2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 23:26:03 +08:00
linux-next/drivers/media/video/saa7164/saa7164-api.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

602 lines
17 KiB
C

/*
* Driver for the NXP SAA7164 PCIe bridge
*
* Copyright (c) 2009 Steven Toth <stoth@kernellabs.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/wait.h>
#include <linux/slab.h>
#include "saa7164.h"
int saa7164_api_transition_port(struct saa7164_tsport *port, u8 mode)
{
int ret;
ret = saa7164_cmd_send(port->dev, port->hwcfg.unitid, SET_CUR,
SAA_STATE_CONTROL, sizeof(mode), &mode);
if (ret != SAA_OK)
printk(KERN_ERR "%s() error, ret = 0x%x\n", __func__, ret);
return ret;
}
int saa7164_api_get_fw_version(struct saa7164_dev *dev, u32 *version)
{
int ret;
ret = saa7164_cmd_send(dev, 0, GET_CUR,
GET_FW_VERSION_CONTROL, sizeof(u32), version);
if (ret != SAA_OK)
printk(KERN_ERR "%s() error, ret = 0x%x\n", __func__, ret);
return ret;
}
int saa7164_api_read_eeprom(struct saa7164_dev *dev, u8 *buf, int buflen)
{
u8 reg[] = { 0x0f, 0x00 };
if (buflen < 128)
return -ENOMEM;
/* Assumption: Hauppauge eeprom is at 0xa0 on on bus 0 */
/* TODO: Pull the details from the boards struct */
return saa7164_api_i2c_read(&dev->i2c_bus[0], 0xa0 >> 1, sizeof(reg),
&reg[0], 128, buf);
}
int saa7164_api_configure_port_mpeg2ts(struct saa7164_dev *dev,
struct saa7164_tsport *port,
tmComResTSFormatDescrHeader_t *tsfmt)
{
dprintk(DBGLVL_API, " bFormatIndex = 0x%x\n", tsfmt->bFormatIndex);
dprintk(DBGLVL_API, " bDataOffset = 0x%x\n", tsfmt->bDataOffset);
dprintk(DBGLVL_API, " bPacketLength= 0x%x\n", tsfmt->bPacketLength);
dprintk(DBGLVL_API, " bStrideLength= 0x%x\n", tsfmt->bStrideLength);
dprintk(DBGLVL_API, " bguid = (....)\n");
/* Cache the hardware configuration in the port */
port->bufcounter = port->hwcfg.BARLocation;
port->pitch = port->hwcfg.BARLocation + (2 * sizeof(u32));
port->bufsize = port->hwcfg.BARLocation + (3 * sizeof(u32));
port->bufoffset = port->hwcfg.BARLocation + (4 * sizeof(u32));
port->bufptr32l = port->hwcfg.BARLocation +
(4 * sizeof(u32)) +
(sizeof(u32) * port->hwcfg.buffercount) + sizeof(u32);
port->bufptr32h = port->hwcfg.BARLocation +
(4 * sizeof(u32)) +
(sizeof(u32) * port->hwcfg.buffercount);
port->bufptr64 = port->hwcfg.BARLocation +
(4 * sizeof(u32)) +
(sizeof(u32) * port->hwcfg.buffercount);
dprintk(DBGLVL_API, " = port->hwcfg.BARLocation = 0x%x\n",
port->hwcfg.BARLocation);
dprintk(DBGLVL_API, " = VS_FORMAT_MPEGTS (becomes dev->ts[%d])\n",
port->nr);
return 0;
}
