mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-04 11:43:54 +08:00
5df465df7b
Make sure we have a matching chip id high and one or the other of the chip id low values. Print the values if the probe fails. Signed-off-by: Nicolas Kaiser <nikai@nikai.net> Acked-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
1245 lines
34 KiB
C
1245 lines
34 KiB
C
/*
|
|
* Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
|
|
*
|
|
* Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
|
|
* Copyright (C) 2009 Nuvoton PS Team
|
|
*
|
|
* Special thanks to Nuvoton for providing hardware, spec sheets and
|
|
* sample code upon which portions of this driver are based. Indirect
|
|
* thanks also to Maxim Levitsky, whose ene_ir driver this driver is
|
|
* modeled after.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of the
|
|
* License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
|
|
* USA
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pnp.h>
|
|
#include <linux/io.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <media/rc-core.h>
|
|
#include <linux/pci_ids.h>
|
|
|
|
#include "nuvoton-cir.h"
|
|
|
|
static char *chip_id = "w836x7hg";
|
|
|
|
/* write val to config reg */
|
|
static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
|
|
{
|
|
outb(reg, nvt->cr_efir);
|
|
outb(val, nvt->cr_efdr);
|
|
}
|
|
|
|
/* read val from config reg */
|
|
static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
|
|
{
|
|
outb(reg, nvt->cr_efir);
|
|
return inb(nvt->cr_efdr);
|
|
}
|
|
|
|
/* update config register bit without changing other bits */
|
|
static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
|
|
{
|
|
u8 tmp = nvt_cr_read(nvt, reg) | val;
|
|
nvt_cr_write(nvt, tmp, reg);
|
|
}
|
|
|
|
/* clear config register bit without changing other bits */
|
|
static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
|
|
{
|
|
u8 tmp = nvt_cr_read(nvt, reg) & ~val;
|
|
nvt_cr_write(nvt, tmp, reg);
|
|
}
|
|
|
|
/* enter extended function mode */
|
|
static inline void nvt_efm_enable(struct nvt_dev *nvt)
|
|
{
|
|
/* Enabling Extended Function Mode explicitly requires writing 2x */
|
|
outb(EFER_EFM_ENABLE, nvt->cr_efir);
|
|
outb(EFER_EFM_ENABLE, nvt->cr_efir);
|
|
}
|
|
|
|
/* exit extended function mode */
|
|
static inline void nvt_efm_disable(struct nvt_dev *nvt)
|
|
{
|
|
outb(EFER_EFM_DISABLE, nvt->cr_efir);
|
|
}
|
|
|
|
/*
|
|
* When you want to address a specific logical device, write its logical
|
|
* device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
|
|
* 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
|
|
*/
|
|
static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
|
|
{
|
|
outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
|
|
outb(ldev, nvt->cr_efdr);
|
|
}
|
|
|
|
/* write val to cir config register */
|
|
static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
|
|
{
|
|
outb(val, nvt->cir_addr + offset);
|
|
}
|
|
|
|
/* read val from cir config register */
|
|
static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
|
|
{
|
|
u8 val;
|
|
|
|
val = inb(nvt->cir_addr + offset);
|
|
|
|
return val;
|
|
}
|
|
|
|
/* write val to cir wake register */
|
|
static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
|
|
u8 val, u8 offset)
|
|
{
|
|
outb(val, nvt->cir_wake_addr + offset);
|
|
}
|
|
|
|
/* read val from cir wake config register */
|
|
static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
|
|
{
|
|
u8 val;
|
|
|
|
val = inb(nvt->cir_wake_addr + offset);
|
|
|
|
return val;
|
|
}
|
|
|
|
#define pr_reg(text, ...) \
|
|
printk(KERN_INFO KBUILD_MODNAME ": " text, ## __VA_ARGS__)
|
|
|
|
/* dump current cir register contents */
|
|
static void cir_dump_regs(struct nvt_dev *nvt)
|
|
{
|
|
nvt_efm_enable(nvt);
|
|
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
|
|
|
|
pr_reg("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
|
|
pr_reg(" * CR CIR ACTIVE : 0x%x\n",
|
|
nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
|
|
pr_reg(" * CR CIR BASE ADDR: 0x%x\n",
|
|
(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
|
|
nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
|
|
pr_reg(" * CR CIR IRQ NUM: 0x%x\n",
|
|
nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
|
|
|
|
nvt_efm_disable(nvt);
|
|
|
|
pr_reg("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
|
|
pr_reg(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
|
|
pr_reg(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
|
|
pr_reg(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
|
|
pr_reg(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
|
|
pr_reg(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
|
|
pr_reg(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
|
|
pr_reg(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
|
|
pr_reg(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
|
|
pr_reg(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
|
|
pr_reg(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
|
|
pr_reg(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
|
|
pr_reg(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
|
|
pr_reg(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
|
|
pr_reg(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
|
|
pr_reg(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
|
|
pr_reg(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
|
|
}
|
|
|
|
/* dump current cir wake register contents */
|
|
static void cir_wake_dump_regs(struct nvt_dev *nvt)
|
|
{
|
|
u8 i, fifo_len;
|
|
|
|
nvt_efm_enable(nvt);
|
|
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
|
|
|
|
