2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 22:53:55 +08:00
linux-next/drivers/net/ethernet/freescale/gianfar_ethtool.c
Patrick McHardy f646968f8f net: vlan: rename NETIF_F_HW_VLAN_* feature flags to NETIF_F_HW_VLAN_CTAG_*
Rename the hardware VLAN acceleration features to include "CTAG" to indicate
that they only support CTAGs. Follow up patches will introduce 802.1ad
server provider tagging (STAGs) and require the distinction for hardware not
supporting acclerating both.

Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-19 14:45:26 -04:00

1822 lines
47 KiB
C

/*
* drivers/net/ethernet/freescale/gianfar_ethtool.c
*
* Gianfar Ethernet Driver
* Ethtool support for Gianfar Enet
* Based on e1000 ethtool support
*
* Author: Andy Fleming
* Maintainer: Kumar Gala
* Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
*
* Copyright 2003-2006, 2008-2009, 2011 Freescale Semiconductor, Inc.
*
* This software may be used and distributed according to
* the terms of the GNU Public License, Version 2, incorporated herein
* by reference.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/net_tstamp.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <linux/module.h>
#include <linux/crc32.h>
#include <asm/types.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/sort.h>
#include <linux/if_vlan.h>
#include "gianfar.h"
extern void gfar_start(struct net_device *dev);
extern int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
int rx_work_limit);
#define GFAR_MAX_COAL_USECS 0xffff
#define GFAR_MAX_COAL_FRAMES 0xff
static void gfar_fill_stats(struct net_device *dev, struct ethtool_stats *dummy,
u64 *buf);
static void gfar_gstrings(struct net_device *dev, u32 stringset, u8 * buf);
static int gfar_gcoalesce(struct net_device *dev,
struct ethtool_coalesce *cvals);
static int gfar_scoalesce(struct net_device *dev,
struct ethtool_coalesce *cvals);
static void gfar_gringparam(struct net_device *dev,
struct ethtool_ringparam *rvals);
static int gfar_sringparam(struct net_device *dev,
struct ethtool_ringparam *rvals);
static void gfar_gdrvinfo(struct net_device *dev,
struct ethtool_drvinfo *drvinfo);
static const char stat_gstrings[][ETH_GSTRING_LEN] = {
"rx-large-frame-errors",
"rx-short-frame-errors",
"rx-non-octet-errors",
"rx-crc-errors",
"rx-overrun-errors",
"rx-busy-errors",
"rx-babbling-errors",
"rx-truncated-frames",
"ethernet-bus-error",
"tx-babbling-errors",
"tx-underrun-errors",
"rx-skb-missing-errors",
"tx-timeout-errors",
"tx-rx-64-frames",
"tx-rx-65-127-frames",
"tx-rx-128-255-frames",
"tx-rx-256-511-frames",
"tx-rx-512-1023-frames",
"tx-rx-1024-1518-frames",
"tx-rx-1519-1522-good-vlan",
"rx-bytes",
"rx-packets",
"rx-fcs-errors",
"receive-multicast-packet",
"receive-broadcast-packet",
"rx-control-frame-packets",
"rx-pause-frame-packets",
"rx-unknown-op-code",
"rx-alignment-error",
"rx-frame-length-error",
"rx-code-error",
"rx-carrier-sense-error",
"rx-undersize-packets",
"rx-oversize-packets",
"rx-fragmented-frames",
"rx-jabber-frames",
"rx-dropped-frames",
"tx-byte-counter",
"tx-packets",
"tx-multicast-packets",
"tx-broadcast-packets",
"tx-pause-control-frames",
"tx-deferral-packets",
"tx-excessive-deferral-packets",
"tx-single-collision-packets",
"tx-multiple-collision-packets",
"tx-late-collision-packets",
"tx-excessive-collision-packets",
"tx-total-collision",
"reserved",
"tx-dropped-frames",
"tx-jabber-frames",
"tx-fcs-errors",
"tx-control-frames",
"tx-oversize-frames",
"tx-undersize-frames",
"tx-fragmented-frames",
};
/* Fill in a buffer with the strings which correspond to the
* stats */
static void gfar_gstrings(struct net_device *dev, u32 stringset, u8 * buf)
{
struct gfar_private *priv = netdev_priv(dev);
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON)
memcpy(buf, stat_gstrings, GFAR_STATS_LEN * ETH_GSTRING_LEN);
else
memcpy(buf, stat_gstrings,
GFAR_EXTRA_STATS_LEN * ETH_GSTRING_LEN);
}
/* Fill in an array of 64-bit statistics from various sources.
