2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-11 23:23:52 +08:00
linux-next/net/ipv4/ip_fragment.c
Michal Kubecek ade446403b net: ipv4: do not handle duplicate fragments as overlapping
Since commit 7969e5c40d ("ip: discard IPv4 datagrams with overlapping
segments.") IPv4 reassembly code drops the whole queue whenever an
overlapping fragment is received. However, the test is written in a way
which detects duplicate fragments as overlapping so that in environments
with many duplicate packets, fragmented packets may be undeliverable.

Add an extra test and for (potentially) duplicate fragment, only drop the
new fragment rather than the whole queue. Only starting offset and length
are checked, not the contents of the fragments as that would be too
expensive. For similar reason, linear list ("run") of a rbtree node is not
iterated, we only check if the new fragment is a subset of the interval
covered by existing consecutive fragments.

v2: instead of an exact check iterating through linear list of an rbtree
node, only check if the new fragment is subset of the "run" (suggested
by Eric Dumazet)

Fixes: 7969e5c40d ("ip: discard IPv4 datagrams with overlapping segments.")
Signed-off-by: Michal Kubecek <mkubecek@suse.cz>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-12-15 11:50:40 -08:00

986 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* The IP fragmentation functionality.
*
* Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
* Alan Cox <alan@lxorguk.ukuu.org.uk>
*
* Fixes:
* Alan Cox : Split from ip.c , see ip_input.c for history.
* David S. Miller : Begin massive cleanup...
* Andi Kleen : Add sysctls.
* xxxx : Overlapfrag bug.
* Ultima : ip_expire() kernel panic.
* Bill Hawes : Frag accounting and evictor fixes.
* John McDonald : 0 length frag bug.
* Alexey Kuznetsov: SMP races, threading, cleanup.
* Patrick McHardy : LRU queue of frag heads for evictor.
*/
#define pr_fmt(fmt) "IPv4: " fmt
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/jiffies.h>
#include <linux/skbuff.h>
#include <linux/list.h>
#include <linux/ip.h>
#include <linux/icmp.h>
#include <linux/netdevice.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <net/route.h>
#include <net/dst.h>
#include <net/sock.h>
#include <net/ip.h>
#include <net/icmp.h>
#include <net/checksum.h>
#include <net/inetpeer.h>
#include <net/inet_frag.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/inet.h>
#include <linux/netfilter_ipv4.h>
#include <net/inet_ecn.h>
#include <net/l3mdev.h>
/* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
* code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
* as well. Or notify me, at least. --ANK
*/
static const char ip_frag_cache_name[] = "ip4-frags";
/* Use skb->cb to track consecutive/adjacent fragments coming at
* the end of the queue. Nodes in the rb-tree queue will
* contain "runs" of one or more adjacent fragments.
*
* Invariants:
* - next_frag is NULL at the tail of a "run";
* - the head of a "run" has the sum of all fragment lengths in frag_run_len.
*/
struct ipfrag_skb_cb {
struct inet_skb_parm h;
struct sk_buff *next_frag;
int frag_run_len;
};
#define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
static void ip4_frag_init_run(struct sk_buff *skb)
{
BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
FRAG_CB(skb)->next_frag = NULL;
FRAG_CB(skb)->frag_run_len = skb->len;
}
/* Append skb to the last "run". */
static void ip4_frag_append_to_last_run(struct inet_frag_queue *q,
struct sk_buff *skb)
{
RB_CLEAR_NODE(&skb->rbnode);
FRAG_CB(skb)->next_frag = NULL;
FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
FRAG_CB(q->fragments_tail)->next_frag = skb;
q->fragments_tail = skb;
}
/* Create a new "run" with the skb. */
static void ip4_frag_create_run(struct inet_frag_queue *q, struct sk_buff *skb)
{
if (q->last_run_head)
rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
&q->last_run_head->rbnode.rb_right);
else
rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
rb_insert_color(&skb->rbnode, &q->rb_fragments);
ip4_frag_init_run(skb);
q->fragments_tail = skb;
q->last_run_head = skb;
}
/* Describe an entry in the "incomplete datagrams" queue. */
struct ipq {
struct inet_frag_queue q;
u8 ecn; /* RFC3168 support */
u16 max_df_size; /* largest frag with DF set seen */
int iif;
unsigned int rid;
struct inet_peer *peer;
};
static u8 ip4_frag_ecn(u8 tos)
{
return 1 << (tos & INET_ECN_MASK);
}
static struct inet_frags ip4_frags;
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
struct sk_buff *prev_tail, struct net_device *dev);
static void ip4_frag_init(struct inet_frag_queue *q, const void *a)
{
struct ipq *qp = container_of(q, struct ipq, q);
struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
frags);
struct net *net = container_of(ipv4, struct net, ipv4);
const struct frag_v4_compare_key *key = a;
q->key.v4 = *key;
qp->ecn = 0;
qp->peer = q->net->max_dist ?
