2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
linux-next/include/linux/sched.h
Linus Torvalds 0c2043abef Don't do load-average calculations at even 5-second intervals
It turns out that there are a few other five-second timers in the
kernel, and if the timers get in sync, the load-average can get
artificially inflated by events that just happen to coincide.

So just offset the load average calculation it by a timer tick.

Noticed by Anders Boström, for whom the coincidence started triggering
on one of his machines with the JBD jiffies rounding code (JBD is one of
the subsystems that also end up using a 5-second timer by default).

Tested-by: Anders Boström <anders@bostrom.dyndns.org>
Cc: Chuck Ebbert <cebbert@redhat.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-07 16:23:13 -07:00

1886 lines
57 KiB
C

#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H
#include <linux/auxvec.h> /* For AT_VECTOR_SIZE */
/*
* cloning flags:
*/
#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
#define CLONE_VM 0x00000100 /* set if VM shared between processes */
#define CLONE_FS 0x00000200 /* set if fs info shared between processes */
#define CLONE_FILES 0x00000400 /* set if open files shared between processes */
#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
#define CLONE_THREAD 0x00010000 /* Same thread group? */
#define CLONE_NEWNS 0x00020000 /* New namespace group? */
#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
#define CLONE_DETACHED 0x00400000 /* Unused, ignored */
#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
#define CLONE_STOPPED 0x02000000 /* Start in stopped state */
#define CLONE_NEWUTS 0x04000000 /* New utsname group? */
#define CLONE_NEWIPC 0x08000000 /* New ipcs */
#define CLONE_NEWUSER 0x10000000 /* New user namespace */
/*
* Scheduling policies
*/
#define SCHED_NORMAL 0
#define SCHED_FIFO 1
#define SCHED_RR 2
#define SCHED_BATCH 3
/* SCHED_ISO: reserved but not implemented yet */
#define SCHED_IDLE 5
#ifdef __KERNEL__
struct sched_param {
int sched_priority;
};
#include <asm/param.h> /* for HZ */
#include <linux/capability.h>
#include <linux/threads.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/timex.h>
#include <linux/jiffies.h>
#include <linux/rbtree.h>
#include <linux/thread_info.h>
#include <linux/cpumask.h>
#include <linux/errno.h>
#include <linux/nodemask.h>
#include <asm/system.h>
#include <asm/semaphore.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/mmu.h>
#include <asm/cputime.h>
#include <linux/smp.h>
#include <linux/sem.h>
#include <linux/signal.h>
#include <linux/securebits.h>
#include <linux/fs_struct.h>
#include <linux/compiler.h>
#include <linux/completion.h>
#include <linux/pid.h>
#include <linux/percpu.h>
#include <linux/topology.h>
#include <linux/seccomp.h>
#include <linux/rcupdate.h>
#include <linux/futex.h>
#include <linux/rtmutex.h>
#include <linux/time.h>
#include <linux/param.h>
#include <linux/resource.h>
#include <linux/timer.h>
#include <linux/hrtimer.h>
#include <linux/task_io_accounting.h>
#include <asm/processor.h>
struct exec_domain;
struct futex_pi_state;
struct bio;
/*
* List of flags we want to share for kernel threads,
* if only because they are not used by them anyway.
*/
#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
/*
* These are the constant used to fake the fixed-point load-average
* counting. Some notes:
* - 11 bit fractions expand to 22 bits by the multiplies: this gives
* a load-average precision of 10 bits integer + 11 bits fractional
* - if you want to count load-averages more often, you need more
* precision, or rounding will get you. With 2-second counting freq,
* the EXP_n values would be 1981, 2034 and 2043 if still using only
* 11 bit fractions.
*/
extern unsigned long avenrun[]; /* Load averages */
#define FSHIFT 11 /* nr of bits of precision */
#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
#define EXP_5 2014 /* 1/exp(5sec/5min) */
#define EXP_15 2037 /* 1/exp(5sec/15min) */
#define CALC_LOAD(load,exp,n) \
load *= exp; \
load += n*(FIXED_1-exp); \
load >>= FSHIFT;
extern unsigned long total_forks;
extern int nr_threads;
DECLARE_PER_CPU(unsigned long, process_counts);
extern int nr_processes(void);
extern unsigned long nr_running(void);
extern unsigned long nr_uninterruptible(void);
extern unsigned long nr_active(void);
extern unsigned long nr_iowait(void);
extern unsigned long weighted_cpuload(const int cpu);
struct seq_file;
struct cfs_rq;
#ifdef CONFIG_SCHED_DEBUG
extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
extern void proc_sched_set_task(struct task_struct *p);
extern void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
#else
static inline void
proc_sched_show_task(struct task_struct *p, struct seq_file *m)
{
}
static inline void proc_sched_set_task(struct task_struct *p)
{
}
static inline void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
{
}
#endif
/*
* Task state bitmask. NOTE! These bits are also
* encoded in fs/proc/array.c: get_task_state().
*
* We have two separate sets of flags: task->state
* is about runnability, while task->exit_state are
* about the task exiting. Confusing, but this way
* modifying one set can't modify the other one by
* mistake.
*/
#define TASK_RUNNING 0
#define TASK_INTERRUPTIBLE 1
#define TASK_UNINTERRUPTIBLE 2
#define TASK_STOPPED 4
#define TASK_TRACED 8
/* in tsk->exit_state */
#define EXIT_ZOMBIE 16
#define EXIT_DEAD 32
/* in tsk->state again */
#define TASK_NONINTERACTIVE 64
#define TASK_DEAD 128
#define __set_task_state(tsk, state_value) \
do { (tsk)->state = (state_value); } while (0)
#define set_task_state(tsk, state_value) \
set_mb((tsk)->state, (state_value))
/*
* set_current_state() includes a barrier so that the write of current->state
* is correctly serialised wrt the caller's subsequent test of whether to
* actually sleep:
*
* set_current_state(TASK_UNINTERRUPTIBLE);
* if (do_i_need_to_sleep())
* schedule();
*
* If the caller does not need such serialisation then use __set_current_state()
*/
#define __set_current_state(state_value) \
do { current->state = (state_value); } while (0)
#define set_current_state(state_value) \
set_mb(current->state, (state_value))
/* Task command name length */
#define TASK_COMM_LEN 16
#include <linux/spinlock.h>
/*
* This serializes "schedule()" and also protects
* the run-queue from deletions/modifications (but
* _adding_ to the beginning of the run-queue has
* a separate lock).