* This array will be appended to the end of the ethtool_stats
* structure, and returned to user space
*/
static void gfar_fill_stats(struct net_device *dev, struct ethtool_stats *dummy,
u64 *buf)
{
int i;
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
atomic64_t *extra = (atomic64_t *)&priv->extra_stats;
for (i = 0; i < GFAR_EXTRA_STATS_LEN; i++)
buf[i] = atomic64_read(&extra[i]);
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
u32 __iomem *rmon = (u32 __iomem *) &regs->rmon;
for (; i < GFAR_STATS_LEN; i++, rmon++)
buf[i] = (u64) gfar_read(rmon);
}
}
static int gfar_sset_count(struct net_device *dev, int sset)
{
struct gfar_private *priv = netdev_priv(dev);
switch (sset) {
case ETH_SS_STATS:
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON)
return GFAR_STATS_LEN;
else
return GFAR_EXTRA_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
/* Fills in the drvinfo structure with some basic info */
static void gfar_gdrvinfo(struct net_device *dev,
struct ethtool_drvinfo *drvinfo)
{
strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver));
strlcpy(drvinfo->version, gfar_driver_version,
sizeof(drvinfo->version));
strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
strlcpy(drvinfo->bus_info, "N/A", sizeof(drvinfo->bus_info));
drvinfo->regdump_len = 0;
drvinfo->eedump_len = 0;
}
static int gfar_ssettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct gfar_private *priv = netdev_priv(dev);
struct phy_device *phydev = priv->phydev;
if (NULL == phydev)
return -ENODEV;
return phy_ethtool_sset(phydev, cmd);
}
/* Return the current settings in the ethtool_cmd structure */
static int gfar_gsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct gfar_private *priv = netdev_priv(dev);
struct phy_device *phydev = priv->phydev;
struct gfar_priv_rx_q *rx_queue = NULL;
struct gfar_priv_tx_q *tx_queue = NULL;
if (NULL == phydev)
return -ENODEV;
tx_queue = priv->tx_queue[0];
rx_queue = priv->rx_queue[0];
/* etsec-1.7 and older versions have only one txic
* and rxic regs although they support multiple queues */
cmd->maxtxpkt = get_icft_value(tx_queue->txic);
cmd->maxrxpkt = get_icft_value(rx_queue->rxic);
return phy_ethtool_gset(phydev, cmd);
}
/* Return the length of the register structure */
static int gfar_reglen(struct net_device *dev)
{
return sizeof (struct gfar);
}
/* Return a dump of the GFAR register space */
static void gfar_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *regbuf)
{
int i;
struct gfar_private *priv = netdev_priv(dev);
u32 __iomem *theregs = (u32 __iomem *) priv->gfargrp[0].regs;
u32 *buf = (u32 *) regbuf;
for (i = 0; i < sizeof (struct gfar) / sizeof (u32); i++)
buf[i] = gfar_read(&theregs[i]);
}
/* Convert microseconds to ethernet clock ticks, which changes
* depending on what speed the controller is running at */
static unsigned int gfar_usecs2ticks(struct gfar_private *priv,
unsigned int usecs)
{
unsigned int count;
/* The timer is different, depending on the interface speed */
switch (priv->phydev->speed) {
case SPEED_1000:
count = GFAR_GBIT_TIME;
break;
case SPEED_100:
count = GFAR_100_TIME;
break;
case SPEED_10:
default:
count = GFAR_10_TIME;
break;
}
/* Make sure we return a number greater than 0
* if usecs > 0 */
return (usecs * 1000 + count - 1) / count;
}
/* Convert ethernet clock ticks to microseconds */
