
|
|
busy_buf = (u32 *)buf;
|
|
for (; (u32)busy_buf < (u32)buf + len; busy_buf++) {
|
|
num_busy_bytes += sizeof(u32);
|
|
if (*busy_buf & 0x1) {
|
|
spi_message_init(&m);
|
|
memset(t, 0, sizeof(t));
|
|
memmove(buf, busy_buf, len - num_busy_bytes);
|
|
t[0].rx_buf = buf + (len - num_busy_bytes);
|
|
t[0].len = num_busy_bytes;
|
|
spi_message_add_tail(&t[0], &m);
|
|
spi_sync(wl->spi, &m);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read further busy words from SPI until a non-busy word is
|
|
* encountered, then read the data itself into the buffer.
|
|
*/
|
|
wl1271_info("spi read BUSY-polling needed!");
|
|
|
|
num_busy_bytes = WL1271_BUSY_WORD_TIMEOUT;
|
|
busy_buf = wl->buffer_busyword;
|
|
while (num_busy_bytes) {
|
|
num_busy_bytes--;
|
|
spi_message_init(&m);
|
|
memset(t, 0, sizeof(t));
|
|
t[0].rx_buf = busy_buf;
|
|
t[0].len = sizeof(u32);
|
|
spi_message_add_tail(&t[0], &m);
|
|
spi_sync(wl->spi, &m);
|
|
|
|
if (*busy_buf & 0x1) {
|
|
spi_message_init(&m);
|
|
memset(t, 0, sizeof(t));
|
|
t[0].rx_buf = buf;
|
|
t[0].len = len;
|
|
spi_message_add_tail(&t[0], &m);
|
|
spi_sync(wl->spi, &m);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* The SPI bus is unresponsive, the read failed. */
|
|
memset(buf, 0, len);
|
|
wl1271_error("SPI read busy-word timeout!\n");
|
|
}
|
|
|
|
void wl1271_spi_raw_read(struct wl1271 *wl, int addr, void *buf,
|
|
size_t len, bool fixed)
|
|
{
|
|
struct spi_transfer t[3];
|
|
struct spi_message m;
|
|
u32 *busy_buf;
|
|
u32 *cmd;
|
|
|
|
cmd = &wl->buffer_cmd;
|
|
busy_buf = wl->buffer_busyword;
|
|
|
|
*cmd = 0;
|
|
*cmd |= WSPI_CMD_READ;
|
|
*cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
|
|
*cmd |= addr & WSPI_CMD_BYTE_ADDR;
|
|
|
|
if (fixed)
|
|
*cmd |= WSPI_CMD_FIXED;
|
|
|
|
spi_message_init(&m);
|
|
memset(t, 0, sizeof(t));
|
|
|
|
t[0].tx_buf = cmd;
|
|
t[0].len = 4;
|
|
spi_message_add_tail(&t[0], &m);
|
|
|
|
/* Busy and non busy words read */
|
|
t[1].rx_buf = busy_buf;
|
|
t[1].len = WL1271_BUSY_WORD_LEN;
|
|
spi_message_add_tail(&t[1], &m);
|
|
|
|
t[2].rx_buf = buf;
|
|
t[2].len = len;
|
|
spi_message_add_tail(&t[2], &m);
|
|
|
|
spi_sync(wl->spi, &m);
|
|
|
|
/* Check busy words */
|
|
if (!(busy_buf[WL1271_BUSY_WORD_CNT - 1] & 0x1))
|
|
wl1271_spi_read_busy(wl, buf, len);
|
|
|
|
wl1271_dump(DEBUG_SPI, "spi_read cmd -> ", cmd, sizeof(*cmd));
|
|
wl1271_dump(DEBUG_SPI, "spi_read buf <- ", buf, len);
|
|
}
|
|
|
|
void wl1271_spi_raw_write(struct wl1271 *wl, int addr, void *buf,
|
|
size_t len, bool fixed)
|
|
{
|
|
struct spi_transfer t[2];
|
|
struct spi_message m;
|
|
u32 *cmd;