inet_getpeer_v4(net->ipv4.peers, key->saddr, key->vif, 1) :
NULL;
}
static void ip4_frag_free(struct inet_frag_queue *q)
{
struct ipq *qp;
qp = container_of(q, struct ipq, q);
if (qp->peer)
inet_putpeer(qp->peer);
}
/* Destruction primitives. */
static void ipq_put(struct ipq *ipq)
{
inet_frag_put(&ipq->q);
}
/* Kill ipq entry. It is not destroyed immediately,
* because caller (and someone more) holds reference count.
*/
static void ipq_kill(struct ipq *ipq)
{
inet_frag_kill(&ipq->q);
}
static bool frag_expire_skip_icmp(u32 user)
{
return user == IP_DEFRAG_AF_PACKET ||
ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN,
__IP_DEFRAG_CONNTRACK_IN_END) ||
ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN,
__IP_DEFRAG_CONNTRACK_BRIDGE_IN);
}
/*
* Oops, a fragment queue timed out. Kill it and send an ICMP reply.
*/
static void ip_expire(struct timer_list *t)
{
struct inet_frag_queue *frag = from_timer(frag, t, timer);
const struct iphdr *iph;
struct sk_buff *head = NULL;
struct net *net;
struct ipq *qp;
int err;
qp = container_of(frag, struct ipq, q);
net = container_of(qp->q.net, struct net, ipv4.frags);
rcu_read_lock();
spin_lock(&qp->q.lock);
if (qp->q.flags & INET_FRAG_COMPLETE)
goto out;
ipq_kill(qp);
__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
__IP_INC_STATS(net, IPSTATS_MIB_REASMTIMEOUT);
if (!(qp->q.flags & INET_FRAG_FIRST_IN))
goto out;
/* sk_buff::dev and sk_buff::rbnode are unionized. So we
* pull the head out of the tree in order to be able to
* deal with head->dev.
*/
if (qp->q.fragments) {
head = qp->q.fragments;
qp->q.fragments = head->next;
} else {
head = skb_rb_first(&qp->q.rb_fragments);
if (!head)
goto out;
if (FRAG_CB(head)->next_frag)
rb_replace_node(&head->rbnode,
&FRAG_CB(head)->next_frag->rbnode,
&qp->q.rb_fragments);
else
rb_erase(&head->rbnode, &qp->q.rb_fragments);
memset(&head->rbnode, 0, sizeof(head->rbnode));
barrier();
}
if (head == qp->q.fragments_tail)
qp->q.fragments_tail = NULL;
sub_frag_mem_limit(qp->q.net, head->truesize);
head->dev = dev_get_by_index_rcu(net, qp->iif);
if (!head->dev)
goto out;
/* skb has no dst, perform route lookup again */
iph = ip_hdr(head);
err = ip_route_input_noref(head, iph->daddr, iph->saddr,
iph->tos, head->dev);
if (err)
goto out;
/* Only an end host needs to send an ICMP
* "Fragment Reassembly Timeout" message, per RFC792.
*/
if (frag_expire_skip_icmp(qp->q.key.v4.user) &&
(skb_rtable(head)->rt_type != RTN_LOCAL))
goto out;
spin_unlock(&qp->q.lock);
icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
goto out_rcu_unlock;
out:
spin_unlock(&qp->q.lock);
out_rcu_unlock:
rcu_read_unlock();
kfree_skb(head);
ipq_put(qp);
}
/* Find the correct entry in the "incomplete datagrams" queue for
* this IP datagram, and create new one, if nothing is found.
