mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-08 05:34:29 +08:00
ad2fa3717b
When we free a HugeTLB page to the buddy allocator, we need to allocate the vmemmap pages associated with it. However, we may not be able to allocate the vmemmap pages when the system is under memory pressure. In this case, we just refuse to free the HugeTLB page. This changes behavior in some corner cases as listed below: 1) Failing to free a huge page triggered by the user (decrease nr_pages). User needs to try again later. 2) Failing to free a surplus huge page when freed by the application. Try again later when freeing a huge page next time. 3) Failing to dissolve a free huge page on ZONE_MOVABLE via offline_pages(). This can happen when we have plenty of ZONE_MOVABLE memory, but not enough kernel memory to allocate vmemmmap pages. We may even be able to migrate huge page contents, but will not be able to dissolve the source huge page. This will prevent an offline operation and is unfortunate as memory offlining is expected to succeed on movable zones. Users that depend on memory hotplug to succeed for movable zones should carefully consider whether the memory savings gained from this feature are worth the risk of possibly not being able to offline memory in certain situations. 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via alloc_contig_range() - once we have that handling in place. Mainly affects CMA and virtio-mem. Similar to 3). virito-mem will handle migration errors gracefully. CMA might be able to fallback on other free areas within the CMA region. Vmemmap pages are allocated from the page freeing context. In order for those allocations to be not disruptive (e.g. trigger oom killer) __GFP_NORETRY is used. hugetlb_lock is dropped for the allocation because a non sleeping allocation would be too fragile and it could fail too easily under memory pressure. GFP_ATOMIC or other modes to access memory reserves is not used because we want to prevent consuming reserves under heavy hugetlb freeing. [mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page] Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com [willy@infradead.org: fix alloc_vmemmap_page_list documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
241 lines
11 KiB
C
241 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Free some vmemmap pages of HugeTLB
|
|
*
|
|
* Copyright (c) 2020, Bytedance. All rights reserved.
|
|
*
|
|
* Author: Muchun Song <songmuchun@bytedance.com>
|
|
*
|
|
* The struct page structures (page structs) are used to describe a physical
|
|
* page frame. By default, there is a one-to-one mapping from a page frame to
|
|
* it's corresponding page struct.
|
|
*
|
|
* HugeTLB pages consist of multiple base page size pages and is supported by
|
|
* many architectures. See hugetlbpage.rst in the Documentation directory for
|
|
* more details. On the x86-64 architecture, HugeTLB pages of size 2MB and 1GB
|
|
* are currently supported. Since the base page size on x86 is 4KB, a 2MB
|
|
* HugeTLB page consists of 512 base pages and a 1GB HugeTLB page consists of
|
|
* 4096 base pages. For each base page, there is a corresponding page struct.
|
|
*
|
|
* Within the HugeTLB subsystem, only the first 4 page structs are used to
|
|
* contain unique information about a HugeTLB page. __NR_USED_SUBPAGE provides
|
|
* this upper limit. The only 'useful' information in the remaining page structs
|
|
* is the compound_head field, and this field is the same for all tail pages.
|
|
*
|
|
* By removing redundant page structs for HugeTLB pages, memory can be returned
|
|
* to the buddy allocator for other uses.
|
|
*
|
|
* Different architectures support different HugeTLB pages. For example, the
|
|
* following table is the HugeTLB page size supported by x86 and arm64
|
|
* architectures. Because arm64 supports 4k, 16k, and 64k base pages and
|
|
* supports contiguous entries, so it supports many kinds of sizes of HugeTLB
|
|
* page.
|
|
*
|
|
* +--------------+-----------+-----------------------------------------------+
|
|
* | Architecture | Page Size | HugeTLB Page Size |
|
|
* +--------------+-----------+-----------+-----------+-----------+-----------+
|
|
* | x86-64 | 4KB | 2MB | 1GB | | |
|
|
* +--------------+-----------+-----------+-----------+-----------+-----------+
|
|
* | | 4KB | 64KB | 2MB | 32MB | 1GB |
|
|
* | +-----------+-----------+-----------+-----------+-----------+
|
|
* | arm64 | 16KB | 2MB | 32MB | 1GB | |
|
|
* | +-----------+-----------+-----------+-----------+-----------+
|
|
* | | 64KB | 2MB | 512MB | 16GB | |
|
|
* +--------------+-----------+-----------+-----------+-----------+-----------+
|
|
*
|
|
* When the system boot up, every HugeTLB page has more than one struct page
|
|
* structs which size is (unit: pages):
|
|
*
|
|
* struct_size = HugeTLB_Size / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE
|
|
*
|
|
* Where HugeTLB_Size is the size of the HugeTLB page. We know that the size
|
|
* of the HugeTLB page is always n times PAGE_SIZE. So we can get the following
|
|
* relationship.
