2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 23:26:03 +08:00
linux-next/drivers/iio/accel/adxl372.c
Alexandru Ardelean abef6bc928 iio: accel: adxl372: use devm_iio_triggered_buffer_setup_ext()
This change switches to the new devm_iio_triggered_buffer_setup_ext()
function and removes the iio_buffer_set_attrs() call, for assigning the
HW FIFO attributes to the buffer.

Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Link: https://lore.kernel.org/r/20200929125949.69934-5-alexandru.ardelean@analog.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2020-11-21 14:53:15 +00:00

1269 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* ADXL372 3-Axis Digital Accelerometer core driver
*
* Copyright 2018 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include "adxl372.h"
/* ADXL372 registers definition */
#define ADXL372_DEVID 0x00
#define ADXL372_DEVID_MST 0x01
#define ADXL372_PARTID 0x02
#define ADXL372_STATUS_1 0x04
#define ADXL372_STATUS_2 0x05
#define ADXL372_FIFO_ENTRIES_2 0x06
#define ADXL372_FIFO_ENTRIES_1 0x07
#define ADXL372_X_DATA_H 0x08
#define ADXL372_X_DATA_L 0x09
#define ADXL372_Y_DATA_H 0x0A
#define ADXL372_Y_DATA_L 0x0B
#define ADXL372_Z_DATA_H 0x0C
#define ADXL372_Z_DATA_L 0x0D
#define ADXL372_X_MAXPEAK_H 0x15
#define ADXL372_X_MAXPEAK_L 0x16
#define ADXL372_Y_MAXPEAK_H 0x17
#define ADXL372_Y_MAXPEAK_L 0x18
#define ADXL372_Z_MAXPEAK_H 0x19
#define ADXL372_Z_MAXPEAK_L 0x1A
#define ADXL372_OFFSET_X 0x20
#define ADXL372_OFFSET_Y 0x21
#define ADXL372_OFFSET_Z 0x22
#define ADXL372_X_THRESH_ACT_H 0x23
#define ADXL372_X_THRESH_ACT_L 0x24
#define ADXL372_Y_THRESH_ACT_H 0x25
#define ADXL372_Y_THRESH_ACT_L 0x26
#define ADXL372_Z_THRESH_ACT_H 0x27
#define ADXL372_Z_THRESH_ACT_L 0x28
#define ADXL372_TIME_ACT 0x29
#define ADXL372_X_THRESH_INACT_H 0x2A
#define ADXL372_X_THRESH_INACT_L 0x2B
#define ADXL372_Y_THRESH_INACT_H 0x2C
#define ADXL372_Y_THRESH_INACT_L 0x2D
#define ADXL372_Z_THRESH_INACT_H 0x2E
#define ADXL372_Z_THRESH_INACT_L 0x2F
#define ADXL372_TIME_INACT_H 0x30
#define ADXL372_TIME_INACT_L 0x31
#define ADXL372_X_THRESH_ACT2_H 0x32
#define ADXL372_X_THRESH_ACT2_L 0x33
#define ADXL372_Y_THRESH_ACT2_H 0x34
#define ADXL372_Y_THRESH_ACT2_L 0x35
#define ADXL372_Z_THRESH_ACT2_H 0x36
#define ADXL372_Z_THRESH_ACT2_L 0x37
#define ADXL372_HPF 0x38
#define ADXL372_FIFO_SAMPLES 0x39
#define ADXL372_FIFO_CTL 0x3A
#define ADXL372_INT1_MAP 0x3B
#define ADXL372_INT2_MAP 0x3C
#define ADXL372_TIMING 0x3D
#define ADXL372_MEASURE 0x3E
#define ADXL372_POWER_CTL 0x3F
#define ADXL372_SELF_TEST 0x40
#define ADXL372_RESET 0x41
#define ADXL372_FIFO_DATA 0x42
#define ADXL372_DEVID_VAL 0xAD
#define ADXL372_PARTID_VAL 0xFA
#define ADXL372_RESET_CODE 0x52
/* ADXL372_POWER_CTL */
#define ADXL372_POWER_CTL_MODE_MSK GENMASK_ULL(1, 0)
#define ADXL372_POWER_CTL_MODE(x) (((x) & 0x3) << 0)
/* ADXL372_MEASURE */
#define ADXL372_MEASURE_LINKLOOP_MSK GENMASK_ULL(5, 4)
#define ADXL372_MEASURE_LINKLOOP_MODE(x) (((x) & 0x3) << 4)
#define ADXL372_MEASURE_BANDWIDTH_MSK GENMASK_ULL(2, 0)
#define ADXL372_MEASURE_BANDWIDTH_MODE(x) (((x) & 0x7) << 0)
/* ADXL372_TIMING */
#define ADXL372_TIMING_ODR_MSK GENMASK_ULL(7, 5)