static unsigned int gfar_ticks2usecs(struct gfar_private *priv,
unsigned int ticks)
{
unsigned int count;
/* The timer is different, depending on the interface speed */
switch (priv->phydev->speed) {
case SPEED_1000:
count = GFAR_GBIT_TIME;
break;
case SPEED_100:
count = GFAR_100_TIME;
break;
case SPEED_10:
default:
count = GFAR_10_TIME;
break;
}
/* Make sure we return a number greater than 0 */
/* if ticks is > 0 */
return (ticks * count) / 1000;
}
/* Get the coalescing parameters, and put them in the cvals
* structure. */
static int gfar_gcoalesce(struct net_device *dev,
struct ethtool_coalesce *cvals)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar_priv_rx_q *rx_queue = NULL;
struct gfar_priv_tx_q *tx_queue = NULL;
unsigned long rxtime;
unsigned long rxcount;
unsigned long txtime;
unsigned long txcount;
if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_COALESCE))
return -EOPNOTSUPP;
if (NULL == priv->phydev)
return -ENODEV;
rx_queue = priv->rx_queue[0];
tx_queue = priv->tx_queue[0];
rxtime = get_ictt_value(rx_queue->rxic);
rxcount = get_icft_value(rx_queue->rxic);
txtime = get_ictt_value(tx_queue->txic);
txcount = get_icft_value(tx_queue->txic);
cvals->rx_coalesce_usecs = gfar_ticks2usecs(priv, rxtime);
cvals->rx_max_coalesced_frames = rxcount;
cvals->tx_coalesce_usecs = gfar_ticks2usecs(priv, txtime);
cvals->tx_max_coalesced_frames = txcount;
cvals->use_adaptive_rx_coalesce = 0;
cvals->use_adaptive_tx_coalesce = 0;
cvals->pkt_rate_low = 0;
cvals->rx_coalesce_usecs_low = 0;
cvals->rx_max_coalesced_frames_low = 0;
cvals->tx_coalesce_usecs_low = 0;
cvals->tx_max_coalesced_frames_low = 0;
/* When the packet rate is below pkt_rate_high but above
* pkt_rate_low (both measured in packets per second) the
* normal {rx,tx}_* coalescing parameters are used.
*/
/* When the packet rate is (measured in packets per second)
* is above pkt_rate_high, the {rx,tx}_*_high parameters are
* used.
*/
cvals->pkt_rate_high = 0;
cvals->rx_coalesce_usecs_high = 0;
cvals->rx_max_coalesced_frames_high = 0;
cvals->tx_coalesce_usecs_high = 0;
cvals->tx_max_coalesced_frames_high = 0;
/* How often to do adaptive coalescing packet rate sampling,
* measured in seconds. Must not be zero.
*/
cvals->rate_sample_interval = 0;
return 0;
}
/* Change the coalescing values.
* Both cvals->*_usecs and cvals->*_frames have to be > 0
* in order for coalescing to be active
*/
static int gfar_scoalesce(struct net_device *dev,
struct ethtool_coalesce *cvals)
{
struct gfar_private *priv = netdev_priv(dev);
int i = 0;
if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_COALESCE))
return -EOPNOTSUPP;
/* Set up rx coalescing */
/* As of now, we will enable/disable coalescing for all
* queues together in case of eTSEC2, this will be modified
* along with the ethtool interface
*/
if ((cvals->rx_coalesce_usecs == 0) ||
(cvals->rx_max_coalesced_frames == 0)) {
for (i = 0; i < priv->num_rx_queues; i++)
priv->rx_queue[i]->rxcoalescing = 0;
} else {
for (i = 0; i < priv->num_rx_queues; i++)
priv->rx_queue[i]->rxcoalescing = 1;
}
if (NULL == priv->phydev)
return -ENODEV;
/* Check the bounds of the values */
if (cvals->rx_coalesce_usecs > GFAR_MAX_COAL_USECS) {
netdev_info(dev, "Coalescing is limited to %d microseconds\n",
GFAR_MAX_COAL_USECS);
return -EINVAL;
}
if (cvals->rx_max_coalesced_frames > GFAR_MAX_COAL_FRAMES) {
netdev_info(dev, "Coalescing is limited to %d frames\n",