*/
static struct ipq *ip_find(struct net *net, struct iphdr *iph,
u32 user, int vif)
{
struct frag_v4_compare_key key = {
.saddr = iph->saddr,
.daddr = iph->daddr,
.user = user,
.vif = vif,
.id = iph->id,
.protocol = iph->protocol,
};
struct inet_frag_queue *q;
q = inet_frag_find(&net->ipv4.frags, &key);
if (!q)
return NULL;
return container_of(q, struct ipq, q);
}
/* Is the fragment too far ahead to be part of ipq? */
static int ip_frag_too_far(struct ipq *qp)
{
struct inet_peer *peer = qp->peer;
unsigned int max = qp->q.net->max_dist;
unsigned int start, end;
int rc;
if (!peer || !max)
return 0;
start = qp->rid;
end = atomic_inc_return(&peer->rid);
qp->rid = end;
rc = qp->q.fragments_tail && (end - start) > max;
if (rc) {
struct net *net;
net = container_of(qp->q.net, struct net, ipv4.frags);
__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
}
return rc;
}
static int ip_frag_reinit(struct ipq *qp)
{
unsigned int sum_truesize = 0;
if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
refcount_inc(&qp->q.refcnt);
return -ETIMEDOUT;
}
sum_truesize = inet_frag_rbtree_purge(&qp->q.rb_fragments);
sub_frag_mem_limit(qp->q.net, sum_truesize);
qp->q.flags = 0;
qp->q.len = 0;
qp->q.meat = 0;
qp->q.fragments = NULL;
qp->q.rb_fragments = RB_ROOT;
qp->q.fragments_tail = NULL;
qp->q.last_run_head = NULL;
qp->iif = 0;
qp->ecn = 0;
return 0;
}
/* Add new segment to existing queue. */
static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
{
struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
struct rb_node **rbn, *parent;
struct sk_buff *skb1, *prev_tail;
int ihl, end, skb1_run_end;
struct net_device *dev;
unsigned int fragsize;
int flags, offset;
int err = -ENOENT;
u8 ecn;
if (qp->q.flags & INET_FRAG_COMPLETE)
goto err;
if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
unlikely(ip_frag_too_far(qp)) &&
unlikely(err = ip_frag_reinit(qp))) {
ipq_kill(qp);
goto err;
}
ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
offset = ntohs(ip_hdr(skb)->frag_off);
flags = offset & ~IP_OFFSET;
offset &= IP_OFFSET;
offset <<= 3; /* offset is in 8-byte chunks */
ihl = ip_hdrlen(skb);
/* Determine the position of this fragment. */
end = offset + skb->len - skb_network_offset(skb) - ihl;
err = -EINVAL;
/* Is this the final fragment? */
if ((flags & IP_MF) == 0) {
/* If we already have some bits beyond end
* or have different end, the segment is corrupted.
*/
if (end < qp->q.len ||
((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len))
goto discard_qp;
qp->q.flags |= INET_FRAG_LAST_IN;
qp->q.len = end;
} else {
if (end&7) {
end &= ~7;
if (skb->ip_summed != CHECKSUM_UNNECESSARY)
skb->ip_summed = CHECKSUM_NONE;
}
if (end > qp->q.len) {
/* Some bits beyond end -> corruption. */
if (qp->q.flags & INET_FRAG_LAST_IN)
goto discard_qp;
qp->q.len = end;
}
}
if (end == offset)
goto discard_qp;
err = -ENOMEM;
if (!pskb_pull(skb, skb_network_offset(skb) + ihl))
goto discard_qp;
err = pskb_trim_rcsum(skb, end - offset);
if (err)
goto discard_qp;
/* Note : skb->rbnode and skb->dev share the same location. */
dev = skb->dev;
/* Makes sure compiler wont do silly aliasing games */
barrier();
/* RFC5722, Section 4, amended by Errata ID : 3089
* When reassembling an IPv6 datagram, if
* one or more its constituent fragments is determined to be an
* overlapping fragment, the entire datagram (and any constituent
* fragments) MUST be silently discarded.