#define ADXL372_TIMING_ODR_MODE(x) (((x) & 0x7) << 5)
/* ADXL372_FIFO_CTL */
#define ADXL372_FIFO_CTL_FORMAT_MSK GENMASK(5, 3)
#define ADXL372_FIFO_CTL_FORMAT_MODE(x) (((x) & 0x7) << 3)
#define ADXL372_FIFO_CTL_MODE_MSK GENMASK(2, 1)
#define ADXL372_FIFO_CTL_MODE_MODE(x) (((x) & 0x3) << 1)
#define ADXL372_FIFO_CTL_SAMPLES_MSK BIT(1)
#define ADXL372_FIFO_CTL_SAMPLES_MODE(x) (((x) > 0xFF) ? 1 : 0)
/* ADXL372_STATUS_1 */
#define ADXL372_STATUS_1_DATA_RDY(x) (((x) >> 0) & 0x1)
#define ADXL372_STATUS_1_FIFO_RDY(x) (((x) >> 1) & 0x1)
#define ADXL372_STATUS_1_FIFO_FULL(x) (((x) >> 2) & 0x1)
#define ADXL372_STATUS_1_FIFO_OVR(x) (((x) >> 3) & 0x1)
#define ADXL372_STATUS_1_USR_NVM_BUSY(x) (((x) >> 5) & 0x1)
#define ADXL372_STATUS_1_AWAKE(x) (((x) >> 6) & 0x1)
#define ADXL372_STATUS_1_ERR_USR_REGS(x) (((x) >> 7) & 0x1)
/* ADXL372_STATUS_2 */
#define ADXL372_STATUS_2_INACT(x) (((x) >> 4) & 0x1)
#define ADXL372_STATUS_2_ACT(x) (((x) >> 5) & 0x1)
#define ADXL372_STATUS_2_AC2(x) (((x) >> 6) & 0x1)
/* ADXL372_INT1_MAP */
#define ADXL372_INT1_MAP_DATA_RDY_MSK BIT(0)
#define ADXL372_INT1_MAP_DATA_RDY_MODE(x) (((x) & 0x1) << 0)
#define ADXL372_INT1_MAP_FIFO_RDY_MSK BIT(1)
#define ADXL372_INT1_MAP_FIFO_RDY_MODE(x) (((x) & 0x1) << 1)
#define ADXL372_INT1_MAP_FIFO_FULL_MSK BIT(2)
#define ADXL372_INT1_MAP_FIFO_FULL_MODE(x) (((x) & 0x1) << 2)
#define ADXL372_INT1_MAP_FIFO_OVR_MSK BIT(3)
#define ADXL372_INT1_MAP_FIFO_OVR_MODE(x) (((x) & 0x1) << 3)
#define ADXL372_INT1_MAP_INACT_MSK BIT(4)
#define ADXL372_INT1_MAP_INACT_MODE(x) (((x) & 0x1) << 4)
#define ADXL372_INT1_MAP_ACT_MSK BIT(5)
#define ADXL372_INT1_MAP_ACT_MODE(x) (((x) & 0x1) << 5)
#define ADXL372_INT1_MAP_AWAKE_MSK BIT(6)
#define ADXL372_INT1_MAP_AWAKE_MODE(x) (((x) & 0x1) << 6)
#define ADXL372_INT1_MAP_LOW_MSK BIT(7)
#define ADXL372_INT1_MAP_LOW_MODE(x) (((x) & 0x1) << 7)
/* ADX372_THRESH */
#define ADXL372_THRESH_VAL_H_MSK GENMASK(10, 3)
#define ADXL372_THRESH_VAL_H_SEL(x) FIELD_GET(ADXL372_THRESH_VAL_H_MSK, x)
#define ADXL372_THRESH_VAL_L_MSK GENMASK(2, 0)
#define ADXL372_THRESH_VAL_L_SEL(x) FIELD_GET(ADXL372_THRESH_VAL_L_MSK, x)
/* The ADXL372 includes a deep, 512 sample FIFO buffer */
#define ADXL372_FIFO_SIZE 512
#define ADXL372_X_AXIS_EN(x) ((x) & BIT(0))
#define ADXL372_Y_AXIS_EN(x) ((x) & BIT(1))
#define ADXL372_Z_AXIS_EN(x) ((x) & BIT(2))
/*
* At +/- 200g with 12-bit resolution, scale is computed as:
* (200 + 200) * 9.81 / (2^12 - 1) = 0.958241
*/
#define ADXL372_USCALE 958241
enum adxl372_op_mode {
ADXL372_STANDBY,
ADXL372_WAKE_UP,
ADXL372_INSTANT_ON,
ADXL372_FULL_BW_MEASUREMENT,
};
enum adxl372_act_proc_mode {
ADXL372_DEFAULT,
ADXL372_LINKED,
ADXL372_LOOPED,
};
enum adxl372_th_activity {
ADXL372_ACTIVITY,
ADXL372_ACTIVITY2,
ADXL372_INACTIVITY,
};
enum adxl372_odr {
ADXL372_ODR_400HZ,
ADXL372_ODR_800HZ,
ADXL372_ODR_1600HZ,
ADXL372_ODR_3200HZ,
ADXL372_ODR_6400HZ,
};
enum adxl372_bandwidth {
ADXL372_BW_200HZ,
ADXL372_BW_400HZ,
ADXL372_BW_800HZ,
ADXL372_BW_1600HZ,
ADXL372_BW_3200HZ,
};
static const unsigned int adxl372_th_reg_high_addr[3] = {
[ADXL372_ACTIVITY] = ADXL372_X_THRESH_ACT_H,
[ADXL372_ACTIVITY2] = ADXL372_X_THRESH_ACT2_H,
[ADXL372_INACTIVITY] = ADXL372_X_THRESH_INACT_H,
};
enum adxl372_fifo_format {