GFAR_MAX_COAL_FRAMES);
return -EINVAL;
}
for (i = 0; i < priv->num_rx_queues; i++) {
priv->rx_queue[i]->rxic = mk_ic_value(
cvals->rx_max_coalesced_frames,
gfar_usecs2ticks(priv, cvals->rx_coalesce_usecs));
}
/* Set up tx coalescing */
if ((cvals->tx_coalesce_usecs == 0) ||
(cvals->tx_max_coalesced_frames == 0)) {
for (i = 0; i < priv->num_tx_queues; i++)
priv->tx_queue[i]->txcoalescing = 0;
} else {
for (i = 0; i < priv->num_tx_queues; i++)
priv->tx_queue[i]->txcoalescing = 1;
}
/* Check the bounds of the values */
if (cvals->tx_coalesce_usecs > GFAR_MAX_COAL_USECS) {
netdev_info(dev, "Coalescing is limited to %d microseconds\n",
GFAR_MAX_COAL_USECS);
return -EINVAL;
}
if (cvals->tx_max_coalesced_frames > GFAR_MAX_COAL_FRAMES) {
netdev_info(dev, "Coalescing is limited to %d frames\n",
GFAR_MAX_COAL_FRAMES);
return -EINVAL;
}
for (i = 0; i < priv->num_tx_queues; i++) {
priv->tx_queue[i]->txic = mk_ic_value(
cvals->tx_max_coalesced_frames,
gfar_usecs2ticks(priv, cvals->tx_coalesce_usecs));
}
gfar_configure_coalescing_all(priv);
return 0;
}
/* Fills in rvals with the current ring parameters. Currently,
* rx, rx_mini, and rx_jumbo rings are the same size, as mini and
* jumbo are ignored by the driver */
static void gfar_gringparam(struct net_device *dev,
struct ethtool_ringparam *rvals)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar_priv_tx_q *tx_queue = NULL;
struct gfar_priv_rx_q *rx_queue = NULL;
tx_queue = priv->tx_queue[0];
rx_queue = priv->rx_queue[0];
rvals->rx_max_pending = GFAR_RX_MAX_RING_SIZE;
rvals->rx_mini_max_pending = GFAR_RX_MAX_RING_SIZE;
rvals->rx_jumbo_max_pending = GFAR_RX_MAX_RING_SIZE;
rvals->tx_max_pending = GFAR_TX_MAX_RING_SIZE;
/* Values changeable by the user. The valid values are
* in the range 1 to the "*_max_pending" counterpart above.
*/
rvals->rx_pending = rx_queue->rx_ring_size;
rvals->rx_mini_pending = rx_queue->rx_ring_size;
rvals->rx_jumbo_pending = rx_queue->rx_ring_size;
rvals->tx_pending = tx_queue->tx_ring_size;
}
/* Change the current ring parameters, stopping the controller if
* necessary so that we don't mess things up while we're in
* motion. We wait for the ring to be clean before reallocating
* the rings.
*/
static int gfar_sringparam(struct net_device *dev,
struct ethtool_ringparam *rvals)
{
struct gfar_private *priv = netdev_priv(dev);
int err = 0, i = 0;
if (rvals->rx_pending > GFAR_RX_MAX_RING_SIZE)
return -EINVAL;
if (!is_power_of_2(rvals->rx_pending)) {
netdev_err(dev, "Ring sizes must be a power of 2\n");
return -EINVAL;
}
if (rvals->tx_pending > GFAR_TX_MAX_RING_SIZE)
return -EINVAL;
if (!is_power_of_2(rvals->tx_pending)) {
netdev_err(dev, "Ring sizes must be a power of 2\n");
return -EINVAL;
}
if (dev->flags & IFF_UP) {
unsigned long flags;
/* Halt TX and RX, and process the frames which
* have already been received
*/
local_irq_save(flags);
lock_tx_qs(priv);
lock_rx_qs(priv);
gfar_halt(dev);
unlock_rx_qs(priv);
unlock_tx_qs(priv);
local_irq_restore(flags);
for (i = 0; i < priv->num_rx_queues; i++)
gfar_clean_rx_ring(priv->rx_queue[i],
priv->rx_queue[i]->rx_ring_size);
/* Now we take down the rings to rebuild them */
stop_gfar(dev);
}
/* Change the size */
for (i = 0; i < priv->num_rx_queues; i++) {
priv->rx_queue[i]->rx_ring_size = rvals->rx_pending;
priv->tx_queue[i]->tx_ring_size = rvals->tx_pending;