pr_reg("%s: Dump CIR WAKE logical device registers:\n",
|
|
NVT_DRIVER_NAME);
|
|
pr_reg(" * CR CIR WAKE ACTIVE : 0x%x\n",
|
|
nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
|
|
pr_reg(" * CR CIR WAKE BASE ADDR: 0x%x\n",
|
|
(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
|
|
nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
|
|
pr_reg(" * CR CIR WAKE IRQ NUM: 0x%x\n",
|
|
nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
|
|
|
|
nvt_efm_disable(nvt);
|
|
|
|
pr_reg("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
|
|
pr_reg(" * IRCON: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
|
|
pr_reg(" * IRSTS: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
|
|
pr_reg(" * IREN: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
|
|
pr_reg(" * FIFO CMP DEEP: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
|
|
pr_reg(" * FIFO CMP TOL: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
|
|
pr_reg(" * FIFO COUNT: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
|
|
pr_reg(" * SLCH: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
|
|
pr_reg(" * SLCL: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
|
|
pr_reg(" * FIFOCON: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
|
|
pr_reg(" * SRXFSTS: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
|
|
pr_reg(" * SAMPLE RX FIFO: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
|
|
pr_reg(" * WR FIFO DATA: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
|
|
pr_reg(" * RD FIFO ONLY: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
|
|
pr_reg(" * RD FIFO ONLY IDX: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
|
|
pr_reg(" * FIFO IGNORE: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
|
|
pr_reg(" * IRFSM: 0x%x\n",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
|
|
|
|
fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
|
|
pr_reg("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
|
|
pr_reg("* Contents = ");
|
|
for (i = 0; i < fifo_len; i++)
|
|
printk(KERN_CONT "%02x ",
|
|
nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
|
|
printk(KERN_CONT "\n");
|
|
}
|
|
|
|
/* detect hardware features */
|
|
static int nvt_hw_detect(struct nvt_dev *nvt)
|
|
{
|
|
unsigned long flags;
|
|
u8 chip_major, chip_minor;
|
|
int ret = 0;
|
|
|
|
nvt_efm_enable(nvt);
|
|
|
|
/* Check if we're wired for the alternate EFER setup */
|
|
chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
|
|
if (chip_major == 0xff) {
|
|
nvt->cr_efir = CR_EFIR2;
|
|
nvt->cr_efdr = CR_EFDR2;
|
|
nvt_efm_enable(nvt);
|
|
chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
|
|
}
|
|
|
|
chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
|
|
nvt_dbg("%s: chip id: 0x%02x 0x%02x", chip_id, chip_major, chip_minor);
|
|
|
|
if (chip_major != CHIP_ID_HIGH ||
|
|
(chip_minor != CHIP_ID_LOW && chip_minor != CHIP_ID_LOW2)) {
|
|
nvt_pr(KERN_ERR, "%s: unsupported chip, id: 0x%02x 0x%02x",
|
|
chip_id, chip_major, chip_minor);
|
|
ret = -ENODEV;
|
|
}
|
|
|
|
nvt_efm_disable(nvt);
|
|
|
|
spin_lock_irqsave(&nvt->nvt_lock, flags);
|
|
nvt->chip_major = chip_major;
|
|
nvt->chip_minor = chip_minor;
|
|
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void nvt_cir_ldev_init(struct nvt_dev *nvt)
|
|
{
|
|
u8 val;
|
|
|
|
/* output pin selection (Pin95=CIRRX, Pin96=CIRTX1, WB enabled */
|
|
val = nvt_cr_read(nvt, CR_OUTPUT_PIN_SEL);
|
|
val &= OUTPUT_PIN_SEL_MASK;
|
|
val |= (OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB);
|
|
nvt_cr_write(nvt, val, CR_OUTPUT_PIN_SEL);
|
|
|
|
/* Select CIR logical device and enable */
|
|
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
|
|
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
|
|
|
|
nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
|
|
nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
|
|
|
|
nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
|
|
|
|
nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
|
|
nvt->cir_addr, nvt->cir_irq);
|
|
}
|
|
|
|
static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
|
|
{
|
|
/* Select ACPI logical device, enable it and CIR Wake */
|
|
nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
|
|
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
|
|
|
|
/* Enable CIR Wake via PSOUT# (Pin60) */
|
|
nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
|
|
|
|
/* enable cir interrupt of mouse/keyboard IRQ event */
|
|
nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
|
|
|
|
/* enable pme interrupt of cir wakeup event */
|
|
nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
|
|
|
|
/* Select CIR Wake logical device and enable */
|
|
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
|
|
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
|
|
|
|
nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
|
|
nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
|
|
|
|
nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
|
|
|
|
nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
|
|
nvt->cir_wake_addr, nvt->cir_wake_irq);
|
|
}
|
|
|
|
/* clear out the hardware's cir rx fifo */
|
|
static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
|
|
{
|
|
u8 val;
|
|
|
|
val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
|
|
nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
|
|
}
|
|
|
|
/* clear out the hardware's cir wake rx fifo */
|
|
static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
|
|
{
|
|
u8 val;
|
|
|
|
val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
|
|
nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
|
|
CIR_WAKE_FIFOCON);
|
|
}
|
|