*/
extern rwlock_t tasklist_lock;
extern spinlock_t mmlist_lock;
struct task_struct;
extern void sched_init(void);
extern void sched_init_smp(void);
extern void init_idle(struct task_struct *idle, int cpu);
extern void init_idle_bootup_task(struct task_struct *idle);
extern cpumask_t nohz_cpu_mask;
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
extern int select_nohz_load_balancer(int cpu);
#else
static inline int select_nohz_load_balancer(int cpu)
{
return 0;
}
#endif
/*
* Only dump TASK_* tasks. (0 for all tasks)
*/
extern void show_state_filter(unsigned long state_filter);
static inline void show_state(void)
{
show_state_filter(0);
}
extern void show_regs(struct pt_regs *);
/*
* TASK is a pointer to the task whose backtrace we want to see (or NULL for current
* task), SP is the stack pointer of the first frame that should be shown in the back
* trace (or NULL if the entire call-chain of the task should be shown).
*/
extern void show_stack(struct task_struct *task, unsigned long *sp);
void io_schedule(void);
long io_schedule_timeout(long timeout);
extern void cpu_init (void);
extern void trap_init(void);
extern void update_process_times(int user);
extern void scheduler_tick(void);
#ifdef CONFIG_DETECT_SOFTLOCKUP
extern void softlockup_tick(void);
extern void spawn_softlockup_task(void);
extern void touch_softlockup_watchdog(void);
extern void touch_all_softlockup_watchdogs(void);
#else
static inline void softlockup_tick(void)
{
}
static inline void spawn_softlockup_task(void)
{
}
static inline void touch_softlockup_watchdog(void)
{
}
static inline void touch_all_softlockup_watchdogs(void)
{
}
#endif
/* Attach to any functions which should be ignored in wchan output. */
#define __sched __attribute__((__section__(".sched.text")))
/* Is this address in the __sched functions? */
extern int in_sched_functions(unsigned long addr);
#define MAX_SCHEDULE_TIMEOUT LONG_MAX
extern signed long FASTCALL(schedule_timeout(signed long timeout));
extern signed long schedule_timeout_interruptible(signed long timeout);
extern signed long schedule_timeout_uninterruptible(signed long timeout);
asmlinkage void schedule(void);
struct nsproxy;
struct user_namespace;
/* Maximum number of active map areas.. This is a random (large) number */
#define DEFAULT_MAX_MAP_COUNT 65536
extern int sysctl_max_map_count;
#include <linux/aio.h>
extern unsigned long
arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
unsigned long, unsigned long);
extern unsigned long
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags);
extern void arch_unmap_area(struct mm_struct *, unsigned long);
extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
/*
* The mm counters are not protected by its page_table_lock,
* so must be incremented atomically.
*/
#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
#define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
#define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
typedef atomic_long_t mm_counter_t;
#else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
/*
* The mm counters are protected by its page_table_lock,
* so can be incremented directly.
*/
#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
#define get_mm_counter(mm, member) ((mm)->_##member)
#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
#define inc_mm_counter(mm, member) (mm)->_##member++
#define dec_mm_counter(mm, member) (mm)->_##member--
typedef unsigned long mm_counter_t;
#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
#define get_mm_rss(mm) \
(get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
#define update_hiwater_rss(mm) do { \
unsigned long _rss = get_mm_rss(mm); \
if ((mm)->hiwater_rss < _rss) \
(mm)->hiwater_rss = _rss; \
} while (0)
#define update_hiwater_vm(mm) do { \
if ((mm)->hiwater_vm < (mm)->total_vm) \
(mm)->hiwater_vm = (mm)->total_vm; \
} while (0)
extern void set_dumpable(struct mm_struct *mm, int value);
extern int get_dumpable(struct mm_struct *mm);
/* mm flags */
/* dumpable bits */
#define MMF_DUMPABLE 0 /* core dump is permitted */
#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
#define MMF_DUMPABLE_BITS 2
/* coredump filter bits */
#define MMF_DUMP_ANON_PRIVATE 2
#define MMF_DUMP_ANON_SHARED 3
#define MMF_DUMP_MAPPED_PRIVATE 4
#define MMF_DUMP_MAPPED_SHARED 5
#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
#define MMF_DUMP_FILTER_BITS 4
#define MMF_DUMP_FILTER_MASK \
(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
#define MMF_DUMP_FILTER_DEFAULT \
((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
struct mm_struct {
struct vm_area_struct * mmap; /* list of VMAs */
struct rb_root mm_rb;
struct vm_area_struct * mmap_cache; /* last find_vma result */
unsigned long (*get_unmapped_area) (struct file *filp,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags);
void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
unsigned long mmap_base; /* base of mmap area */
unsigned long task_size; /* size of task vm space */
unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
pgd_t * pgd;
atomic_t mm_users; /* How many users with user space? */
atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
int map_count; /* number of VMAs */
struct rw_semaphore mmap_sem;
spinlock_t page_table_lock; /* Protects page tables and some counters */
struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
* together off init_mm.mmlist, and are protected
* by mmlist_lock
*/
/* Special counters, in some configurations protected by the
* page_table_lock, in other configurations by being atomic.
*/
mm_counter_t _file_rss;
mm_counter_t _anon_rss;
unsigned long hiwater_rss; /* High-watermark of RSS usage */
unsigned long hiwater_vm; /* High-water virtual memory usage */
unsigned long total_vm, locked_vm, shared_vm, exec_vm;
unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;
unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
cpumask_t cpu_vm_mask;
/* Architecture-specific MM context */
mm_context_t context;
/* Swap token stuff */
/*
* Last value of global fault stamp as seen by this process.
* In other words, this value gives an indication of how long
* it has been since this task got the token.