priv->tx_queue[i]->num_txbdfree =
priv->tx_queue[i]->tx_ring_size;
}
/* Rebuild the rings with the new size */
if (dev->flags & IFF_UP) {
err = startup_gfar(dev);
netif_tx_wake_all_queues(dev);
}
return err;
}
int gfar_set_features(struct net_device *dev, netdev_features_t features)
{
struct gfar_private *priv = netdev_priv(dev);
unsigned long flags;
int err = 0, i = 0;
netdev_features_t changed = dev->features ^ features;
if (changed & (NETIF_F_HW_VLAN_CTAG_TX|NETIF_F_HW_VLAN_CTAG_RX))
gfar_vlan_mode(dev, features);
if (!(changed & NETIF_F_RXCSUM))
return 0;
if (dev->flags & IFF_UP) {
/* Halt TX and RX, and process the frames which
* have already been received
*/
local_irq_save(flags);
lock_tx_qs(priv);
lock_rx_qs(priv);
gfar_halt(dev);
unlock_tx_qs(priv);
unlock_rx_qs(priv);
local_irq_restore(flags);
for (i = 0; i < priv->num_rx_queues; i++)
gfar_clean_rx_ring(priv->rx_queue[i],
priv->rx_queue[i]->rx_ring_size);
/* Now we take down the rings to rebuild them */
stop_gfar(dev);
dev->features = features;
err = startup_gfar(dev);
netif_tx_wake_all_queues(dev);
}
return err;
}
static uint32_t gfar_get_msglevel(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
return priv->msg_enable;
}
static void gfar_set_msglevel(struct net_device *dev, uint32_t data)
{
struct gfar_private *priv = netdev_priv(dev);
priv->msg_enable = data;
}
#ifdef CONFIG_PM
static void gfar_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct gfar_private *priv = netdev_priv(dev);
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) {
wol->supported = WAKE_MAGIC;
wol->wolopts = priv->wol_en ? WAKE_MAGIC : 0;
} else {
wol->supported = wol->wolopts = 0;
}
}
static int gfar_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct gfar_private *priv = netdev_priv(dev);
unsigned long flags;
if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
wol->wolopts != 0)
return -EINVAL;
if (wol->wolopts & ~WAKE_MAGIC)
return -EINVAL;
device_set_wakeup_enable(&dev->dev, wol->wolopts & WAKE_MAGIC);
spin_lock_irqsave(&priv->bflock, flags);
priv->wol_en = !!device_may_wakeup(&dev->dev);
spin_unlock_irqrestore(&priv->bflock, flags);
return 0;
}
#endif
static void ethflow_to_filer_rules (struct gfar_private *priv, u64 ethflow)
{
u32 fcr = 0x0, fpr = FPR_FILER_MASK;
if (ethflow & RXH_L2DA) {
fcr = RQFCR_PID_DAH |RQFCR_CMP_NOMATCH |
RQFCR_HASH | RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
fcr = RQFCR_PID_DAL | RQFCR_AND | RQFCR_CMP_NOMATCH |
RQFCR_HASH | RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
if (ethflow & RXH_VLAN) {
fcr = RQFCR_PID_VID | RQFCR_CMP_NOMATCH | RQFCR_HASH |
RQFCR_AND | RQFCR_HASHTBL_0;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
if (ethflow & RXH_IP_SRC) {
fcr = RQFCR_PID_SIA | RQFCR_CMP_NOMATCH | RQFCR_HASH |
RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
if (ethflow & (RXH_IP_DST)) {
fcr = RQFCR_PID_DIA | RQFCR_CMP_NOMATCH | RQFCR_HASH |
RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
if (ethflow & RXH_L3_PROTO) {
fcr = RQFCR_PID_L4P | RQFCR_CMP_NOMATCH | RQFCR_HASH |
RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
if (ethflow & RXH_L4_B_0_1) {
fcr = RQFCR_PID_SPT | RQFCR_CMP_NOMATCH | RQFCR_HASH |
RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
if (ethflow & RXH_L4_B_2_3) {
fcr = RQFCR_PID_DPT | RQFCR_CMP_NOMATCH | RQFCR_HASH |
RQFCR_AND | RQFCR_HASHTBL_0;