|
|
/* clear out the hardware's cir tx fifo */
|
|
static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
|
|
{
|
|
u8 val;
|
|
|
|
val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
|
|
nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
|
|
}
|
|
|
|
/* enable RX Trigger Level Reach and Packet End interrupts */
|
|
static void nvt_set_cir_iren(struct nvt_dev *nvt)
|
|
{
|
|
u8 iren;
|
|
|
|
iren = CIR_IREN_RTR | CIR_IREN_PE;
|
|
nvt_cir_reg_write(nvt, iren, CIR_IREN);
|
|
}
|
|
|
|
static void nvt_cir_regs_init(struct nvt_dev *nvt)
|
|
{
|
|
/* set sample limit count (PE interrupt raised when reached) */
|
|
nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
|
|
nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
|
|
|
|
/* set fifo irq trigger levels */
|
|
nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
|
|
CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
|
|
|
|
/*
|
|
* Enable TX and RX, specify carrier on = low, off = high, and set
|
|
* sample period (currently 50us)
|
|
*/
|
|
nvt_cir_reg_write(nvt,
|
|
CIR_IRCON_TXEN | CIR_IRCON_RXEN |
|
|
CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
|
|
CIR_IRCON);
|
|
|
|
/* clear hardware rx and tx fifos */
|
|
nvt_clear_cir_fifo(nvt);
|
|
nvt_clear_tx_fifo(nvt);
|
|
|
|
/* clear any and all stray interrupts */
|
|
nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
|
|
|
|
/* and finally, enable interrupts */
|
|
nvt_set_cir_iren(nvt);
|
|
}
|
|
|
|
static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
|
|
{
|
|
/* set number of bytes needed for wake key comparison (default 67) */
|
|
nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_LEN, CIR_WAKE_FIFO_CMP_DEEP);
|
|
|
|
/* set tolerance/variance allowed per byte during wake compare */
|
|
nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
|
|
CIR_WAKE_FIFO_CMP_TOL);
|
|
|
|
/* set sample limit count (PE interrupt raised when reached) */
|
|
nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
|
|
nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
|
|
|
|
/* set cir wake fifo rx trigger level (currently 67) */
|
|
nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
|
|
CIR_WAKE_FIFOCON);
|
|
|
|
/*
|
|
* Enable TX and RX, specific carrier on = low, off = high, and set
|
|
* sample period (currently 50us)
|
|
*/
|
|
nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
|
|
CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
|
|
CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
|
|
CIR_WAKE_IRCON);
|
|
|
|
/* clear cir wake rx fifo */
|
|
nvt_clear_cir_wake_fifo(nvt);
|
|
|
|
/* clear any and all stray interrupts */
|
|
nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
|
|
}
|
|
|
|
static void nvt_enable_wake(struct nvt_dev *nvt)
|
|
{
|
|
nvt_efm_enable(nvt);
|
|
|
|
nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
|
|
nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
|
|
nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
|
|
nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
|
|
|
|
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
|
|
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
|
|
|
|
nvt_efm_disable(nvt);
|
|
|
|
nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
|
|
CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
|
|
CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
|
|
CIR_WAKE_IRCON);
|
|
nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
|
|
nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
|
|
}
|
|
|
|
/* rx carrier detect only works in learning mode, must be called w/nvt_lock */
|
|
static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
|
|
{
|
|
u32 count, carrier, duration = 0;
|
|
int i;
|
|
|
|
count = nvt_cir_reg_read(nvt, CIR_FCCL) |
|
|
nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
|
|
|
|
for (i = 0; i < nvt->pkts; i++) {
|
|
if (nvt->buf[i] & BUF_PULSE_BIT)
|
|
duration += nvt->buf[i] & BUF_LEN_MASK;
|
|
}
|
|
|
|
duration *= SAMPLE_PERIOD;
|
|
|
|
if (!count || !duration) {
|
|
nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
|
|
count, duration);
|
|
return 0;
|
|
}
|
|
|
|
carrier = (count * 1000000) / duration;
|
|
|
|
if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
|
|
nvt_dbg("WTF? Carrier frequency out of range!");
|
|
|
|
nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
|
|
carrier, count, duration);
|
|
|
|
return carrier;
|
|
}
|
|
|
|
/*
|
|
* set carrier frequency
|
|
*
|
|
* set carrier on 2 registers: CP & CC
|
|
* always set CP as 0x81
|
|
* set CC by SPEC, CC = 3MHz/carrier - 1
|
|
*/
|
|
static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
|
|
{
|
|
struct nvt_dev *nvt = dev->priv;
|
|
u16 val;
|
|
|
|
nvt_cir_reg_write(nvt, 1, CIR_CP);
|
|
val = 3000000 / (carrier) - 1;
|
|
nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
|
|
|
|
nvt_dbg("cp: 0x%x cc: 0x%x\n",
|
|
nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* nvt_tx_ir
|
|
*
|
|
* 1) clean TX fifo first (handled by AP)
|
|
* 2) copy data from user space
|
|
* 3) disable RX interrupts, enable TX interrupts: TTR & TFU
|
|
* 4) send 9 packets to TX FIFO to open TTR
|
|
* in interrupt_handler:
|
|
* 5) send all data out
|
|
* go back to write():
|
|
* 6) disable TX interrupts, re-enable RX interupts
|
|
*
|
|
* The key problem of this function is user space data may larger than
|
|
* driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
|
|
* buf, and keep current copied data buf num in cur_buf_num. But driver's buf
|
|
* number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
|
|
* set TXFCONT as 0xff, until buf_count less than 0xff.