* Look at mm/thrash.c
*/
unsigned int faultstamp;
unsigned int token_priority;
unsigned int last_interval;
unsigned long flags; /* Must use atomic bitops to access the bits */
/* coredumping support */
int core_waiters;
struct completion *core_startup_done, core_done;
/* aio bits */
rwlock_t ioctx_list_lock;
struct kioctx *ioctx_list;
};
struct sighand_struct {
atomic_t count;
struct k_sigaction action[_NSIG];
spinlock_t siglock;
wait_queue_head_t signalfd_wqh;
};
struct pacct_struct {
int ac_flag;
long ac_exitcode;
unsigned long ac_mem;
cputime_t ac_utime, ac_stime;
unsigned long ac_minflt, ac_majflt;
};
/*
* NOTE! "signal_struct" does not have it's own
* locking, because a shared signal_struct always
* implies a shared sighand_struct, so locking
* sighand_struct is always a proper superset of
* the locking of signal_struct.
*/
struct signal_struct {
atomic_t count;
atomic_t live;
wait_queue_head_t wait_chldexit; /* for wait4() */
/* current thread group signal load-balancing target: */
struct task_struct *curr_target;
/* shared signal handling: */
struct sigpending shared_pending;
/* thread group exit support */
int group_exit_code;
/* overloaded:
* - notify group_exit_task when ->count is equal to notify_count
* - everyone except group_exit_task is stopped during signal delivery
* of fatal signals, group_exit_task processes the signal.
*/
struct task_struct *group_exit_task;
int notify_count;
/* thread group stop support, overloads group_exit_code too */
int group_stop_count;
unsigned int flags; /* see SIGNAL_* flags below */
/* POSIX.1b Interval Timers */
struct list_head posix_timers;
/* ITIMER_REAL timer for the process */
struct hrtimer real_timer;
struct task_struct *tsk;
ktime_t it_real_incr;
/* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
cputime_t it_prof_expires, it_virt_expires;
cputime_t it_prof_incr, it_virt_incr;
/* job control IDs */
pid_t pgrp;
struct pid *tty_old_pgrp;
union {
pid_t session __deprecated;
pid_t __session;
};
/* boolean value for session group leader */
int leader;
struct tty_struct *tty; /* NULL if no tty */
/*
* Cumulative resource counters for dead threads in the group,
* and for reaped dead child processes forked by this group.
* Live threads maintain their own counters and add to these
* in __exit_signal, except for the group leader.
*/
cputime_t utime, stime, cutime, cstime;
unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
unsigned long inblock, oublock, cinblock, coublock;
/*
* Cumulative ns of scheduled CPU time for dead threads in the
* group, not including a zombie group leader. (This only differs
* from jiffies_to_ns(utime + stime) if sched_clock uses something
* other than jiffies.)
*/
unsigned long long sum_sched_runtime;
/*
* We don't bother to synchronize most readers of this at all,
* because there is no reader checking a limit that actually needs
* to get both rlim_cur and rlim_max atomically, and either one
* alone is a single word that can safely be read normally.
* getrlimit/setrlimit use task_lock(current->group_leader) to
* protect this instead of the siglock, because they really
* have no need to disable irqs.
*/
struct rlimit rlim[RLIM_NLIMITS];
struct list_head cpu_timers[3];
/* keep the process-shared keyrings here so that they do the right
* thing in threads created with CLONE_THREAD */
#ifdef CONFIG_KEYS
struct key *session_keyring; /* keyring inherited over fork */
struct key *process_keyring; /* keyring private to this process */
#endif
#ifdef CONFIG_BSD_PROCESS_ACCT
struct pacct_struct pacct; /* per-process accounting information */
#endif
#ifdef CONFIG_TASKSTATS
struct taskstats *stats;
#endif
#ifdef CONFIG_AUDIT
unsigned audit_tty;
struct tty_audit_buf *tty_audit_buf;
#endif
};
/* Context switch must be unlocked if interrupts are to be enabled */
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
# define __ARCH_WANT_UNLOCKED_CTXSW
#endif
/*
* Bits in flags field of signal_struct.
*/
#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
/*
* Some day this will be a full-fledged user tracking system..
*/
struct user_struct {
atomic_t __count; /* reference count */
atomic_t processes; /* How many processes does this user have? */
atomic_t files; /* How many open files does this user have? */
atomic_t sigpending; /* How many pending signals does this user have? */
#ifdef CONFIG_INOTIFY_USER
atomic_t inotify_watches; /* How many inotify watches does this user have? */
atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
#endif
/* protected by mq_lock */
unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
unsigned long locked_shm; /* How many pages of mlocked shm ? */
#ifdef CONFIG_KEYS
struct key *uid_keyring; /* UID specific keyring */
struct key *session_keyring; /* UID's default session keyring */
#endif
/* Hash table maintenance information */
struct hlist_node uidhash_node;
uid_t uid;
};
extern struct user_struct *find_user(uid_t);
extern struct user_struct root_user;
#define INIT_USER (&root_user)
struct backing_dev_info;
struct reclaim_state;
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
struct sched_info {
/* cumulative counters */
unsigned long pcnt; /* # of times run on this cpu */
unsigned long long cpu_time, /* time spent on the cpu */
run_delay; /* time spent waiting on a runqueue */
/* timestamps */
unsigned long long last_arrival,/* when we last ran on a cpu */
last_queued; /* when we were last queued to run */
};
#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
#ifdef CONFIG_SCHEDSTATS
extern const struct file_operations proc_schedstat_operations;
#endif /* CONFIG_SCHEDSTATS */
#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info {
spinlock_t lock;
unsigned int flags; /* Private per-task flags */
/* For each stat XXX, add following, aligned appropriately
*
* struct timespec XXX_start, XXX_end;
* u64 XXX_delay;
* u32 XXX_count;
*
* Atomicity of updates to XXX_delay, XXX_count protected by
* single lock above (split into XXX_lock if contention is an issue).
*/
/*
* XXX_count is incremented on every XXX operation, the delay
* associated with the operation is added to XXX_delay.
* XXX_delay contains the accumulated delay time in nanoseconds.