ADXL372_XYZ_FIFO,
ADXL372_X_FIFO,
ADXL372_Y_FIFO,
ADXL372_XY_FIFO,
ADXL372_Z_FIFO,
ADXL372_XZ_FIFO,
ADXL372_YZ_FIFO,
ADXL372_XYZ_PEAK_FIFO,
};
enum adxl372_fifo_mode {
ADXL372_FIFO_BYPASSED,
ADXL372_FIFO_STREAMED,
ADXL372_FIFO_TRIGGERED,
ADXL372_FIFO_OLD_SAVED
};
static const int adxl372_samp_freq_tbl[5] = {
400, 800, 1600, 3200, 6400,
};
static const int adxl372_bw_freq_tbl[5] = {
200, 400, 800, 1600, 3200,
};
struct adxl372_axis_lookup {
unsigned int bits;
enum adxl372_fifo_format fifo_format;
};
static const struct adxl372_axis_lookup adxl372_axis_lookup_table[] = {
{ BIT(0), ADXL372_X_FIFO },
{ BIT(1), ADXL372_Y_FIFO },
{ BIT(2), ADXL372_Z_FIFO },
{ BIT(0) | BIT(1), ADXL372_XY_FIFO },
{ BIT(0) | BIT(2), ADXL372_XZ_FIFO },
{ BIT(1) | BIT(2), ADXL372_YZ_FIFO },
{ BIT(0) | BIT(1) | BIT(2), ADXL372_XYZ_FIFO },
};
static const struct iio_event_spec adxl372_events[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
.mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_ENABLE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
.mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_ENABLE),
},
};
#define ADXL372_ACCEL_CHANNEL(index, reg, axis) { \
.type = IIO_ACCEL, \
.address = reg, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
.scan_index = index, \
.scan_type = { \
.sign = 's', \
.realbits = 12, \
.storagebits = 16, \
.shift = 4, \
.endianness = IIO_BE, \
}, \
.event_spec = adxl372_events, \
.num_event_specs = ARRAY_SIZE(adxl372_events) \
}
static const struct iio_chan_spec adxl372_channels[] = {
ADXL372_ACCEL_CHANNEL(0, ADXL372_X_DATA_H, X),
ADXL372_ACCEL_CHANNEL(1, ADXL372_Y_DATA_H, Y),
ADXL372_ACCEL_CHANNEL(2, ADXL372_Z_DATA_H, Z),
};
struct adxl372_state {
int irq;
struct device *dev;
struct regmap *regmap;
struct iio_trigger *dready_trig;
struct iio_trigger *peak_datardy_trig;
enum adxl372_fifo_mode fifo_mode;
enum adxl372_fifo_format fifo_format;
unsigned int fifo_axis_mask;
enum adxl372_op_mode op_mode;
enum adxl372_act_proc_mode act_proc_mode;
enum adxl372_odr odr;
enum adxl372_bandwidth bw;
u32 act_time_ms;
u32 inact_time_ms;
u8 fifo_set_size;
unsigned long int1_bitmask;
unsigned long int2_bitmask;
u16 watermark;
__be16 fifo_buf[ADXL372_FIFO_SIZE];
bool peak_fifo_mode_en;
struct mutex threshold_m; /* lock for threshold */
};
static const unsigned long adxl372_channel_masks[] = {
BIT(0), BIT(1), BIT(2),
BIT(0) | BIT(1),
BIT(0) | BIT(2),
BIT(1) | BIT(2),
BIT(0) | BIT(1) | BIT(2),
0
};
static ssize_t adxl372_read_threshold_value(struct iio_dev *indio_dev, unsigned int addr,
u16 *threshold)
{
struct adxl372_state *st = iio_priv(indio_dev);
__be16 raw_regval;
u16 regval;
int ret;
ret = regmap_bulk_read(st->regmap, addr, &raw_regval, sizeof(raw_regval));
if (ret < 0)
return ret;
regval = be16_to_cpu(raw_regval);
regval >>= 5;
*threshold = regval;
return 0;
}
static ssize_t adxl372_write_threshold_value(struct iio_dev *indio_dev, unsigned int addr,
u16 threshold)
{
struct adxl372_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->threshold_m);
ret = regmap_write(st->regmap, addr, ADXL372_THRESH_VAL_H_SEL(threshold));
if (ret < 0)
goto unlock;
ret = regmap_update_bits(st->regmap, addr + 1, GENMASK(7, 5),