|
|
*
|
|
* HugeTLB_Size = n * PAGE_SIZE
|
|
*
|
|
* Then,
|
|
*
|
|
* struct_size = n * PAGE_SIZE / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE
|
|
* = n * sizeof(struct page) / PAGE_SIZE
|
|
*
|
|
* We can use huge mapping at the pud/pmd level for the HugeTLB page.
|
|
*
|
|
* For the HugeTLB page of the pmd level mapping, then
|
|
*
|
|
* struct_size = n * sizeof(struct page) / PAGE_SIZE
|
|
* = PAGE_SIZE / sizeof(pte_t) * sizeof(struct page) / PAGE_SIZE
|
|
* = sizeof(struct page) / sizeof(pte_t)
|
|
* = 64 / 8
|
|
* = 8 (pages)
|
|
*
|
|
* Where n is how many pte entries which one page can contains. So the value of
|
|
* n is (PAGE_SIZE / sizeof(pte_t)).
|
|
*
|
|
* This optimization only supports 64-bit system, so the value of sizeof(pte_t)
|
|
* is 8. And this optimization also applicable only when the size of struct page
|
|
* is a power of two. In most cases, the size of struct page is 64 bytes (e.g.
|
|
* x86-64 and arm64). So if we use pmd level mapping for a HugeTLB page, the
|
|
* size of struct page structs of it is 8 page frames which size depends on the
|
|
* size of the base page.
|
|
*
|
|
* For the HugeTLB page of the pud level mapping, then
|
|
*
|
|
* struct_size = PAGE_SIZE / sizeof(pmd_t) * struct_size(pmd)
|
|
* = PAGE_SIZE / 8 * 8 (pages)
|
|
* = PAGE_SIZE (pages)
|
|
*
|
|
* Where the struct_size(pmd) is the size of the struct page structs of a
|
|
* HugeTLB page of the pmd level mapping.
|
|
*
|
|
* E.g.: A 2MB HugeTLB page on x86_64 consists in 8 page frames while 1GB
|
|
* HugeTLB page consists in 4096.
|
|
*
|
|
* Next, we take the pmd level mapping of the HugeTLB page as an example to
|
|
* show the internal implementation of this optimization. There are 8 pages
|
|
* struct page structs associated with a HugeTLB page which is pmd mapped.
|
|
*
|
|
* Here is how things look before optimization.
|
|
*
|
|
* HugeTLB struct pages(8 pages) page frame(8 pages)
|
|
* +-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+
|
|
* | | | 0 | -------------> | 0 |
|
|
* | | +-----------+ +-----------+
|
|
* | | | 1 | -------------> | 1 |
|
|
* | | +-----------+ +-----------+
|
|
* | | | 2 | -------------> | 2 |
|
|
* | | +-----------+ +-----------+
|
|
* | | | 3 | -------------> | 3 |
|
|
* | | +-----------+ +-----------+
|
|
* | | | 4 | -------------> | 4 |
|
|
* | PMD | +-----------+ +-----------+
|
|
* | level | | 5 | -------------> | 5 |
|
|
* | mapping | +-----------+ +-----------+
|
|
* | | | 6 | -------------> | 6 |
|
|
* | | +-----------+ +-----------+
|
|
* | | | 7 | -------------> | 7 |
|
|
* | | +-----------+ +-----------+
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* +-----------+
|
|
*
|
|
* The value of page->compound_head is the same for all tail pages. The first
|
|
* page of page structs (page 0) associated with the HugeTLB page contains the 4
|
|
* page structs necessary to describe the HugeTLB. The only use of the remaining
|
|
* pages of page structs (page 1 to page 7) is to point to page->compound_head.
|
|
* Therefore, we can remap pages 2 to 7 to page 1. Only 2 pages of page structs
|
|
* will be used for each HugeTLB page. This will allow us to free the remaining
|
|
* 6 pages to the buddy allocator.
|
|
*
|
|
* Here is how things look after remapping.