int saa7164_api_dump_subdevs(struct saa7164_dev *dev, u8 *buf, int len)
{
struct saa7164_tsport *port = 0;
u32 idx, next_offset;
int i;
tmComResDescrHeader_t *hdr, *t;
tmComResExtDevDescrHeader_t *exthdr;
tmComResPathDescrHeader_t *pathhdr;
tmComResAntTermDescrHeader_t *anttermhdr;
tmComResTunerDescrHeader_t *tunerunithdr;
tmComResDMATermDescrHeader_t *vcoutputtermhdr;
tmComResTSFormatDescrHeader_t *tsfmt;
u32 currpath = 0;
dprintk(DBGLVL_API,
"%s(?,?,%d) sizeof(tmComResDescrHeader_t) = %d bytes\n",
__func__, len, (u32)sizeof(tmComResDescrHeader_t));
for (idx = 0; idx < (len - sizeof(tmComResDescrHeader_t)); ) {
hdr = (tmComResDescrHeader_t *)(buf + idx);
if (hdr->type != CS_INTERFACE)
return SAA_ERR_NOT_SUPPORTED;
dprintk(DBGLVL_API, "@ 0x%x = \n", idx);
switch (hdr->subtype) {
case GENERAL_REQUEST:
dprintk(DBGLVL_API, " GENERAL_REQUEST\n");
break;
case VC_TUNER_PATH:
dprintk(DBGLVL_API, " VC_TUNER_PATH\n");
pathhdr = (tmComResPathDescrHeader_t *)(buf + idx);
dprintk(DBGLVL_API, " pathid = 0x%x\n",
pathhdr->pathid);
currpath = pathhdr->pathid;
break;
case VC_INPUT_TERMINAL:
dprintk(DBGLVL_API, " VC_INPUT_TERMINAL\n");
anttermhdr =
(tmComResAntTermDescrHeader_t *)(buf + idx);
dprintk(DBGLVL_API, " terminalid = 0x%x\n",
anttermhdr->terminalid);
dprintk(DBGLVL_API, " terminaltype = 0x%x\n",
anttermhdr->terminaltype);
switch (anttermhdr->terminaltype) {
case ITT_ANTENNA:
dprintk(DBGLVL_API, " = ITT_ANTENNA\n");
break;
case LINE_CONNECTOR:
dprintk(DBGLVL_API, " = LINE_CONNECTOR\n");
break;
case SPDIF_CONNECTOR:
dprintk(DBGLVL_API, " = SPDIF_CONNECTOR\n");
break;
case COMPOSITE_CONNECTOR:
dprintk(DBGLVL_API,
" = COMPOSITE_CONNECTOR\n");
break;
case SVIDEO_CONNECTOR:
dprintk(DBGLVL_API, " = SVIDEO_CONNECTOR\n");
break;
case COMPONENT_CONNECTOR:
dprintk(DBGLVL_API,
" = COMPONENT_CONNECTOR\n");
break;
case STANDARD_DMA:
dprintk(DBGLVL_API, " = STANDARD_DMA\n");
break;
default:
dprintk(DBGLVL_API, " = undefined (0x%x)\n",
anttermhdr->terminaltype);
}
dprintk(DBGLVL_API, " assocterminal= 0x%x\n",
anttermhdr->assocterminal);
dprintk(DBGLVL_API, " iterminal = 0x%x\n",
anttermhdr->iterminal);
dprintk(DBGLVL_API, " controlsize = 0x%x\n",
anttermhdr->controlsize);
break;
case VC_OUTPUT_TERMINAL:
dprintk(DBGLVL_API, " VC_OUTPUT_TERMINAL\n");
vcoutputtermhdr =
(tmComResDMATermDescrHeader_t *)(buf + idx);
dprintk(DBGLVL_API, " unitid = 0x%x\n",
vcoutputtermhdr->unitid);
dprintk(DBGLVL_API, " terminaltype = 0x%x\n",
vcoutputtermhdr->terminaltype);
switch (vcoutputtermhdr->terminaltype) {