*/
struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
u64 blkio_delay; /* wait for sync block io completion */
u64 swapin_delay; /* wait for swapin block io completion */
u32 blkio_count; /* total count of the number of sync block */
/* io operations performed */
u32 swapin_count; /* total count of the number of swapin block */
/* io operations performed */
};
#endif /* CONFIG_TASK_DELAY_ACCT */
static inline int sched_info_on(void)
{
#ifdef CONFIG_SCHEDSTATS
return 1;
#elif defined(CONFIG_TASK_DELAY_ACCT)
extern int delayacct_on;
return delayacct_on;
#else
return 0;
#endif
}
enum cpu_idle_type {
CPU_IDLE,
CPU_NOT_IDLE,
CPU_NEWLY_IDLE,
CPU_MAX_IDLE_TYPES
};
/*
* sched-domains (multiprocessor balancing) declarations:
*/
/*
* Increase resolution of nice-level calculations:
*/
#define SCHED_LOAD_SHIFT 10
#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
#define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
#ifdef CONFIG_SMP
#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
#define SD_BALANCE_EXEC 4 /* Balance on exec */
#define SD_BALANCE_FORK 8 /* Balance on fork, clone */
#define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
#define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
#define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
#define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
#define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
#define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
#define SD_SERIALIZE 1024 /* Only a single load balancing instance */
#define BALANCE_FOR_MC_POWER \
(sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
#define BALANCE_FOR_PKG_POWER \
((sched_mc_power_savings || sched_smt_power_savings) ? \
SD_POWERSAVINGS_BALANCE : 0)
#define test_sd_parent(sd, flag) ((sd->parent && \
(sd->parent->flags & flag)) ? 1 : 0)
struct sched_group {
struct sched_group *next; /* Must be a circular list */
cpumask_t cpumask;
/*
* CPU power of this group, SCHED_LOAD_SCALE being max power for a
* single CPU. This is read only (except for setup, hotplug CPU).
* Note : Never change cpu_power without recompute its reciprocal
*/
unsigned int __cpu_power;
/*
* reciprocal value of cpu_power to avoid expensive divides
* (see include/linux/reciprocal_div.h)
*/
u32 reciprocal_cpu_power;
};
struct sched_domain {
/* These fields must be setup */
struct sched_domain *parent; /* top domain must be null terminated */
struct sched_domain *child; /* bottom domain must be null terminated */
struct sched_group *groups; /* the balancing groups of the domain */
cpumask_t span; /* span of all CPUs in this domain */
unsigned long min_interval; /* Minimum balance interval ms */
unsigned long max_interval; /* Maximum balance interval ms */
unsigned int busy_factor; /* less balancing by factor if busy */
unsigned int imbalance_pct; /* No balance until over watermark */
unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
unsigned int busy_idx;
unsigned int idle_idx;
unsigned int newidle_idx;
unsigned int wake_idx;
unsigned int forkexec_idx;
int flags; /* See SD_* */
/* Runtime fields. */
unsigned long last_balance; /* init to jiffies. units in jiffies */
unsigned int balance_interval; /* initialise to 1. units in ms. */
unsigned int nr_balance_failed; /* initialise to 0 */
#ifdef CONFIG_SCHEDSTATS
/* load_balance() stats */
unsigned long lb_cnt[CPU_MAX_IDLE_TYPES];
unsigned long lb_failed[CPU_MAX_IDLE_TYPES];
unsigned long lb_balanced[CPU_MAX_IDLE_TYPES];
unsigned long lb_imbalance[CPU_MAX_IDLE_TYPES];
unsigned long lb_gained[CPU_MAX_IDLE_TYPES];
unsigned long lb_hot_gained[CPU_MAX_IDLE_TYPES];
unsigned long lb_nobusyg[CPU_MAX_IDLE_TYPES];
unsigned long lb_nobusyq[CPU_MAX_IDLE_TYPES];
/* Active load balancing */
unsigned long alb_cnt;
unsigned long alb_failed;
unsigned long alb_pushed;
/* SD_BALANCE_EXEC stats */
unsigned long sbe_cnt;
unsigned long sbe_balanced;
unsigned long sbe_pushed;
/* SD_BALANCE_FORK stats */
unsigned long sbf_cnt;
unsigned long sbf_balanced;
unsigned long sbf_pushed;
/* try_to_wake_up() stats */
unsigned long ttwu_wake_remote;
unsigned long ttwu_move_affine;
unsigned long ttwu_move_balance;
#endif
};
extern int partition_sched_domains(cpumask_t *partition1,
cpumask_t *partition2);
#endif /* CONFIG_SMP */
/*
* A runqueue laden with a single nice 0 task scores a weighted_cpuload of
* SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
* task of nice 0 or enough lower priority tasks to bring up the
* weighted_cpuload
*/
static inline int above_background_load(void)
{
unsigned long cpu;
for_each_online_cpu(cpu) {
if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
return 1;
}
return 0;
}
struct io_context; /* See blkdev.h */
struct cpuset;
#define NGROUPS_SMALL 32
#define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
struct group_info {
int ngroups;
atomic_t usage;
gid_t small_block[NGROUPS_SMALL];
int nblocks;
gid_t *blocks[0];
};
/*
* get_group_info() must be called with the owning task locked (via task_lock())
* when task != current. The reason being that the vast majority of callers are
* looking at current->group_info, which can not be changed except by the
* current task. Changing current->group_info requires the task lock, too.