|
|
*
|
|
* HugeTLB struct pages(8 pages) page frame(8 pages)
|
|
* +-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+
|
|
* | | | 0 | -------------> | 0 |
|
|
* | | +-----------+ +-----------+
|
|
* | | | 1 | -------------> | 1 |
|
|
* | | +-----------+ +-----------+
|
|
* | | | 2 | ----------------^ ^ ^ ^ ^ ^
|
|
* | | +-----------+ | | | | |
|
|
* | | | 3 | ------------------+ | | | |
|
|
* | | +-----------+ | | | |
|
|
* | | | 4 | --------------------+ | | |
|
|
* | PMD | +-----------+ | | |
|
|
* | level | | 5 | ----------------------+ | |
|
|
* | mapping | +-----------+ | |
|
|
* | | | 6 | ------------------------+ |
|
|
* | | +-----------+ |
|
|
* | | | 7 | --------------------------+
|
|
* | | +-----------+
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* +-----------+
|
|
*
|
|
* When a HugeTLB is freed to the buddy system, we should allocate 6 pages for
|
|
* vmemmap pages and restore the previous mapping relationship.
|
|
*
|
|
* For the HugeTLB page of the pud level mapping. It is similar to the former.
|
|
* We also can use this approach to free (PAGE_SIZE - 2) vmemmap pages.
|
|
*
|
|
* Apart from the HugeTLB page of the pmd/pud level mapping, some architectures
|
|
* (e.g. aarch64) provides a contiguous bit in the translation table entries
|
|
* that hints to the MMU to indicate that it is one of a contiguous set of
|
|
* entries that can be cached in a single TLB entry.
|
|
*
|
|
* The contiguous bit is used to increase the mapping size at the pmd and pte
|
|
* (last) level. So this type of HugeTLB page can be optimized only when its
|
|
* size of the struct page structs is greater than 2 pages.
|
|
*/
|
|
#include "hugetlb_vmemmap.h"
|
|
|
|
/*
|
|
* There are a lot of struct page structures associated with each HugeTLB page.
|
|
* For tail pages, the value of compound_head is the same. So we can reuse first
|
|
* page of tail page structures. We map the virtual addresses of the remaining
|
|
* pages of tail page structures to the first tail page struct, and then free
|
|
* these page frames. Therefore, we need to reserve two pages as vmemmap areas.
|
|
*/
|
|
#define RESERVE_VMEMMAP_NR 2U
|
|
#define RESERVE_VMEMMAP_SIZE (RESERVE_VMEMMAP_NR << PAGE_SHIFT)
|
|
|
|
static inline unsigned long free_vmemmap_pages_size_per_hpage(struct hstate *h)
|
|
{
|
|
return (unsigned long)free_vmemmap_pages_per_hpage(h) << PAGE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* Previously discarded vmemmap pages will be allocated and remapping
|
|
* after this function returns zero.
|
|
*/
|
|
int alloc_huge_page_vmemmap(struct hstate *h, struct page *head)
|
|
{
|
|
int ret;
|
|
unsigned long vmemmap_addr = (unsigned long)head;
|
|
unsigned long vmemmap_end, vmemmap_reuse;
|
|
|
|
if (!HPageVmemmapOptimized(head))
|
|
return 0;
|
|
|
|
vmemmap_addr += RESERVE_VMEMMAP_SIZE;
|
|
vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h);
|
|
vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
|
|
/*
|
|
* The pages which the vmemmap virtual address range [@vmemmap_addr,
|
|
* @vmemmap_end) are mapped to are freed to the buddy allocator, and
|
|
* the range is mapped to the page which @vmemmap_reuse is mapped to.
|
|
* When a HugeTLB page is freed to the buddy allocator, previously
|
|
* discarded vmemmap pages must be allocated and remapping.
|
|
*/
|
|
ret = vmemmap_remap_alloc(vmemmap_addr, vmemmap_end, vmemmap_reuse,
|
|
GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
|
|
|
|
if (!ret)
|
|
ClearHPageVmemmapOptimized(head);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void free_huge_page_vmemmap(struct hstate *h, struct page *head)
|
|
{
|
|
unsigned long vmemmap_addr = (unsigned long)head;
|
|
unsigned long vmemmap_end, vmemmap_reuse;
|
|
|
|
if (!free_vmemmap_pages_per_hpage(h))
|
|
return;
|
|
|
|
vmemmap_addr += RESERVE_VMEMMAP_SIZE;
|
|
vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h);
|
|
vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
|
|
|
|
/*
|
|
* Remap the vmemmap virtual address range [@vmemmap_addr, @vmemmap_end)
|
|
* to the page which @vmemmap_reuse is mapped to, then free the pages
|
|
* which the range [@vmemmap_addr, @vmemmap_end] is mapped to.
|
|
*/
|
|
vmemmap_remap_free(vmemmap_addr, vmemmap_end, vmemmap_reuse);
|
|
|
|
SetHPageVmemmapOptimized(head);
|
|
}
|