|
|
*/
|
|
static int nvt_tx_ir(struct rc_dev *dev, int *txbuf, u32 n)
|
|
{
|
|
struct nvt_dev *nvt = dev->priv;
|
|
unsigned long flags;
|
|
size_t cur_count;
|
|
unsigned int i;
|
|
u8 iren;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&nvt->tx.lock, flags);
|
|
|
|
if (n >= TX_BUF_LEN) {
|
|
nvt->tx.buf_count = cur_count = TX_BUF_LEN;
|
|
ret = TX_BUF_LEN;
|
|
} else {
|
|
nvt->tx.buf_count = cur_count = n;
|
|
ret = n;
|
|
}
|
|
|
|
memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
|
|
|
|
nvt->tx.cur_buf_num = 0;
|
|
|
|
/* save currently enabled interrupts */
|
|
iren = nvt_cir_reg_read(nvt, CIR_IREN);
|
|
|
|
/* now disable all interrupts, save TFU & TTR */
|
|
nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
|
|
|
|
nvt->tx.tx_state = ST_TX_REPLY;
|
|
|
|
nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
|
|
CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
|
|
|
|
/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
|
|
for (i = 0; i < 9; i++)
|
|
nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
|
|
|
|
spin_unlock_irqrestore(&nvt->tx.lock, flags);
|
|
|
|
wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
|
|
|
|
spin_lock_irqsave(&nvt->tx.lock, flags);
|
|
nvt->tx.tx_state = ST_TX_NONE;
|
|
spin_unlock_irqrestore(&nvt->tx.lock, flags);
|
|
|
|
/* restore enabled interrupts to prior state */
|
|
nvt_cir_reg_write(nvt, iren, CIR_IREN);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* dump contents of the last rx buffer we got from the hw rx fifo */
|
|
static void nvt_dump_rx_buf(struct nvt_dev *nvt)
|
|
{
|
|
int i;
|
|
|
|
printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
|
|
for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
|
|
printk(KERN_CONT "0x%02x ", nvt->buf[i]);
|
|
printk(KERN_CONT "\n");
|
|
}
|
|
|
|
/*
|
|
* Process raw data in rx driver buffer, store it in raw IR event kfifo,
|
|
* trigger decode when appropriate.
|
|
*
|
|
* We get IR data samples one byte at a time. If the msb is set, its a pulse,
|
|
* otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
|
|
* (default 50us) intervals for that pulse/space. A discrete signal is
|
|
* followed by a series of 0x7f packets, then either 0x7<something> or 0x80
|
|
* to signal more IR coming (repeats) or end of IR, respectively. We store
|
|
* sample data in the raw event kfifo until we see 0x7<something> (except f)
|
|
* or 0x80, at which time, we trigger a decode operation.
|
|
*/
|
|
static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
|
|
{
|
|
DEFINE_IR_RAW_EVENT(rawir);
|
|
unsigned int count;
|
|
u32 carrier;
|
|
u8 sample;
|
|
int i;
|
|
|
|
nvt_dbg_verbose("%s firing", __func__);
|
|
|
|
if (debug)
|
|
nvt_dump_rx_buf(nvt);
|
|
|
|
if (nvt->carrier_detect_enabled)
|
|
carrier = nvt_rx_carrier_detect(nvt);
|
|
|
|
count = nvt->pkts;
|
|
nvt_dbg_verbose("Processing buffer of len %d", count);
|
|
|
|
init_ir_raw_event(&rawir);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
nvt->pkts--;
|
|
sample = nvt->buf[i];
|
|
|
|
rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
|
|
rawir.duration = (sample & BUF_LEN_MASK)
|
|
* SAMPLE_PERIOD * 1000;
|
|
|
|
if ((sample & BUF_LEN_MASK) == BUF_LEN_MASK) {
|
|
if (nvt->rawir.pulse == rawir.pulse)
|
|
nvt->rawir.duration += rawir.duration;
|
|
else {
|
|
nvt->rawir.duration = rawir.duration;
|
|
nvt->rawir.pulse = rawir.pulse;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
rawir.duration += nvt->rawir.duration;
|
|
|
|
init_ir_raw_event(&nvt->rawir);
|
|
nvt->rawir.duration = 0;
|
|
nvt->rawir.pulse = rawir.pulse;
|
|
|
|
if (sample == BUF_PULSE_BIT)
|
|
rawir.pulse = false;
|
|
|
|
if (rawir.duration) {
|
|
nvt_dbg("Storing %s with duration %d",
|
|
rawir.pulse ? "pulse" : "space",
|
|
rawir.duration);
|
|
|
|
ir_raw_event_store(nvt->rdev, &rawir);
|
|
}
|
|
|
|
/*
|
|
* BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
|
|
* indicates end of IR signal, but new data incoming. In both
|
|
* cases, it means we're ready to call ir_raw_event_handle
|
|
*/
|
|
if ((sample == BUF_PULSE_BIT) && nvt->pkts) {
|
|
nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
|
|
ir_raw_event_handle(nvt->rdev);
|
|
}
|
|
}
|
|
|
|
nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
|
|
ir_raw_event_handle(nvt->rdev);
|
|
|
|
if (nvt->pkts) {
|
|
nvt_dbg("Odd, pkts should be 0 now... (its %u)", nvt->pkts);
|
|
nvt->pkts = 0;
|
|
}
|
|
|
|
nvt_dbg_verbose("%s done", __func__);
|
|
}
|
|
|
|
static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
|
|
{
|
|
nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
|
|
|
|
nvt->pkts = 0;
|
|
nvt_clear_cir_fifo(nvt);
|
|
ir_raw_event_reset(nvt->rdev);
|
|
}
|
|
|
|
/* copy data from hardware rx fifo into driver buffer */
|
|
static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
|
|
{
|
|
unsigned long flags;
|
|
u8 fifocount, val;
|
|
unsigned int b_idx;
|
|
bool overrun = false;
|
|
int i;
|
|
|
|
/* Get count of how many bytes to read from RX FIFO */
|
|
fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
|
|
/* if we get 0xff, probably means the logical dev is disabled */
|
|
if (fifocount == 0xff)
|
|
return;
|
|
/* watch out for a fifo overrun condition */
|
|
else if (fifocount > RX_BUF_LEN) {
|
|
overrun = true;
|
|
fifocount = RX_BUF_LEN;
|
|
}
|
|
|
|
nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
|
|
|
|
spin_lock_irqsave(&nvt->nvt_lock, flags);
|
|
|
|
b_idx = nvt->pkts;
|
|
|
|
/* This should never happen, but lets check anyway... */
|
|
if (b_idx + fifocount > RX_BUF_LEN) {
|
|
nvt_process_rx_ir_data(nvt);
|
|
b_idx = 0;
|
|
}
|
|
|
|
/* Read fifocount bytes from CIR Sample RX FIFO register */
|
|
for (i = 0; i < fifocount; i++) {
|
|
val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
|
|
nvt->buf[b_idx + i] = val;
|
|
}
|
|
|
|
nvt->pkts += fifocount;
|
|
nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
|
|
|
|
nvt_process_rx_ir_data(nvt);
|
|
|
|
if (overrun)
|
|
nvt_handle_rx_fifo_overrun(nvt);
|
|
|
|
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
|
|
}
|
|
|
|
static void nvt_cir_log_irqs(u8 status, u8 iren)
|
|
{
|
|
nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
|
|
status, iren,
|
|
status & CIR_IRSTS_RDR ? " RDR" : "",
|
|
status & CIR_IRSTS_RTR ? " RTR" : "",
|
|
status & CIR_IRSTS_PE ? " PE" : "",
|
|
status & CIR_IRSTS_RFO ? " RFO" : "",
|
|
status & CIR_IRSTS_TE ? " TE" : "",
|
|
status & CIR_IRSTS_TTR ? " TTR" : "",
|
|
status & CIR_IRSTS_TFU ? " TFU" : "",
|
|
status & CIR_IRSTS_GH ? " GH" : "",
|
|
status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
|
|
CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
|
|
CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
|
|
}
|
|
|
|
static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
|
|
{
|
|
unsigned long flags;
|
|
bool tx_inactive;
|
|
u8 tx_state;
|
|
|
|
spin_lock_irqsave(&nvt->tx.lock, flags);
|
|
tx_state = nvt->tx.tx_state;
|
|
spin_unlock_irqrestore(&nvt->tx.lock, flags);
|
|
|
|
tx_inactive = (tx_state == ST_TX_NONE);
|
|
|
|
return tx_inactive;
|
|
}
|
|
|
|
/* interrupt service routine for incoming and outgoing CIR data */
|
|
static irqreturn_t nvt_cir_isr(int irq, void *data)
|
|
{
|
|
struct nvt_dev *nvt = data;
|
|
u8 status, iren, cur_state;
|
|
unsigned long flags;
|
|
|
|
nvt_dbg_verbose("%s firing", __func__);
|
|
|
|
nvt_efm_enable(nvt);
|
|
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
|
|
nvt_efm_disable(nvt);
|
|
|
|
/*
|
|
* Get IR Status register contents. Write 1 to ack/clear
|
|
*
|
|
* bit: reg name - description
|
|
* 7: CIR_IRSTS_RDR - RX Data Ready
|
|
* 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
|
|
* 5: CIR_IRSTS_PE - Packet End
|
|
* 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
|
|
* 3: CIR_IRSTS_TE - TX FIFO Empty
|
|
* 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
|
|
* 1: CIR_IRSTS_TFU - TX FIFO Underrun
|
|
* 0: CIR_IRSTS_GH - Min Length Detected
|
|
*/
|
|
status = nvt_cir_reg_read(nvt, CIR_IRSTS);
|
|
if (!status) {
|
|
nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
|
|
nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
|
|
return IRQ_RETVAL(IRQ_NONE);
|
|
}
|
|
|
|