*/
#define get_group_info(group_info) do { \
atomic_inc(&(group_info)->usage); \
} while (0)
#define put_group_info(group_info) do { \
if (atomic_dec_and_test(&(group_info)->usage)) \
groups_free(group_info); \
} while (0)
extern struct group_info *groups_alloc(int gidsetsize);
extern void groups_free(struct group_info *group_info);
extern int set_current_groups(struct group_info *group_info);
extern int groups_search(struct group_info *group_info, gid_t grp);
/* access the groups "array" with this macro */
#define GROUP_AT(gi, i) \
((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
extern void prefetch_stack(struct task_struct *t);
#else
static inline void prefetch_stack(struct task_struct *t) { }
#endif
struct audit_context; /* See audit.c */
struct mempolicy;
struct pipe_inode_info;
struct uts_namespace;
struct rq;
struct sched_domain;
struct sched_class {
struct sched_class *next;
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
void (*yield_task) (struct rq *rq, struct task_struct *p);
void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
struct task_struct * (*pick_next_task) (struct rq *rq);
void (*put_prev_task) (struct rq *rq, struct task_struct *p);
unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
struct rq *busiest,
unsigned long max_nr_move, unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned, int *this_best_prio);
void (*set_curr_task) (struct rq *rq);
void (*task_tick) (struct rq *rq, struct task_struct *p);
void (*task_new) (struct rq *rq, struct task_struct *p);
};
struct load_weight {
unsigned long weight, inv_weight;
};
/*
* CFS stats for a schedulable entity (task, task-group etc)
*
* Current field usage histogram:
*
* 4 se->block_start
* 4 se->run_node
* 4 se->sleep_start
* 4 se->sleep_start_fair
* 6 se->load.weight
* 7 se->delta_fair
* 15 se->wait_runtime
*/
struct sched_entity {
long wait_runtime;
unsigned long delta_fair_run;
unsigned long delta_fair_sleep;
unsigned long delta_exec;
s64 fair_key;
struct load_weight load; /* for load-balancing */
struct rb_node run_node;
unsigned int on_rq;
u64 exec_start;
u64 sum_exec_runtime;
u64 prev_sum_exec_runtime;
u64 wait_start_fair;
u64 sleep_start_fair;
#ifdef CONFIG_SCHEDSTATS
u64 wait_start;
u64 wait_max;
s64 sum_wait_runtime;
u64 sleep_start;
u64 sleep_max;
s64 sum_sleep_runtime;
u64 block_start;
u64 block_max;
u64 exec_max;
unsigned long wait_runtime_overruns;
unsigned long wait_runtime_underruns;
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
struct sched_entity *parent;
/* rq on which this entity is (to be) queued: */
struct cfs_rq *cfs_rq;
/* rq "owned" by this entity/group: */
struct cfs_rq *my_q;
#endif
};
struct task_struct {
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
void *stack;
atomic_t usage;
unsigned int flags; /* per process flags, defined below */
unsigned int ptrace;
int lock_depth; /* BKL lock depth */
#ifdef CONFIG_SMP
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
int oncpu;
#endif
#endif
int prio, static_prio, normal_prio;
struct list_head run_list;
struct sched_class *sched_class;
struct sched_entity se;
#ifdef CONFIG_PREEMPT_NOTIFIERS
/* list of struct preempt_notifier: */
struct hlist_head preempt_notifiers;
#endif
unsigned short ioprio;
#ifdef CONFIG_BLK_DEV_IO_TRACE
unsigned int btrace_seq;
#endif
unsigned int policy;
cpumask_t cpus_allowed;
unsigned int time_slice;
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
struct sched_info sched_info;
#endif
struct list_head tasks;
/*
* ptrace_list/ptrace_children forms the list of my children
* that were stolen by a ptracer.
*/
struct list_head ptrace_children;
struct list_head ptrace_list;
struct mm_struct *mm, *active_mm;
/* task state */
struct linux_binfmt *binfmt;
int exit_state;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */
/* ??? */
unsigned int personality;
unsigned did_exec:1;
pid_t pid;
pid_t tgid;
#ifdef CONFIG_CC_STACKPROTECTOR
/* Canary value for the -fstack-protector gcc feature */
unsigned long stack_canary;
#endif
/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->parent->pid)
*/
struct task_struct *real_parent; /* real parent process (when being debugged) */
struct task_struct *parent; /* parent process */
/*
* children/sibling forms the list of my children plus the
* tasks I'm ptracing.
*/
struct list_head children; /* list of my children */
struct list_head sibling; /* linkage in my parent's children list */
struct task_struct *group_leader; /* threadgroup leader */
/* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX];
struct list_head thread_group;
struct completion *vfork_done; /* for vfork() */
int __user *set_child_tid; /* CLONE_CHILD_SETTID */
int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
unsigned int rt_priority;
cputime_t utime, stime;
unsigned long nvcsw, nivcsw; /* context switch counts */
struct timespec start_time; /* monotonic time */
struct timespec real_start_time; /* boot based time */
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
unsigned long min_flt, maj_flt;
cputime_t it_prof_expires, it_virt_expires;
unsigned long long it_sched_expires;
struct list_head cpu_timers[3];
/* process credentials */
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
struct group_info *group_info;
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
unsigned keep_capabilities:1;
struct user_struct *user;
#ifdef CONFIG_KEYS
struct key *request_key_auth; /* assumed request_key authority */
struct key *thread_keyring; /* keyring private to this thread */
unsigned char jit_keyring; /* default keyring to attach requested keys to */
#endif
/*
* fpu_counter contains the number of consecutive context switches
* that the FPU is used. If this is over a threshold, the lazy fpu
* saving becomes unlazy to save the trap. This is an unsigned char
* so that after 256 times the counter wraps and the behavior turns
* lazy again; this to deal with bursty apps that only use FPU for
* a short time
*/
unsigned char fpu_counter;
int oomkilladj; /* OOM kill score adjustment (bit shift). */
char comm[TASK_COMM_LEN]; /* executable name excluding path
- access with [gs]et_task_comm (which lock
it with task_lock())
- initialized normally by flush_old_exec */
/* file system info */
int link_count, total_link_count;
#ifdef CONFIG_SYSVIPC
/* ipc stuff */
struct sysv_sem sysvsem;
#endif
/* CPU-specific state of this task */
struct thread_struct thread;
/* filesystem information */
struct fs_struct *fs;
/* open file information */
struct files_struct *files;
/* namespaces */
struct nsproxy *nsproxy;
/* signal handlers */
struct signal_struct *signal;
struct sighand_struct *sighand;
sigset_t blocked, real_blocked;
sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
struct sigpending pending;
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
void *security;
struct audit_context *audit_context;
seccomp_t seccomp;
/* Thread group tracking */
u32 parent_exec_id;
u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
spinlock_t alloc_lock;
/* Protection of the PI data structures: */
spinlock_t pi_lock;
#ifdef CONFIG_RT_MUTEXES
/* PI waiters blocked on a rt_mutex held by this task */
struct plist_head pi_waiters;
/* Deadlock detection and priority inheritance handling */
struct rt_mutex_waiter *pi_blocked_on;
#endif
#ifdef CONFIG_DEBUG_MUTEXES
/* mutex deadlock detection */
struct mutex_waiter *blocked_on;
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
unsigned int irq_events;
int hardirqs_enabled;
unsigned long hardirq_enable_ip;
unsigned int hardirq_enable_event;
unsigned long hardirq_disable_ip;
unsigned int hardirq_disable_event;
int softirqs_enabled;
unsigned long softirq_disable_ip;
unsigned int softirq_disable_event;
unsigned long softirq_enable_ip;
unsigned int softirq_enable_event;
int hardirq_context;
int softirq_context;
#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 30UL
u64 curr_chain_key;
int lockdep_depth;
struct held_lock held_locks[MAX_LOCK_DEPTH];
unsigned int lockdep_recursion;
#endif
/* journalling filesystem info */
void *journal_info;
/* stacked block device info */
struct bio *bio_list, **bio_tail;
/* VM state */
struct reclaim_state *reclaim_state;
struct backing_dev_info *backing_dev_info;
struct io_context *io_context;
unsigned long ptrace_message;
siginfo_t *last_siginfo; /* For ptrace use. */
/*
* current io wait handle: wait queue entry to use for io waits
* If this thread is processing aio, this points at the waitqueue
* inside the currently handled kiocb. It may be NULL (i.e. default
* to a stack based synchronous wait) if its doing sync IO.