*
* We do the same here for IPv4 (and increment an snmp counter) but
* we do not want to drop the whole queue in response to a duplicate
* fragment.
*/
err = -EINVAL;
/* Find out where to put this fragment. */
prev_tail = qp->q.fragments_tail;
if (!prev_tail)
ip4_frag_create_run(&qp->q, skb); /* First fragment. */
else if (prev_tail->ip_defrag_offset + prev_tail->len < end) {
/* This is the common case: skb goes to the end. */
/* Detect and discard overlaps. */
if (offset < prev_tail->ip_defrag_offset + prev_tail->len)
goto overlap;
if (offset == prev_tail->ip_defrag_offset + prev_tail->len)
ip4_frag_append_to_last_run(&qp->q, skb);
else
ip4_frag_create_run(&qp->q, skb);
} else {
/* Binary search. Note that skb can become the first fragment,
* but not the last (covered above).
*/
rbn = &qp->q.rb_fragments.rb_node;
do {
parent = *rbn;
skb1 = rb_to_skb(parent);
skb1_run_end = skb1->ip_defrag_offset +
FRAG_CB(skb1)->frag_run_len;
if (end <= skb1->ip_defrag_offset)
rbn = &parent->rb_left;
else if (offset >= skb1_run_end)
rbn = &parent->rb_right;
else if (offset >= skb1->ip_defrag_offset &&
end <= skb1_run_end)
goto err; /* No new data, potential duplicate */
else
goto overlap; /* Found an overlap */
} while (*rbn);
/* Here we have parent properly set, and rbn pointing to
* one of its NULL left/right children. Insert skb.
*/
ip4_frag_init_run(skb);
rb_link_node(&skb->rbnode, parent, rbn);
rb_insert_color(&skb->rbnode, &qp->q.rb_fragments);
}
if (dev)
qp->iif = dev->ifindex;
skb->ip_defrag_offset = offset;
qp->q.stamp = skb->tstamp;
qp->q.meat += skb->len;
qp->ecn |= ecn;
add_frag_mem_limit(qp->q.net, skb->truesize);
if (offset == 0)
qp->q.flags |= INET_FRAG_FIRST_IN;
fragsize = skb->len + ihl;
if (fragsize > qp->q.max_size)
qp->q.max_size = fragsize;
if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
fragsize > qp->max_df_size)
qp->max_df_size = fragsize;
if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
qp->q.meat == qp->q.len) {
unsigned long orefdst = skb->_skb_refdst;
skb->_skb_refdst = 0UL;
err = ip_frag_reasm(qp, skb, prev_tail, dev);
skb->_skb_refdst = orefdst;
if (err)
inet_frag_kill(&qp->q);
return err;
}
skb_dst_drop(skb);
return -EINPROGRESS;
overlap:
__IP_INC_STATS(net, IPSTATS_MIB_REASM_OVERLAPS);
discard_qp:
inet_frag_kill(&qp->q);
err:
kfree_skb(skb);
return err;
}
/* Build a new IP datagram from all its fragments. */
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
struct sk_buff *prev_tail, struct net_device *dev)
{
struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
struct iphdr *iph;
struct sk_buff *fp, *head = skb_rb_first(&qp->q.rb_fragments);
struct sk_buff **nextp; /* To build frag_list. */
struct rb_node *rbn;
int len;
int ihlen;
int delta;
int err;
u8 ecn;
ipq_kill(qp);
ecn = ip_frag_ecn_table[qp->ecn];
if (unlikely(ecn == 0xff)) {
err = -EINVAL;
goto out_fail;
}
/* Make the one we just received the head. */
if (head != skb) {
fp = skb_clone(skb, GFP_ATOMIC);
if (!fp)
goto out_nomem;
FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