/* ack/clear all irq flags we've got */
|
|
nvt_cir_reg_write(nvt, status, CIR_IRSTS);
|
|
nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
|
|
|
|
/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
|
|
iren = nvt_cir_reg_read(nvt, CIR_IREN);
|
|
if (!iren) {
|
|
nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
|
|
return IRQ_RETVAL(IRQ_NONE);
|
|
}
|
|
|
|
if (debug)
|
|
nvt_cir_log_irqs(status, iren);
|
|
|
|
if (status & CIR_IRSTS_RTR) {
|
|
/* FIXME: add code for study/learn mode */
|
|
/* We only do rx if not tx'ing */
|
|
if (nvt_cir_tx_inactive(nvt))
|
|
nvt_get_rx_ir_data(nvt);
|
|
}
|
|
|
|
if (status & CIR_IRSTS_PE) {
|
|
if (nvt_cir_tx_inactive(nvt))
|
|
nvt_get_rx_ir_data(nvt);
|
|
|
|
spin_lock_irqsave(&nvt->nvt_lock, flags);
|
|
|
|
cur_state = nvt->study_state;
|
|
|
|
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
|
|
|
|
if (cur_state == ST_STUDY_NONE)
|
|
nvt_clear_cir_fifo(nvt);
|
|
}
|
|
|
|
if (status & CIR_IRSTS_TE)
|
|
nvt_clear_tx_fifo(nvt);
|
|
|
|
if (status & CIR_IRSTS_TTR) {
|
|
unsigned int pos, count;
|
|
u8 tmp;
|
|
|
|
spin_lock_irqsave(&nvt->tx.lock, flags);
|
|
|
|
pos = nvt->tx.cur_buf_num;
|
|
count = nvt->tx.buf_count;
|
|
|
|
/* Write data into the hardware tx fifo while pos < count */
|
|
if (pos < count) {
|
|
nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
|
|
nvt->tx.cur_buf_num++;
|
|
/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
|
|
} else {
|
|
tmp = nvt_cir_reg_read(nvt, CIR_IREN);
|
|
nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&nvt->tx.lock, flags);
|
|
|
|
}
|
|
|
|
if (status & CIR_IRSTS_TFU) {
|
|
spin_lock_irqsave(&nvt->tx.lock, flags);
|
|
if (nvt->tx.tx_state == ST_TX_REPLY) {
|
|
nvt->tx.tx_state = ST_TX_REQUEST;
|
|
wake_up(&nvt->tx.queue);
|
|
}
|
|
spin_unlock_irqrestore(&nvt->tx.lock, flags);
|
|
}
|
|
|
|
nvt_dbg_verbose("%s done", __func__);
|
|
return IRQ_RETVAL(IRQ_HANDLED);
|
|
}
|
|
|
|
/* Interrupt service routine for CIR Wake */
|
|
static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
|
|
{
|
|
u8 status, iren, val;
|
|
struct nvt_dev *nvt = data;
|
|
unsigned long flags;
|
|
|
|
nvt_dbg_wake("%s firing", __func__);
|
|
|
|
status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
|
|
if (!status)
|
|
return IRQ_RETVAL(IRQ_NONE);
|
|
|
|
if (status & CIR_WAKE_IRSTS_IR_PENDING)
|
|
nvt_clear_cir_wake_fifo(nvt);
|
|
|
|
nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
|
|
nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
|
|
|
|
/* Interrupt may be shared with CIR, bail if Wake not enabled */
|
|
iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
|
|
if (!iren) {
|
|
nvt_dbg_wake("%s exiting, wake not enabled", __func__);
|
|
return IRQ_RETVAL(IRQ_HANDLED);
|
|
}
|
|
|
|
if ((status & CIR_WAKE_IRSTS_PE) &&
|
|
(nvt->wake_state == ST_WAKE_START)) {
|
|
while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
|
|
val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
|
|
nvt_dbg("setting wake up key: 0x%x", val);
|
|
}
|
|
|
|
nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
|
|
spin_lock_irqsave(&nvt->nvt_lock, flags);
|
|
nvt->wake_state = ST_WAKE_FINISH;
|
|
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
|
|
}
|
|
|
|
nvt_dbg_wake("%s done", __func__);
|
|
return IRQ_RETVAL(IRQ_HANDLED);
|
|
}
|
|
|
|
static void nvt_enable_cir(struct nvt_dev *nvt)
|
|
{
|
|
/* set function enable flags */
|
|
nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
|
|
CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
|
|
CIR_IRCON);
|
|
|
|
nvt_efm_enable(nvt);
|
|
|
|
/* enable the CIR logical device */
|
|
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
|
|
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
|
|
|
|
nvt_efm_disable(nvt);
|
|
|
|
/* clear all pending interrupts */
|
|
nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
|
|
|
|
/* enable interrupts */
|
|
nvt_set_cir_iren(nvt);
|
|
}
|
|
|
|
static void nvt_disable_cir(struct nvt_dev *nvt)
|
|
{
|
|
/* disable CIR interrupts */
|
|
nvt_cir_reg_write(nvt, 0, CIR_IREN);
|
|
|
|
/* clear any and all pending interrupts */
|
|
nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
|
|
|
|
/* clear all function enable flags */
|
|
nvt_cir_reg_write(nvt, 0, CIR_IRCON);
|
|
|
|
/* clear hardware rx and tx fifos */
|
|
nvt_clear_cir_fifo(nvt);
|
|
nvt_clear_tx_fifo(nvt);
|
|
|
|
nvt_efm_enable(nvt);
|
|
|
|
/* disable the CIR logical device */
|
|
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
|
|
nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
|
|
|
|
nvt_efm_disable(nvt);
|
|
}
|
|
|
|
static int nvt_open(struct rc_dev *dev)
|
|
{
|
|
struct nvt_dev *nvt = dev->priv;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&nvt->nvt_lock, flags);
|
|
nvt->in_use = true;
|
|
nvt_enable_cir(nvt);
|
|
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvt_close(struct rc_dev *dev)
|
|
{
|
|
struct nvt_dev *nvt = dev->priv;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&nvt->nvt_lock, flags);
|
|
nvt->in_use = false;
|
|
nvt_disable_cir(nvt);
|
|
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
|
|
}
|
|
|
|
/* Allocate memory, probe hardware, and initialize everything */
|
|
static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
|
|
{
|
|
struct nvt_dev *nvt;
|
|
struct rc_dev *rdev;
|
|
int ret = -ENOMEM;
|
|
|
|
nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
|
|
if (!nvt)
|
|
return ret;
|
|
|
|
/* input device for IR remote (and tx) */
|
|
rdev = rc_allocate_device();
|
|
if (!rdev)
|
|
goto failure;
|
|
|
|
ret = -ENODEV;
|
|
/* validate pnp resources */
|
|
if (!pnp_port_valid(pdev, 0) ||
|
|
pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
|
|
dev_err(&pdev->dev, "IR PNP Port not valid!\n");
|
|
goto failure;
|
|
}
|
|
|
|
if (!pnp_irq_valid(pdev, 0)) {
|
|
dev_err(&pdev->dev, "PNP IRQ not valid!\n");
|
|
goto failure;
|
|
}
|
|
|
|
if (!pnp_port_valid(pdev, 1) ||
|
|
pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
|
|
dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
|
|
goto failure;
|
|
}
|
|
|
|
nvt->cir_addr = pnp_port_start(pdev, 0);
|
|
nvt->cir_irq = pnp_irq(pdev, 0);
|
|
|
|
nvt->cir_wake_addr = pnp_port_start(pdev, 1);
|
|
/* irq is always shared between cir and cir wake */
|
|
nvt->cir_wake_irq = nvt->cir_irq;
|
|
|
|
nvt->cr_efir = CR_EFIR;
|
|
nvt->cr_efdr = CR_EFDR;
|
|
|
|
spin_lock_init(&nvt->nvt_lock);
|
|
spin_lock_init(&nvt->tx.lock);
|
|
init_ir_raw_event(&nvt->rawir);
|
|
|
|
ret = -EBUSY;
|
|
/* now claim resources */
|
|
if (!request_region(nvt->cir_addr,
|
|
CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
|
|
goto failure;
|
|
|
|
if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
|
|
NVT_DRIVER_NAME, (void *)nvt))
|
|
goto failure;
|
|
|
|
if (!request_region(nvt->cir_wake_addr,
|
|
CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
|
|
goto failure;
|
|
|
|
if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
|
|
NVT_DRIVER_NAME, (void *)nvt))
|
|
goto failure;
|
|
|
|
pnp_set_drvdata(pdev, nvt);
|
|
nvt->pdev = pdev;
|
|
|
|
init_waitqueue_head(&nvt->tx.queue);
|
|
|
|
ret = nvt_hw_detect(nvt);
|
|
if (ret)
|
|
goto failure;
|
|
|
|
/* Initialize CIR & CIR Wake Logical Devices */
|
|
nvt_efm_enable(nvt);
|
|
nvt_cir_ldev_init(nvt);
|
|
nvt_cir_wake_ldev_init(nvt);
|
|
nvt_efm_disable(nvt);
|
|
|
|
/* Initialize CIR & CIR Wake Config Registers */
|
|
nvt_cir_regs_init(nvt);
|
|
nvt_cir_wake_regs_init(nvt);
|
|
|
|
/* Set up the rc device */
|
|
rdev->priv = nvt;
|
|
rdev->driver_type = RC_DRIVER_IR_RAW;
|
|
rdev->allowed_protos = RC_TYPE_ALL;
|
|
rdev->open = nvt_open;
|
|
rdev->close = nvt_close;
|
|
rdev->tx_ir = nvt_tx_ir;
|
|
rdev->s_tx_carrier = nvt_set_tx_carrier;
|
|
rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
|
|
rdev->input_id.bustype = BUS_HOST;
|
|
rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
|
|
rdev->input_id.product = nvt->chip_major;
|
|
rdev->input_id.version = nvt->chip_minor;
|
|
rdev->driver_name = NVT_DRIVER_NAME;
|
|
rdev->map_name = RC_MAP_RC6_MCE;
|
|
#if 0
|
|
rdev->min_timeout = XYZ;
|
|
rdev->max_timeout = XYZ;
|
|
rdev->timeout = XYZ;
|
|
/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
|
|