*/
wait_queue_t *io_wait;
#ifdef CONFIG_TASK_XACCT
/* i/o counters(bytes read/written, #syscalls */
u64 rchar, wchar, syscr, syscw;
#endif
struct task_io_accounting ioac;
#if defined(CONFIG_TASK_XACCT)
u64 acct_rss_mem1; /* accumulated rss usage */
u64 acct_vm_mem1; /* accumulated virtual memory usage */
cputime_t acct_stimexpd;/* stime since last update */
#endif
#ifdef CONFIG_NUMA
struct mempolicy *mempolicy;
short il_next;
#endif
#ifdef CONFIG_CPUSETS
struct cpuset *cpuset;
nodemask_t mems_allowed;
int cpuset_mems_generation;
int cpuset_mem_spread_rotor;
#endif
struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
struct compat_robust_list_head __user *compat_robust_list;
#endif
struct list_head pi_state_list;
struct futex_pi_state *pi_state_cache;
atomic_t fs_excl; /* holding fs exclusive resources */
struct rcu_head rcu;
/*
* cache last used pipe for splice
*/
struct pipe_inode_info *splice_pipe;
#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info *delays;
#endif
#ifdef CONFIG_FAULT_INJECTION
int make_it_fail;
#endif
};
/*
* Priority of a process goes from 0..MAX_PRIO-1, valid RT
* priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
* tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
* values are inverted: lower p->prio value means higher priority.
*
* The MAX_USER_RT_PRIO value allows the actual maximum
* RT priority to be separate from the value exported to
* user-space. This allows kernel threads to set their
* priority to a value higher than any user task. Note:
* MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
*/
#define MAX_USER_RT_PRIO 100
#define MAX_RT_PRIO MAX_USER_RT_PRIO
#define MAX_PRIO (MAX_RT_PRIO + 40)
#define DEFAULT_PRIO (MAX_RT_PRIO + 20)
static inline int rt_prio(int prio)
{
if (unlikely(prio < MAX_RT_PRIO))
return 1;
return 0;
}
static inline int rt_task(struct task_struct *p)
{
return rt_prio(p->prio);
}
static inline pid_t process_group(struct task_struct *tsk)
{
return tsk->signal->pgrp;
}
static inline pid_t signal_session(struct signal_struct *sig)
{
return sig->__session;
}
static inline pid_t process_session(struct task_struct *tsk)
{
return signal_session(tsk->signal);
}
static inline void set_signal_session(struct signal_struct *sig, pid_t session)
{
sig->__session = session;
}
static inline struct pid *task_pid(struct task_struct *task)
{
return task->pids[PIDTYPE_PID].pid;
}
static inline struct pid *task_tgid(struct task_struct *task)
{
return task->group_leader->pids[PIDTYPE_PID].pid;
}
static inline struct pid *task_pgrp(struct task_struct *task)
{
return task->group_leader->pids[PIDTYPE_PGID].pid;
}
static inline struct pid *task_session(struct task_struct *task)
{
return task->group_leader->pids[PIDTYPE_SID].pid;
}
/**
* pid_alive - check that a task structure is not stale
* @p: Task structure to be checked.
*
* Test if a process is not yet dead (at most zombie state)
* If pid_alive fails, then pointers within the task structure
* can be stale and must not be dereferenced.
*/
static inline int pid_alive(struct task_struct *p)
{
return p->pids[PIDTYPE_PID].pid != NULL;
}
/**
* is_init - check if a task structure is init
* @tsk: Task structure to be checked.
*
* Check if a task structure is the first user space task the kernel created.
*/
static inline int is_init(struct task_struct *tsk)
{
return tsk->pid == 1;
}
extern struct pid *cad_pid;
extern void free_task(struct task_struct *tsk);
#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
extern void __put_task_struct(struct task_struct *t);
static inline void put_task_struct(struct task_struct *t)
{
if (atomic_dec_and_test(&t->usage))
__put_task_struct(t);
}
/*
* Per process flags
*/
#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
/* Not implemented yet, only for 486*/
#define PF_STARTING 0x00000002 /* being created */
#define PF_EXITING 0x00000004 /* getting shut down */
#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
#define PF_DUMPCORE 0x00000200 /* dumped core */
#define PF_SIGNALED 0x00000400 /* killed by a signal */
#define PF_MEMALLOC 0x00000800 /* Allocating memory */
#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
#define PF_FROZEN 0x00010000 /* frozen for system suspend */
#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
#define PF_KSWAPD 0x00040000 /* I am kswapd */
#define PF_SWAPOFF 0x00080000 /* I am in swapoff */
#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
#define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
/*
* Only the _current_ task can read/write to tsk->flags, but other
* tasks can access tsk->flags in readonly mode for example
* with tsk_used_math (like during threaded core dumping).
* There is however an exception to this rule during ptrace
* or during fork: the ptracer task is allowed to write to the
* child->flags of its traced child (same goes for fork, the parent
* can write to the child->flags), because we're guaranteed the
* child is not running and in turn not changing child->flags
* at the same time the parent does it.