if (RB_EMPTY_NODE(&skb->rbnode))
FRAG_CB(prev_tail)->next_frag = fp;
else
rb_replace_node(&skb->rbnode, &fp->rbnode,
&qp->q.rb_fragments);
if (qp->q.fragments_tail == skb)
qp->q.fragments_tail = fp;
skb_morph(skb, head);
FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
rb_replace_node(&head->rbnode, &skb->rbnode,
&qp->q.rb_fragments);
consume_skb(head);
head = skb;
}
WARN_ON(head->ip_defrag_offset != 0);
/* Allocate a new buffer for the datagram. */
ihlen = ip_hdrlen(head);
len = ihlen + qp->q.len;
err = -E2BIG;
if (len > 65535)
goto out_oversize;
delta = - head->truesize;
/* Head of list must not be cloned. */
if (skb_unclone(head, GFP_ATOMIC))
goto out_nomem;
delta += head->truesize;
if (delta)
add_frag_mem_limit(qp->q.net, delta);
/* If the first fragment is fragmented itself, we split
* it to two chunks: the first with data and paged part
* and the second, holding only fragments. */
if (skb_has_frag_list(head)) {
struct sk_buff *clone;
int i, plen = 0;
clone = alloc_skb(0, GFP_ATOMIC);
if (!clone)
goto out_nomem;
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
skb_frag_list_init(head);
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
clone->len = clone->data_len = head->data_len - plen;
head->truesize += clone->truesize;
clone->csum = 0;
clone->ip_summed = head->ip_summed;
add_frag_mem_limit(qp->q.net, clone->truesize);
skb_shinfo(head)->frag_list = clone;
nextp = &clone->next;
} else {
nextp = &skb_shinfo(head)->frag_list;
}
skb_push(head, head->data - skb_network_header(head));
/* Traverse the tree in order, to build frag_list. */
fp = FRAG_CB(head)->next_frag;
rbn = rb_next(&head->rbnode);
rb_erase(&head->rbnode, &qp->q.rb_fragments);
while (rbn || fp) {
/* fp points to the next sk_buff in the current run;
* rbn points to the next run.
*/
/* Go through the current run. */
while (fp) {
*nextp = fp;
nextp = &fp->next;
fp->prev = NULL;
memset(&fp->rbnode, 0, sizeof(fp->rbnode));
fp->sk = NULL;
head->data_len += fp->len;
head->len += fp->len;
if (head->ip_summed != fp->ip_summed)
head->ip_summed = CHECKSUM_NONE;
else if (head->ip_summed == CHECKSUM_COMPLETE)
head->csum = csum_add(head->csum, fp->csum);
head->truesize += fp->truesize;
fp = FRAG_CB(fp)->next_frag;
}
/* Move to the next run. */
if (rbn) {
struct rb_node *rbnext = rb_next(rbn);
fp = rb_to_skb(rbn);
rb_erase(rbn, &qp->q.rb_fragments);
rbn = rbnext;
}
}
sub_frag_mem_limit(qp->q.net, head->truesize);
*nextp = NULL;
skb_mark_not_on_list(head);
head->prev = NULL;
head->dev = dev;
head->tstamp = qp->q.stamp;
IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
iph = ip_hdr(head);
iph->tot_len = htons(len);
iph->tos |= ecn;
/* When we set IP_DF on a refragmented skb we must also force a
* call to ip_fragment to avoid forwarding a DF-skb of size s while
* original sender only sent fragments of size f (where f < s).
*
* We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest
* frag seen to avoid sending tiny DF-fragments in case skb was built
* from one very small df-fragment and one large non-df frag.