ADXL372_THRESH_VAL_L_SEL(threshold) << 5);
unlock:
mutex_unlock(&st->threshold_m);
return ret;
}
static int adxl372_read_axis(struct adxl372_state *st, u8 addr)
{
__be16 regval;
int ret;
ret = regmap_bulk_read(st->regmap, addr, &regval, sizeof(regval));
if (ret < 0)
return ret;
return be16_to_cpu(regval);
}
static int adxl372_set_op_mode(struct adxl372_state *st,
enum adxl372_op_mode op_mode)
{
int ret;
ret = regmap_update_bits(st->regmap, ADXL372_POWER_CTL,
ADXL372_POWER_CTL_MODE_MSK,
ADXL372_POWER_CTL_MODE(op_mode));
if (ret < 0)
return ret;
st->op_mode = op_mode;
return ret;
}
static int adxl372_set_odr(struct adxl372_state *st,
enum adxl372_odr odr)
{
int ret;
ret = regmap_update_bits(st->regmap, ADXL372_TIMING,
ADXL372_TIMING_ODR_MSK,
ADXL372_TIMING_ODR_MODE(odr));
if (ret < 0)
return ret;
st->odr = odr;
return ret;
}
static int adxl372_find_closest_match(const int *array,
unsigned int size, int val)
{
int i;
for (i = 0; i < size; i++) {
if (val <= array[i])
return i;
}
return size - 1;
}
static int adxl372_set_bandwidth(struct adxl372_state *st,
enum adxl372_bandwidth bw)
{
int ret;
ret = regmap_update_bits(st->regmap, ADXL372_MEASURE,
ADXL372_MEASURE_BANDWIDTH_MSK,
ADXL372_MEASURE_BANDWIDTH_MODE(bw));
if (ret < 0)
return ret;
st->bw = bw;
return ret;
}
static int adxl372_set_act_proc_mode(struct adxl372_state *st,
enum adxl372_act_proc_mode mode)
{
int ret;
ret = regmap_update_bits(st->regmap,
ADXL372_MEASURE,
ADXL372_MEASURE_LINKLOOP_MSK,
ADXL372_MEASURE_LINKLOOP_MODE(mode));
if (ret < 0)
return ret;
st->act_proc_mode = mode;
return ret;
}
static int adxl372_set_activity_threshold(struct adxl372_state *st,
enum adxl372_th_activity act,
bool ref_en, bool enable,
unsigned int threshold)
{
unsigned char buf[6];
unsigned char th_reg_high_val, th_reg_low_val, th_reg_high_addr;
/* scale factor is 100 mg/code */
th_reg_high_val = (threshold / 100) >> 3;
th_reg_low_val = ((threshold / 100) << 5) | (ref_en << 1) | enable;
th_reg_high_addr = adxl372_th_reg_high_addr[act];
buf[0] = th_reg_high_val;
buf[1] = th_reg_low_val;
buf[2] = th_reg_high_val;
buf[3] = th_reg_low_val;
buf[4] = th_reg_high_val;
buf[5] = th_reg_low_val;
return regmap_bulk_write(st->regmap, th_reg_high_addr,
buf, ARRAY_SIZE(buf));
}
static int adxl372_set_activity_time_ms(struct adxl372_state *st,
unsigned int act_time_ms)
{
unsigned int reg_val, scale_factor;
int ret;
/*
* 3.3 ms per code is the scale factor of the TIME_ACT register for
* ODR = 6400 Hz. It is 6.6 ms per code for ODR = 3200 Hz and below.
*/
if (st->odr == ADXL372_ODR_6400HZ)
scale_factor = 3300;
else
scale_factor = 6600;
reg_val = DIV_ROUND_CLOSEST(act_time_ms * 1000, scale_factor);
/* TIME_ACT register is 8 bits wide */
if (reg_val > 0xFF)
reg_val = 0xFF;
ret = regmap_write(st->regmap, ADXL372_TIME_ACT, reg_val);
if (ret < 0)
return ret;
st->act_time_ms = act_time_ms;
return ret;
}
static int adxl372_set_inactivity_time_ms(struct adxl372_state *st,
unsigned int inact_time_ms)
{
unsigned int reg_val_h, reg_val_l, res, scale_factor;
int ret;
/*
* 13 ms per code is the scale factor of the TIME_INACT register for
* ODR = 6400 Hz. It is 26 ms per code for ODR = 3200 Hz and below.