case ITT_ANTENNA:
dprintk(DBGLVL_API, " = ITT_ANTENNA\n");
break;
case LINE_CONNECTOR:
dprintk(DBGLVL_API, " = LINE_CONNECTOR\n");
break;
case SPDIF_CONNECTOR:
dprintk(DBGLVL_API, " = SPDIF_CONNECTOR\n");
break;
case COMPOSITE_CONNECTOR:
dprintk(DBGLVL_API,
" = COMPOSITE_CONNECTOR\n");
break;
case SVIDEO_CONNECTOR:
dprintk(DBGLVL_API, " = SVIDEO_CONNECTOR\n");
break;
case COMPONENT_CONNECTOR:
dprintk(DBGLVL_API,
" = COMPONENT_CONNECTOR\n");
break;
case STANDARD_DMA:
dprintk(DBGLVL_API, " = STANDARD_DMA\n");
break;
default:
dprintk(DBGLVL_API, " = undefined (0x%x)\n",
vcoutputtermhdr->terminaltype);
}
dprintk(DBGLVL_API, " assocterminal= 0x%x\n",
vcoutputtermhdr->assocterminal);
dprintk(DBGLVL_API, " sourceid = 0x%x\n",
vcoutputtermhdr->sourceid);
dprintk(DBGLVL_API, " iterminal = 0x%x\n",
vcoutputtermhdr->iterminal);
dprintk(DBGLVL_API, " BARLocation = 0x%x\n",
vcoutputtermhdr->BARLocation);
dprintk(DBGLVL_API, " flags = 0x%x\n",
vcoutputtermhdr->flags);
dprintk(DBGLVL_API, " interruptid = 0x%x\n",
vcoutputtermhdr->interruptid);
dprintk(DBGLVL_API, " buffercount = 0x%x\n",
vcoutputtermhdr->buffercount);
dprintk(DBGLVL_API, " metadatasize = 0x%x\n",
vcoutputtermhdr->metadatasize);
dprintk(DBGLVL_API, " controlsize = 0x%x\n",
vcoutputtermhdr->controlsize);
dprintk(DBGLVL_API, " numformats = 0x%x\n",
vcoutputtermhdr->numformats);
t = (tmComResDescrHeader_t *)
((tmComResDMATermDescrHeader_t *)(buf + idx));
next_offset = idx + (vcoutputtermhdr->len);
for (i = 0; i < vcoutputtermhdr->numformats; i++) {
t = (tmComResDescrHeader_t *)
(buf + next_offset);
switch (t->subtype) {
case VS_FORMAT_MPEG2TS:
tsfmt =
(tmComResTSFormatDescrHeader_t *)t;
if (currpath == 1)
port = &dev->ts1;
else
port = &dev->ts2;
memcpy(&port->hwcfg, vcoutputtermhdr,
sizeof(*vcoutputtermhdr));
saa7164_api_configure_port_mpeg2ts(dev,
port, tsfmt);
break;
case VS_FORMAT_MPEG2PS:
dprintk(DBGLVL_API,
" = VS_FORMAT_MPEG2PS\n");
break;
case VS_FORMAT_VBI:
dprintk(DBGLVL_API,
" = VS_FORMAT_VBI\n");
break;
case VS_FORMAT_RDS:
dprintk(DBGLVL_API,
" = VS_FORMAT_RDS\n");
break;
case VS_FORMAT_UNCOMPRESSED:
dprintk(DBGLVL_API,
" = VS_FORMAT_UNCOMPRESSED\n");
break;
case VS_FORMAT_TYPE:
dprintk(DBGLVL_API,
" = VS_FORMAT_TYPE\n");
break;
default:
dprintk(DBGLVL_API,
" = undefined (0x%x)\n",
t->subtype);
}
next_offset += t->len;
}
break;
case TUNER_UNIT:
dprintk(DBGLVL_API, " TUNER_UNIT\n");
tunerunithdr =
(tmComResTunerDescrHeader_t *)(buf + idx);
dprintk(DBGLVL_API, " unitid = 0x%x\n",
tunerunithdr->unitid);