|
|
|
|
cmd = &wl->buffer_cmd;
|
|
|
|
*cmd = 0;
|
|
*cmd |= WSPI_CMD_WRITE;
|
|
*cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
|
|
*cmd |= addr & WSPI_CMD_BYTE_ADDR;
|
|
|
|
if (fixed)
|
|
*cmd |= WSPI_CMD_FIXED;
|
|
|
|
spi_message_init(&m);
|
|
memset(t, 0, sizeof(t));
|
|
|
|
t[0].tx_buf = cmd;
|
|
t[0].len = sizeof(*cmd);
|
|
spi_message_add_tail(&t[0], &m);
|
|
|
|
t[1].tx_buf = buf;
|
|
t[1].len = len;
|
|
spi_message_add_tail(&t[1], &m);
|
|
|
|
spi_sync(wl->spi, &m);
|
|
|
|
wl1271_dump(DEBUG_SPI, "spi_write cmd -> ", cmd, sizeof(*cmd));
|
|
wl1271_dump(DEBUG_SPI, "spi_write buf -> ", buf, len);
|
|
}
|
|
|
|
void wl1271_spi_read(struct wl1271 *wl, int addr, void *buf, size_t len,
|
|
bool fixed)
|
|
{
|
|
int physical;
|
|
|
|
physical = wl1271_translate_addr(wl, addr);
|
|
|
|
wl1271_spi_raw_read(wl, physical, buf, len, fixed);
|
|
}
|
|
|
|
void wl1271_spi_write(struct wl1271 *wl, int addr, void *buf, size_t len,
|
|
bool fixed)
|
|
{
|
|
int physical;
|
|
|
|
physical = wl1271_translate_addr(wl, addr);
|
|
|
|
wl1271_spi_raw_write(wl, physical, buf, len, fixed);
|
|
}
|
|
|
|
u32 wl1271_spi_read32(struct wl1271 *wl, int addr)
|
|
{
|
|
return wl1271_raw_read32(wl, wl1271_translate_addr(wl, addr));
|
|
}
|
|
|
|
void wl1271_spi_write32(struct wl1271 *wl, int addr, u32 val)
|
|
{
|
|
wl1271_raw_write32(wl, wl1271_translate_addr(wl, addr), val);
|
|
}
|
|
|
|
void wl1271_top_reg_write(struct wl1271 *wl, int addr, u16 val)
|
|
{
|
|
/* write address >> 1 + 0x30000 to OCP_POR_CTR */
|
|
addr = (addr >> 1) + 0x30000;
|
|
wl1271_spi_write32(wl, OCP_POR_CTR, addr);
|
|
|
|
/* write value to OCP_POR_WDATA */
|
|
wl1271_spi_write32(wl, OCP_DATA_WRITE, val);
|
|
|
|
/* write 1 to OCP_CMD */
|
|
wl1271_spi_write32(wl, OCP_CMD, OCP_CMD_WRITE);
|
|
}
|
|
|
|
u16 wl1271_top_reg_read(struct wl1271 *wl, int addr)
|
|
{
|
|
u32 val;
|
|
int timeout = OCP_CMD_LOOP;
|
|
|
|
/* write address >> 1 + 0x30000 to OCP_POR_CTR */
|
|
addr = (addr >> 1) + 0x30000;
|
|
wl1271_spi_write32(wl, OCP_POR_CTR, addr);
|
|
|
|
/* write 2 to OCP_CMD */
|
|
wl1271_spi_write32(wl, OCP_CMD, OCP_CMD_READ);
|
|
|
|
/* poll for data ready */
|
|
do {
|
|
val = wl1271_spi_read32(wl, OCP_DATA_READ);
|
|
timeout--;
|
|
} while (!(val & OCP_READY_MASK) && timeout);
|
|
|
|
if (!timeout) {
|
|
wl1271_warning("Top register access timed out.");
|
|
return 0xffff;
|
|
}
|
|
|
|
/* check data status and return if OK */
|
|
if ((val & OCP_STATUS_MASK) == OCP_STATUS_OK)
|
|
return val & 0xffff;
|
|
else {
|
|
wl1271_warning("Top register access returned error.");
|
|
return 0xffff;
|
|
}
|
|
}
|