*/
if (st->odr == ADXL372_ODR_6400HZ)
scale_factor = 13;
else
scale_factor = 26;
res = DIV_ROUND_CLOSEST(inact_time_ms, scale_factor);
reg_val_h = (res >> 8) & 0xFF;
reg_val_l = res & 0xFF;
ret = regmap_write(st->regmap, ADXL372_TIME_INACT_H, reg_val_h);
if (ret < 0)
return ret;
ret = regmap_write(st->regmap, ADXL372_TIME_INACT_L, reg_val_l);
if (ret < 0)
return ret;
st->inact_time_ms = inact_time_ms;
return ret;
}
static int adxl372_set_interrupts(struct adxl372_state *st,
unsigned long int1_bitmask,
unsigned long int2_bitmask)
{
int ret;
ret = regmap_write(st->regmap, ADXL372_INT1_MAP, int1_bitmask);
if (ret < 0)
return ret;
return regmap_write(st->regmap, ADXL372_INT2_MAP, int2_bitmask);
}
static int adxl372_configure_fifo(struct adxl372_state *st)
{
unsigned int fifo_samples, fifo_ctl;
int ret;
/* FIFO must be configured while in standby mode */
ret = adxl372_set_op_mode(st, ADXL372_STANDBY);
if (ret < 0)
return ret;
/*
* watermark stores the number of sets; we need to write the FIFO
* registers with the number of samples
*/
fifo_samples = (st->watermark * st->fifo_set_size);
fifo_ctl = ADXL372_FIFO_CTL_FORMAT_MODE(st->fifo_format) |
ADXL372_FIFO_CTL_MODE_MODE(st->fifo_mode) |
ADXL372_FIFO_CTL_SAMPLES_MODE(fifo_samples);
ret = regmap_write(st->regmap,
ADXL372_FIFO_SAMPLES, fifo_samples & 0xFF);
if (ret < 0)
return ret;
ret = regmap_write(st->regmap, ADXL372_FIFO_CTL, fifo_ctl);
if (ret < 0)
return ret;
return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT);
}
static int adxl372_get_status(struct adxl372_state *st,
u8 *status1, u8 *status2,
u16 *fifo_entries)
{
__be32 buf;
u32 val;
int ret;
/* STATUS1, STATUS2, FIFO_ENTRIES2 and FIFO_ENTRIES are adjacent regs */
ret = regmap_bulk_read(st->regmap, ADXL372_STATUS_1,
&buf, sizeof(buf));
if (ret < 0)
return ret;
val = be32_to_cpu(buf);
*status1 = (val >> 24) & 0x0F;
*status2 = (val >> 16) & 0x0F;
/*
* FIFO_ENTRIES contains the least significant byte, and FIFO_ENTRIES2
* contains the two most significant bits
*/
*fifo_entries = val & 0x3FF;
return ret;
}
static void adxl372_arrange_axis_data(struct adxl372_state *st, __be16 *sample)
{
__be16 axis_sample[3];
int i = 0;
memset(axis_sample, 0, 3 * sizeof(__be16));
if (ADXL372_X_AXIS_EN(st->fifo_axis_mask))
axis_sample[i++] = sample[0];
if (ADXL372_Y_AXIS_EN(st->fifo_axis_mask))
axis_sample[i++] = sample[1];
if (ADXL372_Z_AXIS_EN(st->fifo_axis_mask))
axis_sample[i++] = sample[2];
memcpy(sample, axis_sample, 3 * sizeof(__be16));
}
static void adxl372_push_event(struct iio_dev *indio_dev, s64 timestamp, u8 status2)
{
unsigned int ev_dir = IIO_EV_DIR_NONE;
if (ADXL372_STATUS_2_ACT(status2))
ev_dir = IIO_EV_DIR_RISING;
if (ADXL372_STATUS_2_INACT(status2))
ev_dir = IIO_EV_DIR_FALLING;
if (ev_dir != IIO_EV_DIR_NONE)
iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_OR_Y_OR_Z,
IIO_EV_TYPE_THRESH, ev_dir),
timestamp);
}
static irqreturn_t adxl372_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct adxl372_state *st = iio_priv(indio_dev);
u8 status1, status2;
u16 fifo_entries;
int i, ret;
ret = adxl372_get_status(st, &status1, &status2, &fifo_entries);
if (ret < 0)
goto err;
adxl372_push_event(indio_dev, iio_get_time_ns(indio_dev), status2);
if (st->fifo_mode != ADXL372_FIFO_BYPASSED &&
ADXL372_STATUS_1_FIFO_FULL(status1)) {
/*
* When reading data from multiple axes from the FIFO,
* to ensure that data is not overwritten and stored out
* of order at least one sample set must be left in the
* FIFO after every read.
*/
fifo_entries -= st->fifo_set_size;
/* Read data from the FIFO */
ret = regmap_noinc_read(st->regmap, ADXL372_FIFO_DATA,
st->fifo_buf,
fifo_entries * sizeof(u16));
if (ret < 0)
goto err;
/* Each sample is 2 bytes */
for (i = 0; i < fifo_entries; i += st->fifo_set_size) {
/* filter peak detection data */
if (st->peak_fifo_mode_en)
adxl372_arrange_axis_data(st, &st->fifo_buf[i]);
iio_push_to_buffers(indio_dev, &st->fifo_buf[i]);
}
}
err:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int adxl372_setup(struct adxl372_state *st)
{
unsigned int regval;
int ret;
ret = regmap_read(st->regmap, ADXL372_DEVID, &regval);
if (ret < 0)
return ret;
if (regval != ADXL372_DEVID_VAL) {
dev_err(st->dev, "Invalid chip id %x\n", regval);
return -ENODEV;
}
/*
* Perform a software reset to make sure the device is in a consistent
* state after start up.