dprintk(DBGLVL_API, " sourceid = 0x%x\n",
tunerunithdr->sourceid);
dprintk(DBGLVL_API, " iunit = 0x%x\n",
tunerunithdr->iunit);
dprintk(DBGLVL_API, " tuningstandards = 0x%x\n",
tunerunithdr->tuningstandards);
dprintk(DBGLVL_API, " controlsize = 0x%x\n",
tunerunithdr->controlsize);
dprintk(DBGLVL_API, " controls = 0x%x\n",
tunerunithdr->controls);
break;
case VC_SELECTOR_UNIT:
dprintk(DBGLVL_API, " VC_SELECTOR_UNIT\n");
break;
case VC_PROCESSING_UNIT:
dprintk(DBGLVL_API, " VC_PROCESSING_UNIT\n");
break;
case FEATURE_UNIT:
dprintk(DBGLVL_API, " FEATURE_UNIT\n");
break;
case ENCODER_UNIT:
dprintk(DBGLVL_API, " ENCODER_UNIT\n");
break;
case EXTENSION_UNIT:
dprintk(DBGLVL_API, " EXTENSION_UNIT\n");
exthdr = (tmComResExtDevDescrHeader_t *)(buf + idx);
dprintk(DBGLVL_API, " unitid = 0x%x\n",
exthdr->unitid);
dprintk(DBGLVL_API, " deviceid = 0x%x\n",
exthdr->deviceid);
dprintk(DBGLVL_API, " devicetype = 0x%x\n",
exthdr->devicetype);
if (exthdr->devicetype & 0x1)
dprintk(DBGLVL_API, " = Decoder Device\n");
if (exthdr->devicetype & 0x2)
dprintk(DBGLVL_API, " = GPIO Source\n");
if (exthdr->devicetype & 0x4)
dprintk(DBGLVL_API, " = Video Decoder\n");
if (exthdr->devicetype & 0x8)
dprintk(DBGLVL_API, " = Audio Decoder\n");
if (exthdr->devicetype & 0x20)
dprintk(DBGLVL_API, " = Crossbar\n");
if (exthdr->devicetype & 0x40)
dprintk(DBGLVL_API, " = Tuner\n");
if (exthdr->devicetype & 0x80)
dprintk(DBGLVL_API, " = IF PLL\n");
if (exthdr->devicetype & 0x100)
dprintk(DBGLVL_API, " = Demodulator\n");
if (exthdr->devicetype & 0x200)
dprintk(DBGLVL_API, " = RDS Decoder\n");
if (exthdr->devicetype & 0x400)
dprintk(DBGLVL_API, " = Encoder\n");
if (exthdr->devicetype & 0x800)
dprintk(DBGLVL_API, " = IR Decoder\n");
if (exthdr->devicetype & 0x1000)
dprintk(DBGLVL_API, " = EEPROM\n");
if (exthdr->devicetype & 0x2000)
dprintk(DBGLVL_API,
" = VBI Decoder\n");
if (exthdr->devicetype & 0x10000)
dprintk(DBGLVL_API,
" = Streaming Device\n");
if (exthdr->devicetype & 0x20000)
dprintk(DBGLVL_API,
" = DRM Device\n");
if (exthdr->devicetype & 0x40000000)
dprintk(DBGLVL_API,
" = Generic Device\n");
if (exthdr->devicetype & 0x80000000)
dprintk(DBGLVL_API,
" = Config Space Device\n");
dprintk(DBGLVL_API, " numgpiopins = 0x%x\n",
exthdr->numgpiopins);
dprintk(DBGLVL_API, " numgpiogroups = 0x%x\n",
exthdr->numgpiogroups);
dprintk(DBGLVL_API, " controlsize = 0x%x\n",
exthdr->controlsize);
break;
case PVC_INFRARED_UNIT:
dprintk(DBGLVL_API, " PVC_INFRARED_UNIT\n");
break;
case DRM_UNIT:
dprintk(DBGLVL_API, " DRM_UNIT\n");
break;
default:
dprintk(DBGLVL_API, "default %d\n", hdr->subtype);
}
dprintk(DBGLVL_API, " 1.%x\n", hdr->len);
dprintk(DBGLVL_API, " 2.%x\n", hdr->type);
dprintk(DBGLVL_API, " 3.%x\n", hdr->subtype);
dprintk(DBGLVL_API, " 4.%x\n", hdr->unitid);
idx += hdr->len;
}
return 0;
}
int saa7164_api_enum_subdevs(struct saa7164_dev *dev)
{
int ret;
u32 buflen = 0;
u8 *buf;
dprintk(DBGLVL_API, "%s()\n", __func__);
/* Get the total descriptor length */
ret = saa7164_cmd_send(dev, 0, GET_LEN,
GET_DESCRIPTORS_CONTROL, sizeof(buflen), &buflen);
if (ret != SAA_OK)
printk(KERN_ERR "%s() error, ret = 0x%x\n", __func__, ret);
dprintk(DBGLVL_API, "%s() total descriptor size = %d bytes.\n",
__func__, buflen);
/* Allocate enough storage for all of the descs */
buf = kzalloc(buflen, GFP_KERNEL);
if (buf == NULL)
return SAA_ERR_NO_RESOURCES;
/* Retrieve them */
ret = saa7164_cmd_send(dev, 0, GET_CUR,
GET_DESCRIPTORS_CONTROL, buflen, buf);
if (ret != SAA_OK) {
printk(KERN_ERR "%s() error, ret = 0x%x\n", __func__, ret);
goto out;
}
if (saa_debug & DBGLVL_API)
saa7164_dumphex16(dev, buf, (buflen/16)*16);
saa7164_api_dump_subdevs(dev, buf, buflen);
out:
kfree(buf);
return ret;
}
int saa7164_api_i2c_read(struct saa7164_i2c *bus, u8 addr, u32 reglen, u8 *reg,
u32 datalen, u8 *data)
{
struct saa7164_dev *dev = bus->dev;
u16 len = 0;
int unitid;
u32 regval;
u8 buf[256];
int ret;
dprintk(DBGLVL_API, "%s()\n", __func__);
if (reglen > 4)
return -EIO;
if (reglen == 1)
regval = *(reg);
else
if (reglen == 2)
regval = ((*(reg) << 8) || *(reg+1));
else
if (reglen == 3)
regval = ((*(reg) << 16) | (*(reg+1) << 8) | *(reg+2));
else
if (reglen == 4)
regval = ((*(reg) << 24) | (*(reg+1) << 16) |
(*(reg+2) << 8) | *(reg+3));
/* Prepare the send buffer */
/* Bytes 00-03 source register length
* 04-07 source bytes to read
* 08... register address
*/
memset(buf, 0, sizeof(buf));
memcpy((buf + 2 * sizeof(u32) + 0), reg, reglen);
*((u32 *)(buf + 0 * sizeof(u32))) = reglen;
*((u32 *)(buf + 1 * sizeof(u32))) = datalen;
unitid = saa7164_i2caddr_to_unitid(bus, addr);
if (unitid < 0) {
printk(KERN_ERR
"%s() error, cannot translate regaddr 0x%x to unitid\n",
__func__, addr);
return -EIO;
}
ret = saa7164_cmd_send(bus->dev, unitid, GET_LEN,
EXU_REGISTER_ACCESS_CONTROL, sizeof(len), &len);
if (ret != SAA_OK) {
printk(KERN_ERR "%s() error, ret(1) = 0x%x\n", __func__, ret);
return -EIO;
}
dprintk(DBGLVL_API, "%s() len = %d bytes\n", __func__, len);
if (saa_debug & DBGLVL_I2C)
saa7164_dumphex16(dev, buf, 2 * 16);
ret = saa7164_cmd_send(bus->dev, unitid, GET_CUR,
