2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-26 23:55:40 +08:00
linux-next/Documentation/devicetree/bindings/i2c/i2c-pxa-pci-ce4100.txt
Wolfram Sang 16c4c52435 bindings: i2c: use consistent naming for i2c binding descriptions
Filenames of devictree binding documentation seems to be arbitrary and
for me it is unneeded hazzle to find the corresponding documentation for
a specific driver.

Naming the description the same as the driver is a lot easier and makes
sense to me since the driver defines the binding it understands.

Also, remove a reference in one source to the binding documentation, since path
information easily gets stale.

Signed-off-by: Wolfram Sang <wolfram@the-dreams.de>
Cc: Rob Herring <robherring2@gmail.com>
Cc: Grant Likely <grant.likely@secretlab.ca>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2012-11-15 15:57:07 +00:00

94 lines
2.7 KiB
Plaintext

CE4100 I2C
----------
CE4100 has one PCI device which is described as the I2C-Controller. This
PCI device has three PCI-bars, each bar contains a complete I2C
controller. So we have a total of three independent I2C-Controllers
which share only an interrupt line.
The driver is probed via the PCI-ID and is gathering the information of
attached devices from the devices tree.
Grant Likely recommended to use the ranges property to map the PCI-Bar
number to its physical address and to use this to find the child nodes
of the specific I2C controller. This were his exact words:
Here's where the magic happens. Each entry in
ranges describes how the parent pci address space
(middle group of 3) is translated to the local
address space (first group of 2) and the size of
each range (last cell). In this particular case,
the first cell of the local address is chosen to be
1:1 mapped to the BARs, and the second is the
offset from be base of the BAR (which would be
non-zero if you had 2 or more devices mapped off
the same BAR)
ranges allows the address mapping to be described
in a way that the OS can interpret without
requiring custom device driver code.
This is an example which is used on FalconFalls:
------------------------------------------------
i2c-controller@b,2 {
#address-cells = <2>;
#size-cells = <1>;
compatible = "pci8086,2e68.2",
"pci8086,2e68",
"pciclass,ff0000",
"pciclass,ff00";
reg = <0x15a00 0x0 0x0 0x0 0x0>;
interrupts = <16 1>;
/* as described by Grant, the first number in the group of
* three is the bar number followed by the 64bit bar address
* followed by size of the mapping. The bar address
* requires also a valid translation in parents ranges
* property.
*/
ranges = <0 0 0x02000000 0 0xdffe0500 0x100
1 0 0x02000000 0 0xdffe0600 0x100
2 0 0x02000000 0 0xdffe0700 0x100>;
i2c@0 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "intel,ce4100-i2c-controller";
/* The first number in the reg property is the
* number of the bar
*/
reg = <0 0 0x100>;
/* This I2C controller has no devices */
};
i2c@1 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "intel,ce4100-i2c-controller";
reg = <1 0 0x100>;
/* This I2C controller has one gpio controller */
gpio@26 {
#gpio-cells = <2>;
compatible = "ti,pcf8575";
reg = <0x26>;
gpio-controller;
};
};
i2c@2 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "intel,ce4100-i2c-controller";
reg = <2 0 0x100>;
gpio@26 {
#gpio-cells = <2>;
compatible = "ti,pcf8575";
reg = <0x26>;
gpio-controller;
};
};
};