*/
ret = regmap_write(st->regmap, ADXL372_RESET, ADXL372_RESET_CODE);
if (ret < 0)
return ret;
ret = adxl372_set_op_mode(st, ADXL372_STANDBY);
if (ret < 0)
return ret;
/* Set threshold for activity detection to 1g */
ret = adxl372_set_activity_threshold(st, ADXL372_ACTIVITY,
true, true, 1000);
if (ret < 0)
return ret;
/* Set threshold for inactivity detection to 100mg */
ret = adxl372_set_activity_threshold(st, ADXL372_INACTIVITY,
true, true, 100);
if (ret < 0)
return ret;
/* Set activity processing in Looped mode */
ret = adxl372_set_act_proc_mode(st, ADXL372_LOOPED);
if (ret < 0)
return ret;
ret = adxl372_set_odr(st, ADXL372_ODR_6400HZ);
if (ret < 0)
return ret;
ret = adxl372_set_bandwidth(st, ADXL372_BW_3200HZ);
if (ret < 0)
return ret;
/* Set activity timer to 1ms */
ret = adxl372_set_activity_time_ms(st, 1);
if (ret < 0)
return ret;
/* Set inactivity timer to 10s */
ret = adxl372_set_inactivity_time_ms(st, 10000);
if (ret < 0)
return ret;
/* Set the mode of operation to full bandwidth measurement mode */
return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT);
}
static int adxl372_reg_access(struct iio_dev *indio_dev,
unsigned int reg,
unsigned int writeval,
unsigned int *readval)
{
struct adxl372_state *st = iio_priv(indio_dev);
if (readval)
return regmap_read(st->regmap, reg, readval);
else
return regmap_write(st->regmap, reg, writeval);
}
static int adxl372_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long info)
{
struct adxl372_state *st = iio_priv(indio_dev);
int ret;
switch (info) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = adxl372_read_axis(st, chan->address);
iio_device_release_direct_mode(indio_dev);
if (ret < 0)
return ret;
*val = sign_extend32(ret >> chan->scan_type.shift,
chan->scan_type.realbits - 1);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 0;
*val2 = ADXL372_USCALE;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = adxl372_samp_freq_tbl[st->odr];
return IIO_VAL_INT;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
*val = adxl372_bw_freq_tbl[st->bw];
return IIO_VAL_INT;
}
return -EINVAL;
}
static int adxl372_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long info)
{
struct adxl372_state *st = iio_priv(indio_dev);
int odr_index, bw_index, ret;
switch (info) {
case IIO_CHAN_INFO_SAMP_FREQ:
odr_index = adxl372_find_closest_match(adxl372_samp_freq_tbl,
ARRAY_SIZE(adxl372_samp_freq_tbl),
val);
ret = adxl372_set_odr(st, odr_index);
if (ret < 0)
return ret;
/*
* The timer period depends on the ODR selected.
* At 3200 Hz and below, it is 6.6 ms; at 6400 Hz, it is 3.3 ms
*/
ret = adxl372_set_activity_time_ms(st, st->act_time_ms);
if (ret < 0)
return ret;
/*
* The timer period depends on the ODR selected.
* At 3200 Hz and below, it is 26 ms; at 6400 Hz, it is 13 ms
*/
ret = adxl372_set_inactivity_time_ms(st, st->inact_time_ms);
if (ret < 0)
return ret;
/*
* The maximum bandwidth is constrained to at most half of
* the ODR to ensure that the Nyquist criteria is not violated
*/
if (st->bw > odr_index)
ret = adxl372_set_bandwidth(st, odr_index);
return ret;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
bw_index = adxl372_find_closest_match(adxl372_bw_freq_tbl,
ARRAY_SIZE(adxl372_bw_freq_tbl),
val);
return adxl372_set_bandwidth(st, bw_index);
default:
return -EINVAL;
}
}
static int adxl372_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
enum iio_event_type type, enum iio_event_direction dir,
enum iio_event_info info, int *val, int *val2)
{
struct adxl372_state *st = iio_priv(indio_dev);
unsigned int addr;
u16 raw_value;
int ret;
switch (info) {
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
addr = ADXL372_X_THRESH_ACT_H + 2 * chan->scan_index;
ret = adxl372_read_threshold_value(indio_dev, addr, &raw_value);
if (ret < 0)
return ret;
*val = raw_value * ADXL372_USCALE;
*val2 = 1000000;
return IIO_VAL_FRACTIONAL;
case IIO_EV_DIR_FALLING:
addr = ADXL372_X_THRESH_INACT_H + 2 * chan->scan_index;
ret = adxl372_read_threshold_value(indio_dev, addr, &raw_value);
if (ret < 0)
return ret;
*val = raw_value * ADXL372_USCALE;
*val2 = 1000000;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
case IIO_EV_INFO_PERIOD:
switch (dir) {
case IIO_EV_DIR_RISING:
*val = st->act_time_ms;
*val2 = 1000;
return IIO_VAL_FRACTIONAL;
case IIO_EV_DIR_FALLING:
*val = st->inact_time_ms;
*val2 = 1000;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int adxl372_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
enum iio_event_type type, enum iio_event_direction dir,
enum iio_event_info info, int val, int val2)
{
struct adxl372_state *st = iio_priv(indio_dev);