*/
#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math() clear_stopped_child_used_math(current)
#define set_used_math() set_stopped_child_used_math(current)
#define conditional_stopped_child_used_math(condition, child) \
do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
#define conditional_used_math(condition) \
conditional_stopped_child_used_math(condition, current)
#define copy_to_stopped_child_used_math(child) \
do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
#define used_math() tsk_used_math(current)
#ifdef CONFIG_SMP
extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
#else
static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
{
if (!cpu_isset(0, new_mask))
return -EINVAL;
return 0;
}
#endif
extern unsigned long long sched_clock(void);
/*
* For kernel-internal use: high-speed (but slightly incorrect) per-cpu
* clock constructed from sched_clock():
*/
extern unsigned long long cpu_clock(int cpu);
extern unsigned long long
task_sched_runtime(struct task_struct *task);
/* sched_exec is called by processes performing an exec */
#ifdef CONFIG_SMP
extern void sched_exec(void);
#else
#define sched_exec() {}
#endif
extern void sched_clock_idle_sleep_event(void);
extern void sched_clock_idle_wakeup_event(u64 delta_ns);
#ifdef CONFIG_HOTPLUG_CPU
extern void idle_task_exit(void);
#else
static inline void idle_task_exit(void) {}
#endif
extern void sched_idle_next(void);
extern unsigned int sysctl_sched_latency;
extern unsigned int sysctl_sched_min_granularity;
extern unsigned int sysctl_sched_wakeup_granularity;
extern unsigned int sysctl_sched_batch_wakeup_granularity;
extern unsigned int sysctl_sched_stat_granularity;
extern unsigned int sysctl_sched_runtime_limit;
extern unsigned int sysctl_sched_compat_yield;
extern unsigned int sysctl_sched_child_runs_first;
extern unsigned int sysctl_sched_features;
#ifdef CONFIG_RT_MUTEXES
extern int rt_mutex_getprio(struct task_struct *p);
extern void rt_mutex_setprio(struct task_struct *p, int prio);
extern void rt_mutex_adjust_pi(struct task_struct *p);
#else
static inline int rt_mutex_getprio(struct task_struct *p)
{
return p->normal_prio;
}
# define rt_mutex_adjust_pi(p) do { } while (0)
#endif
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
extern int task_nice(const struct task_struct *p);
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
extern int idle_cpu(int cpu);
extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
extern struct task_struct *idle_task(int cpu);
extern struct task_struct *curr_task(int cpu);
extern void set_curr_task(int cpu, struct task_struct *p);
void yield(void);
/*
* The default (Linux) execution domain.
*/
extern struct exec_domain default_exec_domain;
union thread_union {
struct thread_info thread_info;
unsigned long stack[THREAD_SIZE/sizeof(long)];
};
#ifndef __HAVE_ARCH_KSTACK_END
static inline int kstack_end(void *addr)
{
/* Reliable end of stack detection:
* Some APM bios versions misalign the stack
*/
return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
}
#endif
extern union thread_union init_thread_union;
extern struct task_struct init_task;
extern struct mm_struct init_mm;
#define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
extern struct task_struct *find_task_by_pid_type(int type, int pid);
extern void __set_special_pids(pid_t session, pid_t pgrp);
/* per-UID process charging. */
extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
static inline struct user_struct *get_uid(struct user_struct *u)
{
atomic_inc(&u->__count);
return u;
}
extern void free_uid(struct user_struct *);
extern void switch_uid(struct user_struct *);
extern void release_uids(struct user_namespace *ns);
#include <asm/current.h>
extern void do_timer(unsigned long ticks);
extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
extern int FASTCALL(wake_up_process(struct task_struct * tsk));
extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
unsigned long clone_flags));
#ifdef CONFIG_SMP
extern void kick_process(struct task_struct *tsk);
#else
static inline void kick_process(struct task_struct *tsk) { }
#endif
extern void sched_fork(struct task_struct *p, int clone_flags);
extern void sched_dead(struct task_struct *p);
extern int in_group_p(gid_t);
extern int in_egroup_p(gid_t);
extern void proc_caches_init(void);
extern void flush_signals(struct task_struct *);
extern void ignore_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *, int force_default);
extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&tsk->sighand->siglock, flags);
ret = dequeue_signal(tsk, mask, info);
spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
return ret;
}
extern void block_all_signals(int (*notifier)(void *priv), void *priv,
sigset_t *mask);
extern void unblock_all_signals(void);
extern void release_task(struct task_struct * p);
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
extern int force_sigsegv(int, struct task_struct *);
extern int force_sig_info(int, struct siginfo *, struct task_struct *);
extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
extern int kill_pgrp(struct pid *pid, int sig, int priv);
extern int kill_pid(struct pid *pid, int sig, int priv);
extern int kill_proc_info(int, struct siginfo *, pid_t);
extern void do_notify_parent(struct task_struct *, int);
extern void force_sig(int, struct task_struct *);
extern void force_sig_specific(int, struct task_struct *);
extern int send_sig(int, struct task_struct *, int);
extern void zap_other_threads(struct task_struct *p);
extern int kill_proc(pid_t, int, int);
extern struct sigqueue *sigqueue_alloc(void);
extern void sigqueue_free(struct sigqueue *);
extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
static inline int kill_cad_pid(int sig, int priv)
{
return kill_pid(cad_pid, sig, priv);
}
/* These can be the second arg to send_sig_info/send_group_sig_info. */
#define SEND_SIG_NOINFO ((struct siginfo *) 0)
#define SEND_SIG_PRIV ((struct siginfo *) 1)
#define SEND_SIG_FORCED ((struct siginfo *) 2)
static inline int is_si_special(const struct siginfo *info)
{
return info <= SEND_SIG_FORCED;
}
/* True if we are on the alternate signal stack. */
static inline int on_sig_stack(unsigned long sp)
{
return (sp - current->sas_ss_sp < current->sas_ss_size);
}
static inline int sas_ss_flags(unsigned long sp)
{
return (current->sas_ss_size == 0 ? SS_DISABLE
: on_sig_stack(sp) ? SS_ONSTACK : 0);
}
/*
* Routines for handling mm_structs
*/
extern struct mm_struct * mm_alloc(void);
/* mmdrop drops the mm and the page tables */
extern void FASTCALL(__mmdrop(struct mm_struct *));
static inline void mmdrop(struct mm_struct * mm)
{
if (unlikely(atomic_dec_and_test(&mm->mm_count)))
__mmdrop(mm);
}
/* mmput gets rid of the mappings and all user-space */
extern void mmput(struct mm_struct *);
/* Grab a reference to a task's mm, if it is not already going away */
extern struct mm_struct *get_task_mm(struct task_struct *task);
/* Remove the current tasks stale references to the old mm_struct */
extern void mm_release(struct task_struct *, struct mm_struct *);
extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
extern void flush_thread(void);
extern void exit_thread(void);
extern void exit_files(struct task_struct *);
extern void __cleanup_signal(struct signal_struct *);
extern void __cleanup_sighand(struct sighand_struct *);
extern void exit_itimers(struct signal_struct *);
extern NORET_TYPE void do_group_exit(int);
extern void daemonize(const char *, ...);
extern int allow_signal(int);
extern int disallow_signal(int);
extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
struct task_struct *fork_idle(int);
extern void set_task_comm(struct task_struct *tsk, char *from);
extern void get_task_comm(char *to, struct task_struct *tsk);
#ifdef CONFIG_SMP
extern void wait_task_inactive(struct task_struct * p);
#else
#define wait_task_inactive(p) do { } while (0)
#endif
#define remove_parent(p) list_del_init(&(p)->sibling)
#define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
#define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
#define for_each_process(p) \
for (p = &init_task ; (p = next_task(p)) != &init_task ; )
/*
* Careful: do_each_thread/while_each_thread is a double loop so
* 'break' will not work as expected - use goto instead.