rdev->rx_resolution = XYZ;
|
|
/* tx bits */
|
|
rdev->tx_resolution = XYZ;
|
|
#endif
|
|
|
|
ret = rc_register_device(rdev);
|
|
if (ret)
|
|
goto failure;
|
|
|
|
device_set_wakeup_capable(&pdev->dev, 1);
|
|
device_set_wakeup_enable(&pdev->dev, 1);
|
|
nvt->rdev = rdev;
|
|
nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
|
|
if (debug) {
|
|
cir_dump_regs(nvt);
|
|
cir_wake_dump_regs(nvt);
|
|
}
|
|
|
|
return 0;
|
|
|
|
failure:
|
|
if (nvt->cir_irq)
|
|
free_irq(nvt->cir_irq, nvt);
|
|
if (nvt->cir_addr)
|
|
release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
|
|
|
|
if (nvt->cir_wake_irq)
|
|
free_irq(nvt->cir_wake_irq, nvt);
|
|
if (nvt->cir_wake_addr)
|
|
release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
|
|
|
|
rc_free_device(rdev);
|
|
kfree(nvt);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __devexit nvt_remove(struct pnp_dev *pdev)
|
|
{
|
|
struct nvt_dev *nvt = pnp_get_drvdata(pdev);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&nvt->nvt_lock, flags);
|
|
/* disable CIR */
|
|
nvt_cir_reg_write(nvt, 0, CIR_IREN);
|
|
nvt_disable_cir(nvt);
|
|
/* enable CIR Wake (for IR power-on) */
|
|
nvt_enable_wake(nvt);
|
|
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
|
|
|
|
/* free resources */
|
|
free_irq(nvt->cir_irq, nvt);
|
|
free_irq(nvt->cir_wake_irq, nvt);
|
|
release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
|
|
release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
|
|
|
|
rc_unregister_device(nvt->rdev);
|
|
|
|
kfree(nvt);
|
|
}
|
|
|
|
static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
|
|
{
|
|
struct nvt_dev *nvt = pnp_get_drvdata(pdev);
|
|
unsigned long flags;
|
|
|
|
nvt_dbg("%s called", __func__);
|
|
|
|
/* zero out misc state tracking */
|
|
spin_lock_irqsave(&nvt->nvt_lock, flags);
|
|
nvt->study_state = ST_STUDY_NONE;
|
|
nvt->wake_state = ST_WAKE_NONE;
|
|
spin_unlock_irqrestore(&nvt->nvt_lock, flags);
|
|
|
|
spin_lock_irqsave(&nvt->tx.lock, flags);
|
|
nvt->tx.tx_state = ST_TX_NONE;
|
|
spin_unlock_irqrestore(&nvt->tx.lock, flags);
|
|
|
|
/* disable all CIR interrupts */
|
|
nvt_cir_reg_write(nvt, 0, CIR_IREN);
|
|
|
|
nvt_efm_enable(nvt);
|
|
|
|
/* disable cir logical dev */
|
|
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
|
|
nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
|
|
|
|
nvt_efm_disable(nvt);
|
|
|
|
/* make sure wake is enabled */
|
|
nvt_enable_wake(nvt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvt_resume(struct pnp_dev *pdev)
|
|
{
|
|
int ret = 0;
|
|
struct nvt_dev *nvt = pnp_get_drvdata(pdev);
|
|
|
|
nvt_dbg("%s called", __func__);
|
|
|
|
/* open interrupt */
|
|
nvt_set_cir_iren(nvt);
|
|
|
|
/* Enable CIR logical device */
|
|
nvt_efm_enable(nvt);
|
|
nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
|
|
nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
|
|
|
|
nvt_efm_disable(nvt);
|
|
|
|
nvt_cir_regs_init(nvt);
|
|
nvt_cir_wake_regs_init(nvt);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void nvt_shutdown(struct pnp_dev *pdev)
|
|
{
|
|
struct nvt_dev *nvt = pnp_get_drvdata(pdev);
|
|
nvt_enable_wake(nvt);
|
|
}
|
|
|
|
static const struct pnp_device_id nvt_ids[] = {
|
|
{ "WEC0530", 0 }, /* CIR */
|
|
{ "NTN0530", 0 }, /* CIR for new chip's pnp id*/
|
|
{ "", 0 },
|
|
};
|
|
|
|
static struct pnp_driver nvt_driver = {
|
|
.name = NVT_DRIVER_NAME,
|
|
.id_table = nvt_ids,
|
|
.flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
|
|
.probe = nvt_probe,
|
|
.remove = __devexit_p(nvt_remove),
|
|
.suspend = nvt_suspend,
|
|
.resume = nvt_resume,
|
|
.shutdown = nvt_shutdown,
|
|
};
|
|
|
|
int nvt_init(void)
|
|
{
|
|
return pnp_register_driver(&nvt_driver);
|
|
}
|
|
|
|
void nvt_exit(void)
|
|
{
|
|
pnp_unregister_driver(&nvt_driver);
|
|
}
|
|
|
|
module_param(debug, int, S_IRUGO | S_IWUSR);
|
|
MODULE_PARM_DESC(debug, "Enable debugging output");
|
|
|
|
MODULE_DEVICE_TABLE(pnp, nvt_ids);
|
|
MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
|
|
|
|
MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
module_init(nvt_init);
|
|
module_exit(nvt_exit);
|