unsigned int val_ms;
unsigned int addr;
u16 raw_val;
switch (info) {
case IIO_EV_INFO_VALUE:
raw_val = DIV_ROUND_UP(val * 1000000, ADXL372_USCALE);
switch (dir) {
case IIO_EV_DIR_RISING:
addr = ADXL372_X_THRESH_ACT_H + 2 * chan->scan_index;
return adxl372_write_threshold_value(indio_dev, addr, raw_val);
case IIO_EV_DIR_FALLING:
addr = ADXL372_X_THRESH_INACT_H + 2 * chan->scan_index;
return adxl372_write_threshold_value(indio_dev, addr, raw_val);
default:
return -EINVAL;
}
case IIO_EV_INFO_PERIOD:
val_ms = val * 1000 + DIV_ROUND_UP(val2, 1000);
switch (dir) {
case IIO_EV_DIR_RISING:
return adxl372_set_activity_time_ms(st, val_ms);
case IIO_EV_DIR_FALLING:
return adxl372_set_inactivity_time_ms(st, val_ms);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int adxl372_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
enum iio_event_type type, enum iio_event_direction dir)
{
struct adxl372_state *st = iio_priv(indio_dev);
switch (dir) {
case IIO_EV_DIR_RISING:
return FIELD_GET(ADXL372_INT1_MAP_ACT_MSK, st->int1_bitmask);
case IIO_EV_DIR_FALLING:
return FIELD_GET(ADXL372_INT1_MAP_INACT_MSK, st->int1_bitmask);
default:
return -EINVAL;
}
}
static int adxl372_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
enum iio_event_type type, enum iio_event_direction dir,
int state)
{
struct adxl372_state *st = iio_priv(indio_dev);
switch (dir) {
case IIO_EV_DIR_RISING:
set_mask_bits(&st->int1_bitmask, ADXL372_INT1_MAP_ACT_MSK,
ADXL372_INT1_MAP_ACT_MODE(state));
break;
case IIO_EV_DIR_FALLING:
set_mask_bits(&st->int1_bitmask, ADXL372_INT1_MAP_INACT_MSK,
ADXL372_INT1_MAP_INACT_MODE(state));
break;
default:
return -EINVAL;
}
return adxl372_set_interrupts(st, st->int1_bitmask, 0);
}
static ssize_t adxl372_show_filter_freq_avail(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct adxl372_state *st = iio_priv(indio_dev);
int i;
size_t len = 0;
for (i = 0; i <= st->odr; i++)
len += scnprintf(buf + len, PAGE_SIZE - len,
"%d ", adxl372_bw_freq_tbl[i]);
buf[len - 1] = '\n';
return len;
}
static ssize_t adxl372_get_fifo_enabled(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct adxl372_state *st = iio_priv(indio_dev);
return sprintf(buf, "%d\n", st->fifo_mode);
}
static ssize_t adxl372_get_fifo_watermark(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct adxl372_state *st = iio_priv(indio_dev);
return sprintf(buf, "%d\n", st->watermark);
}
static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
static IIO_CONST_ATTR(hwfifo_watermark_max,
__stringify(ADXL372_FIFO_SIZE));
static IIO_DEVICE_ATTR(hwfifo_watermark, 0444,
adxl372_get_fifo_watermark, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_enabled, 0444,
adxl372_get_fifo_enabled, NULL, 0);
static const struct attribute *adxl372_fifo_attributes[] = {
&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
NULL,
};
static int adxl372_set_watermark(struct iio_dev *indio_dev, unsigned int val)
{
struct adxl372_state *st = iio_priv(indio_dev);
if (val > ADXL372_FIFO_SIZE)
val = ADXL372_FIFO_SIZE;
st->watermark = val;
return 0;
}
static int adxl372_buffer_postenable(struct iio_dev *indio_dev)
{
struct adxl372_state *st = iio_priv(indio_dev);
unsigned int mask;
int i, ret;
st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;
ret = adxl372_set_interrupts(st, st->int1_bitmask, 0);
if (ret < 0)
return ret;
mask = *indio_dev->active_scan_mask;
for (i = 0; i < ARRAY_SIZE(adxl372_axis_lookup_table); i++) {
if (mask == adxl372_axis_lookup_table[i].bits)
break;
}
if (i == ARRAY_SIZE(adxl372_axis_lookup_table))
return -EINVAL;
st->fifo_format = adxl372_axis_lookup_table[i].fifo_format;
st->fifo_axis_mask = adxl372_axis_lookup_table[i].bits;
st->fifo_set_size = bitmap_weight(indio_dev->active_scan_mask,
indio_dev->masklength);
/* Configure the FIFO to store sets of impact event peak. */
if (st->peak_fifo_mode_en) {
st->fifo_set_size = 3;
st->fifo_format = ADXL372_XYZ_PEAK_FIFO;
}
/*
* The 512 FIFO samples can be allotted in several ways, such as:
* 170 sample sets of concurrent 3-axis data
* 256 sample sets of concurrent 2-axis data (user selectable)
* 512 sample sets of single-axis data
* 170 sets of impact event peak (x, y, z)
*/
if ((st->watermark * st->fifo_set_size) > ADXL372_FIFO_SIZE)
st->watermark = (ADXL372_FIFO_SIZE / st->fifo_set_size);
st->fifo_mode = ADXL372_FIFO_STREAMED;
ret = adxl372_configure_fifo(st);
if (ret < 0) {
st->fifo_mode = ADXL372_FIFO_BYPASSED;
st->int1_bitmask &= ~ADXL372_INT1_MAP_FIFO_FULL_MSK;
adxl372_set_interrupts(st, st->int1_bitmask, 0);
return ret;
}
return 0;
}
static int adxl372_buffer_predisable(struct iio_dev *indio_dev)
{