EXU_REGISTER_ACCESS_CONTROL, len, &buf);
if (ret != SAA_OK)
printk(KERN_ERR "%s() error, ret(2) = 0x%x\n", __func__, ret);
else {
if (saa_debug & DBGLVL_I2C)
saa7164_dumphex16(dev, buf, sizeof(buf));
memcpy(data, (buf + 2 * sizeof(u32) + reglen), datalen);
}
return ret == SAA_OK ? 0 : -EIO;
}
/* For a given 8 bit i2c address device, write the buffer */
int saa7164_api_i2c_write(struct saa7164_i2c *bus, u8 addr, u32 datalen,
u8 *data)
{
struct saa7164_dev *dev = bus->dev;
u16 len = 0;
int unitid;
int reglen;
u8 buf[256];
int ret;
dprintk(DBGLVL_API, "%s()\n", __func__);
if ((datalen == 0) || (datalen > 232))
return -EIO;
memset(buf, 0, sizeof(buf));
unitid = saa7164_i2caddr_to_unitid(bus, addr);
if (unitid < 0) {
printk(KERN_ERR
"%s() error, cannot translate regaddr 0x%x to unitid\n",
__func__, addr);
return -EIO;
}
reglen = saa7164_i2caddr_to_reglen(bus, addr);
if (reglen < 0) {
printk(KERN_ERR
"%s() error, cannot translate regaddr to reglen\n",
__func__);
return -EIO;
}
ret = saa7164_cmd_send(bus->dev, unitid, GET_LEN,
EXU_REGISTER_ACCESS_CONTROL, sizeof(len), &len);
if (ret != SAA_OK) {
printk(KERN_ERR "%s() error, ret(1) = 0x%x\n", __func__, ret);
return -EIO;
}
dprintk(DBGLVL_API, "%s() len = %d bytes\n", __func__, len);
/* Prepare the send buffer */
/* Bytes 00-03 dest register length
* 04-07 dest bytes to write
* 08... register address
*/
*((u32 *)(buf + 0 * sizeof(u32))) = reglen;
*((u32 *)(buf + 1 * sizeof(u32))) = datalen - reglen;
memcpy((buf + 2 * sizeof(u32)), data, datalen);
if (saa_debug & DBGLVL_I2C)
saa7164_dumphex16(dev, buf, sizeof(buf));
ret = saa7164_cmd_send(bus->dev, unitid, SET_CUR,
EXU_REGISTER_ACCESS_CONTROL, len, &buf);
if (ret != SAA_OK)
printk(KERN_ERR "%s() error, ret(2) = 0x%x\n", __func__, ret);
return ret == SAA_OK ? 0 : -EIO;
}
int saa7164_api_modify_gpio(struct saa7164_dev *dev, u8 unitid,
u8 pin, u8 state)
{
int ret;
tmComResGPIO_t t;
dprintk(DBGLVL_API, "%s(0x%x, %d, %d)\n",
__func__, unitid, pin, state);
if ((pin > 7) || (state > 2))
return SAA_ERR_BAD_PARAMETER;
t.pin = pin;
t.state = state;
ret = saa7164_cmd_send(dev, unitid, SET_CUR,
EXU_GPIO_CONTROL, sizeof(t), &t);
if (ret != SAA_OK)
printk(KERN_ERR "%s() error, ret = 0x%x\n",
__func__, ret);
return ret;
}
int saa7164_api_set_gpiobit(struct saa7164_dev *dev, u8 unitid,
u8 pin)
{
return saa7164_api_modify_gpio(dev, unitid, pin, 1);
}
int saa7164_api_clear_gpiobit(struct saa7164_dev *dev, u8 unitid,
u8 pin)
{
return saa7164_api_modify_gpio(dev, unitid, pin, 0);
}