*/
if (qp->max_df_size == qp->q.max_size) {
IPCB(head)->flags |= IPSKB_FRAG_PMTU;
iph->frag_off = htons(IP_DF);
} else {
iph->frag_off = 0;
}
ip_send_check(iph);
__IP_INC_STATS(net, IPSTATS_MIB_REASMOKS);
qp->q.fragments = NULL;
qp->q.rb_fragments = RB_ROOT;
qp->q.fragments_tail = NULL;
qp->q.last_run_head = NULL;
return 0;
out_nomem:
net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp);
err = -ENOMEM;
goto out_fail;
out_oversize:
net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->q.key.v4.saddr);
out_fail:
__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
return err;
}
/* Process an incoming IP datagram fragment. */
int ip_defrag(struct net *net, struct sk_buff *skb, u32 user)
{
struct net_device *dev = skb->dev ? : skb_dst(skb)->dev;
int vif = l3mdev_master_ifindex_rcu(dev);
struct ipq *qp;
__IP_INC_STATS(net, IPSTATS_MIB_REASMREQDS);
skb_orphan(skb);
/* Lookup (or create) queue header */
qp = ip_find(net, ip_hdr(skb), user, vif);
if (qp) {
int ret;
spin_lock(&qp->q.lock);
ret = ip_frag_queue(qp, skb);
spin_unlock(&qp->q.lock);
ipq_put(qp);
return ret;
}
__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
kfree_skb(skb);
return -ENOMEM;
}
EXPORT_SYMBOL(ip_defrag);
struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user)
{
struct iphdr iph;
int netoff;
u32 len;
if (skb->protocol != htons(ETH_P_IP))
return skb;
netoff = skb_network_offset(skb);
if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0)
return skb;
if (iph.ihl < 5 || iph.version != 4)
return skb;
len = ntohs(iph.tot_len);
if (skb->len < netoff + len || len < (iph.ihl * 4))
return skb;
if (ip_is_fragment(&iph)) {
skb = skb_share_check(skb, GFP_ATOMIC);
if (skb) {
if (!pskb_may_pull(skb, netoff + iph.ihl * 4)) {
kfree_skb(skb);
return NULL;
}
if (pskb_trim_rcsum(skb, netoff + len)) {
kfree_skb(skb);
return NULL;
}
memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
if (ip_defrag(net, skb, user))
return NULL;
skb_clear_hash(skb);
}
}
return skb;
}
EXPORT_SYMBOL(ip_check_defrag);
unsigned int inet_frag_rbtree_purge(struct rb_root *root)
{
struct rb_node *p = rb_first(root);
unsigned int sum = 0;
while (p) {
struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
p = rb_next(p);
rb_erase(&skb->rbnode, root);
while (skb) {
struct sk_buff *next = FRAG_CB(skb)->next_frag;
sum += skb->truesize;
kfree_skb(skb);
skb = next;
}
}
return sum;
}
EXPORT_SYMBOL(inet_frag_rbtree_purge);
#ifdef CONFIG_SYSCTL
static int dist_min;
static struct ctl_table ip4_frags_ns_ctl_table[] = {
{
.procname = "ipfrag_high_thresh",
.data = &init_net.ipv4.frags.high_thresh,
.maxlen = sizeof(unsigned long),
.mode = 0644,
.proc_handler = proc_doulongvec_minmax,
.extra1 = &init_net.ipv4.frags.low_thresh
},
{
.procname = "ipfrag_low_thresh",
.data = &init_net.ipv4.frags.low_thresh,
.maxlen = sizeof(unsigned long),
.mode = 0644,
.proc_handler = proc_doulongvec_minmax,
.extra2 = &init_net.ipv4.frags.high_thresh
},
{
.procname = "ipfrag_time",
.data = &init_net.ipv4.frags.timeout,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "ipfrag_max_dist",
.data = &init_net.ipv4.frags.max_dist,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &dist_min,
},
{ }
};
/* secret interval has been deprecated */
static int ip4_frags_secret_interval_unused;
static struct ctl_table ip4_frags_ctl_table[] = {
{
.procname = "ipfrag_secret_interval",
.data = &ip4_frags_secret_interval_unused,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{ }
};
static int __net_init ip4_frags_ns_ctl_register(struct net *net)
{
struct ctl_table *table;
struct ctl_table_header *hdr;
table = ip4_frags_ns_ctl_table;
if (!net_eq(net, &init_net)) {
table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
if (!table)
goto err_alloc;
table[0].data = &net->ipv4.frags.high_thresh;
table[0].extra1 = &net->ipv4.frags.low_thresh;
table[1].data = &net->ipv4.frags.low_thresh;
table[1].extra2 = &net->ipv4.frags.high_thresh;
table[2].data = &net->ipv4.frags.timeout;
table[3].data = &net->ipv4.frags.max_dist;
}
hdr = register_net_sysctl(net, "net/ipv4", table);
if (!hdr)
goto err_reg;
net->ipv4.frags_hdr = hdr;
return 0;
err_reg:
if (!net_eq(net, &init_net))
kfree(table);
err_alloc:
return -ENOMEM;
}
static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
{
struct ctl_table *table;
table = net->ipv4.frags_hdr->ctl_table_arg;
unregister_net_sysctl_table(net->ipv4.frags_hdr);
kfree(table);
}
static void __init ip4_frags_ctl_register(void)
{
register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
}
#else
static int ip4_frags_ns_ctl_register(struct net *net)
{
return 0;
}
static void ip4_frags_ns_ctl_unregister(struct net *net)
{
}
static void __init ip4_frags_ctl_register(void)
{
}
#endif
static int __net_init ipv4_frags_init_net(struct net *net)
{
int res;
/* Fragment cache limits.