struct adxl372_state *st = iio_priv(indio_dev);
st->int1_bitmask &= ~ADXL372_INT1_MAP_FIFO_FULL_MSK;
adxl372_set_interrupts(st, st->int1_bitmask, 0);
st->fifo_mode = ADXL372_FIFO_BYPASSED;
adxl372_configure_fifo(st);
return 0;
}
static const struct iio_buffer_setup_ops adxl372_buffer_ops = {
.postenable = adxl372_buffer_postenable,
.predisable = adxl372_buffer_predisable,
};
static int adxl372_dready_trig_set_state(struct iio_trigger *trig,
bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct adxl372_state *st = iio_priv(indio_dev);
if (state)
st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;
return adxl372_set_interrupts(st, st->int1_bitmask, 0);
}
static int adxl372_validate_trigger(struct iio_dev *indio_dev,
struct iio_trigger *trig)
{
struct adxl372_state *st = iio_priv(indio_dev);
if (st->dready_trig != trig && st->peak_datardy_trig != trig)
return -EINVAL;
return 0;
}
static const struct iio_trigger_ops adxl372_trigger_ops = {
.validate_device = &iio_trigger_validate_own_device,
.set_trigger_state = adxl372_dready_trig_set_state,
};
static int adxl372_peak_dready_trig_set_state(struct iio_trigger *trig,
bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct adxl372_state *st = iio_priv(indio_dev);
if (state)
st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;
st->peak_fifo_mode_en = state;
return adxl372_set_interrupts(st, st->int1_bitmask, 0);
}
static const struct iio_trigger_ops adxl372_peak_data_trigger_ops = {
.validate_device = &iio_trigger_validate_own_device,
.set_trigger_state = adxl372_peak_dready_trig_set_state,
};
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("400 800 1600 3200 6400");
static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
0444, adxl372_show_filter_freq_avail, NULL, 0);
static struct attribute *adxl372_attributes[] = {
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group adxl372_attrs_group = {
.attrs = adxl372_attributes,
};
static const struct iio_info adxl372_info = {
.validate_trigger = &adxl372_validate_trigger,
.attrs = &adxl372_attrs_group,
.read_raw = adxl372_read_raw,
.write_raw = adxl372_write_raw,
.read_event_config = adxl372_read_event_config,
.write_event_config = adxl372_write_event_config,
.read_event_value = adxl372_read_event_value,
.write_event_value = adxl372_write_event_value,
.debugfs_reg_access = &adxl372_reg_access,
.hwfifo_set_watermark = adxl372_set_watermark,
};
bool adxl372_readable_noinc_reg(struct device *dev, unsigned int reg)
{
return (reg == ADXL372_FIFO_DATA);
}
EXPORT_SYMBOL_GPL(adxl372_readable_noinc_reg);
int adxl372_probe(struct device *dev, struct regmap *regmap,
int irq, const char *name)
{
struct iio_dev *indio_dev;
struct adxl372_state *st;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
st->dev = dev;
st->regmap = regmap;
st->irq = irq;
mutex_init(&st->threshold_m);
indio_dev->channels = adxl372_channels;
indio_dev->num_channels = ARRAY_SIZE(adxl372_channels);
indio_dev->available_scan_masks = adxl372_channel_masks;
indio_dev->name = name;
indio_dev->info = &adxl372_info;
indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
ret = adxl372_setup(st);
if (ret < 0) {
dev_err(dev, "ADXL372 setup failed\n");
return ret;
}
ret = devm_iio_triggered_buffer_setup_ext(dev,
indio_dev, NULL,
adxl372_trigger_handler,
&adxl372_buffer_ops,
adxl372_fifo_attributes);
if (ret < 0)
return ret;
if (st->irq) {
st->dready_trig = devm_iio_trigger_alloc(dev,
"%s-dev%d",
indio_dev->name,
indio_dev->id);
if (st->dready_trig == NULL)
return -ENOMEM;
st->peak_datardy_trig = devm_iio_trigger_alloc(dev,
"%s-dev%d-peak",
indio_dev->name,
indio_dev->id);
if (!st->peak_datardy_trig)
return -ENOMEM;
st->dready_trig->ops = &adxl372_trigger_ops;
st->peak_datardy_trig->ops = &adxl372_peak_data_trigger_ops;
st->dready_trig->dev.parent = dev;
st->peak_datardy_trig->dev.parent = dev;
iio_trigger_set_drvdata(st->dready_trig, indio_dev);
iio_trigger_set_drvdata(st->peak_datardy_trig, indio_dev);
ret = devm_iio_trigger_register(dev, st->dready_trig);
if (ret < 0)
return ret;
ret = devm_iio_trigger_register(dev, st->peak_datardy_trig);
if (ret < 0)
return ret;
indio_dev->trig = iio_trigger_get(st->dready_trig);
ret = devm_request_threaded_irq(dev, st->irq,
iio_trigger_generic_data_rdy_poll,
NULL,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
indio_dev->name, st->dready_trig);
if (ret < 0)
return ret;
}
return devm_iio_device_register(dev, indio_dev);
}
EXPORT_SYMBOL_GPL(adxl372_probe);
MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
MODULE_DESCRIPTION("Analog Devices ADXL372 3-axis accelerometer driver");
MODULE_LICENSE("GPL");