*/
#define do_each_thread(g, t) \
for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
#define while_each_thread(g, t) \
while ((t = next_thread(t)) != g)
/* de_thread depends on thread_group_leader not being a pid based check */
#define thread_group_leader(p) (p == p->group_leader)
/* Do to the insanities of de_thread it is possible for a process
* to have the pid of the thread group leader without actually being
* the thread group leader. For iteration through the pids in proc
* all we care about is that we have a task with the appropriate
* pid, we don't actually care if we have the right task.
*/
static inline int has_group_leader_pid(struct task_struct *p)
{
return p->pid == p->tgid;
}
static inline struct task_struct *next_thread(const struct task_struct *p)
{
return list_entry(rcu_dereference(p->thread_group.next),
struct task_struct, thread_group);
}
static inline int thread_group_empty(struct task_struct *p)
{
return list_empty(&p->thread_group);
}
#define delay_group_leader(p) \
(thread_group_leader(p) && !thread_group_empty(p))
/*
* Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
* subscriptions and synchronises with wait4(). Also used in procfs. Also
* pins the final release of task.io_context. Also protects ->cpuset.
*
* Nests both inside and outside of read_lock(&tasklist_lock).
* It must not be nested with write_lock_irq(&tasklist_lock),
* neither inside nor outside.
*/
static inline void task_lock(struct task_struct *p)
{
spin_lock(&p->alloc_lock);
}
static inline void task_unlock(struct task_struct *p)
{
spin_unlock(&p->alloc_lock);
}
extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
unsigned long *flags);
static inline void unlock_task_sighand(struct task_struct *tsk,
unsigned long *flags)
{
spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
}
#ifndef __HAVE_THREAD_FUNCTIONS
#define task_thread_info(task) ((struct thread_info *)(task)->stack)
#define task_stack_page(task) ((task)->stack)
static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
{
*task_thread_info(p) = *task_thread_info(org);
task_thread_info(p)->task = p;
}
static inline unsigned long *end_of_stack(struct task_struct *p)
{
return (unsigned long *)(task_thread_info(p) + 1);
}
#endif
/* set thread flags in other task's structures
* - see asm/thread_info.h for TIF_xxxx flags available
*/
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
set_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
clear_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline void set_tsk_need_resched(struct task_struct *tsk)
{
set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}
static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}
static inline int signal_pending(struct task_struct *p)
{
return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
}
static inline int need_resched(void)
{
return unlikely(test_thread_flag(TIF_NEED_RESCHED));
}
/*
* cond_resched() and cond_resched_lock(): latency reduction via
* explicit rescheduling in places that are safe. The return
* value indicates whether a reschedule was done in fact.
* cond_resched_lock() will drop the spinlock before scheduling,
* cond_resched_softirq() will enable bhs before scheduling.
*/
extern int cond_resched(void);
extern int cond_resched_lock(spinlock_t * lock);
extern int cond_resched_softirq(void);
/*
* Does a critical section need to be broken due to another
* task waiting?:
*/
#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
# define need_lockbreak(lock) ((lock)->break_lock)
#else
# define need_lockbreak(lock) 0
#endif
/*
* Does a critical section need to be broken due to another
* task waiting or preemption being signalled:
*/
static inline int lock_need_resched(spinlock_t *lock)
{
if (need_lockbreak(lock) || need_resched())
return 1;
return 0;
}
/*
* Reevaluate whether the task has signals pending delivery.
* Wake the task if so.
* This is required every time the blocked sigset_t changes.
* callers must hold sighand->siglock.
*/
extern void recalc_sigpending_and_wake(struct task_struct *t);
extern void recalc_sigpending(void);
extern void signal_wake_up(struct task_struct *t, int resume_stopped);
/*
* Wrappers for p->thread_info->cpu access. No-op on UP.
*/
#ifdef CONFIG_SMP
static inline unsigned int task_cpu(const struct task_struct *p)
{
return task_thread_info(p)->cpu;
}
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
#else
static inline unsigned int task_cpu(const struct task_struct *p)
{
return 0;
}
static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}
#endif /* CONFIG_SMP */
#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
extern void arch_pick_mmap_layout(struct mm_struct *mm);
#else
static inline void arch_pick_mmap_layout(struct mm_struct *mm)
{
mm->mmap_base = TASK_UNMAPPED_BASE;
mm->get_unmapped_area = arch_get_unmapped_area;
mm->unmap_area = arch_unmap_area;
}
#endif
extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
extern int sched_mc_power_savings, sched_smt_power_savings;
extern void normalize_rt_tasks(void);
#ifdef CONFIG_TASK_XACCT
static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
{
tsk->rchar += amt;
}
static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
{
tsk->wchar += amt;
}
static inline void inc_syscr(struct task_struct *tsk)
{
tsk->syscr++;
}
static inline void inc_syscw(struct task_struct *tsk)
{
tsk->syscw++;
}
#else
static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
{
}
static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
{
}
static inline void inc_syscr(struct task_struct *tsk)
{
}
static inline void inc_syscw(struct task_struct *tsk)
{
}
#endif
#endif /* __KERNEL__ */
#endif