*
* The fragment memory accounting code, (tries to) account for
* the real memory usage, by measuring both the size of frag
* queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
* and the SKB's truesize.
*
* A 64K fragment consumes 129736 bytes (44*2944)+200
* (1500 truesize == 2944, sizeof(struct ipq) == 200)
*
* We will commit 4MB at one time. Should we cross that limit
* we will prune down to 3MB, making room for approx 8 big 64K
* fragments 8x128k.
*/
net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
net->ipv4.frags.low_thresh = 3 * 1024 * 1024;
/*
* Important NOTE! Fragment queue must be destroyed before MSL expires.
* RFC791 is wrong proposing to prolongate timer each fragment arrival
* by TTL.
*/
net->ipv4.frags.timeout = IP_FRAG_TIME;
net->ipv4.frags.max_dist = 64;
net->ipv4.frags.f = &ip4_frags;
res = inet_frags_init_net(&net->ipv4.frags);
if (res < 0)
return res;
res = ip4_frags_ns_ctl_register(net);
if (res < 0)
inet_frags_exit_net(&net->ipv4.frags);
return res;
}
static void __net_exit ipv4_frags_exit_net(struct net *net)
{
ip4_frags_ns_ctl_unregister(net);
inet_frags_exit_net(&net->ipv4.frags);
}
static struct pernet_operations ip4_frags_ops = {
.init = ipv4_frags_init_net,
.exit = ipv4_frags_exit_net,
};
static u32 ip4_key_hashfn(const void *data, u32 len, u32 seed)
{
return jhash2(data,
sizeof(struct frag_v4_compare_key) / sizeof(u32), seed);
}
static u32 ip4_obj_hashfn(const void *data, u32 len, u32 seed)
{
const struct inet_frag_queue *fq = data;
return jhash2((const u32 *)&fq->key.v4,
sizeof(struct frag_v4_compare_key) / sizeof(u32), seed);
}
static int ip4_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr)
{
const struct frag_v4_compare_key *key = arg->key;
const struct inet_frag_queue *fq = ptr;
return !!memcmp(&fq->key, key, sizeof(*key));
}
static const struct rhashtable_params ip4_rhash_params = {
.head_offset = offsetof(struct inet_frag_queue, node),
.key_offset = offsetof(struct inet_frag_queue, key),
.key_len = sizeof(struct frag_v4_compare_key),
.hashfn = ip4_key_hashfn,
.obj_hashfn = ip4_obj_hashfn,
.obj_cmpfn = ip4_obj_cmpfn,
.automatic_shrinking = true,
};
void __init ipfrag_init(void)
{
ip4_frags.constructor = ip4_frag_init;
ip4_frags.destructor = ip4_frag_free;
ip4_frags.qsize = sizeof(struct ipq);
ip4_frags.frag_expire = ip_expire;
ip4_frags.frags_cache_name = ip_frag_cache_name;
ip4_frags.rhash_params = ip4_rhash_params;
if (inet_frags_init(&ip4_frags))
panic("IP: failed to allocate ip4_frags cache\n");
ip4_frags_ctl_register();
register_pernet_subsys(&ip4_frags_ops);
}