priv->ftp_rqfpr[priv->cur_filer_idx] = fpr;
priv->ftp_rqfcr[priv->cur_filer_idx] = fcr;
gfar_write_filer(priv, priv->cur_filer_idx, fcr, fpr);
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
}
static int gfar_ethflow_to_filer_table(struct gfar_private *priv, u64 ethflow,
u64 class)
{
unsigned int last_rule_idx = priv->cur_filer_idx;
unsigned int cmp_rqfpr;
unsigned int *local_rqfpr;
unsigned int *local_rqfcr;
int i = 0x0, k = 0x0;
int j = MAX_FILER_IDX, l = 0x0;
int ret = 1;
local_rqfpr = kmalloc_array(MAX_FILER_IDX + 1, sizeof(unsigned int),
GFP_KERNEL);
local_rqfcr = kmalloc_array(MAX_FILER_IDX + 1, sizeof(unsigned int),
GFP_KERNEL);
if (!local_rqfpr || !local_rqfcr) {
ret = 0;
goto err;
}
switch (class) {
case TCP_V4_FLOW:
cmp_rqfpr = RQFPR_IPV4 |RQFPR_TCP;
break;
case UDP_V4_FLOW:
cmp_rqfpr = RQFPR_IPV4 |RQFPR_UDP;
break;
case TCP_V6_FLOW:
cmp_rqfpr = RQFPR_IPV6 |RQFPR_TCP;
break;
case UDP_V6_FLOW:
cmp_rqfpr = RQFPR_IPV6 |RQFPR_UDP;
break;
default:
netdev_err(priv->ndev,
"Right now this class is not supported\n");
ret = 0;
goto err;
}
for (i = 0; i < MAX_FILER_IDX + 1; i++) {
local_rqfpr[j] = priv->ftp_rqfpr[i];
local_rqfcr[j] = priv->ftp_rqfcr[i];
j--;
if ((priv->ftp_rqfcr[i] ==
(RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND)) &&
(priv->ftp_rqfpr[i] == cmp_rqfpr))
break;
}
if (i == MAX_FILER_IDX + 1) {
netdev_err(priv->ndev,
"No parse rule found, can't create hash rules\n");
ret = 0;
goto err;
}
/* If a match was found, then it begins the starting of a cluster rule
* if it was already programmed, we need to overwrite these rules
*/
for (l = i+1; l < MAX_FILER_IDX; l++) {
if ((priv->ftp_rqfcr[l] & RQFCR_CLE) &&
!(priv->ftp_rqfcr[l] & RQFCR_AND)) {
priv->ftp_rqfcr[l] = RQFCR_CLE | RQFCR_CMP_EXACT |
RQFCR_HASHTBL_0 | RQFCR_PID_MASK;
priv->ftp_rqfpr[l] = FPR_FILER_MASK;
gfar_write_filer(priv, l, priv->ftp_rqfcr[l],
priv->ftp_rqfpr[l]);
break;
}
if (!(priv->ftp_rqfcr[l] & RQFCR_CLE) &&
(priv->ftp_rqfcr[l] & RQFCR_AND))
continue;
else {
local_rqfpr[j] = priv->ftp_rqfpr[l];
local_rqfcr[j] = priv->ftp_rqfcr[l];
j--;
}
}
priv->cur_filer_idx = l - 1;
last_rule_idx = l;
/* hash rules */
ethflow_to_filer_rules(priv, ethflow);
/* Write back the popped out rules again */
for (k = j+1; k < MAX_FILER_IDX; k++) {
priv->ftp_rqfpr[priv->cur_filer_idx] = local_rqfpr[k];
priv->ftp_rqfcr[priv->cur_filer_idx] = local_rqfcr[k];
gfar_write_filer(priv, priv->cur_filer_idx,
local_rqfcr[k], local_rqfpr[k]);
if (!priv->cur_filer_idx)
break;
priv->cur_filer_idx = priv->cur_filer_idx - 1;
}
err:
kfree(local_rqfcr);
kfree(local_rqfpr);
return ret;
}
static int gfar_set_hash_opts(struct gfar_private *priv,
struct ethtool_rxnfc *cmd)
{
/* write the filer rules here */
if (!gfar_ethflow_to_filer_table(priv, cmd->data, cmd->flow_type))
return -EINVAL;
return 0;
}
static int gfar_check_filer_hardware(struct gfar_private *priv)
{
struct gfar __iomem *regs = NULL;
u32 i;
regs = priv->gfargrp[0].regs;
/* Check if we are in FIFO mode */
i = gfar_read(&regs->ecntrl);
i &= ECNTRL_FIFM;
if (i == ECNTRL_FIFM) {
netdev_notice(priv->ndev, "Interface in FIFO mode\n");
i = gfar_read(&regs->rctrl);
i &= RCTRL_PRSDEP_MASK | RCTRL_PRSFM;
if (i == (RCTRL_PRSDEP_MASK | RCTRL_PRSFM)) {
netdev_info(priv->ndev,
"Receive Queue Filtering enabled\n");
} else {
netdev_warn(priv->ndev,
"Receive Queue Filtering disabled\n");
return -EOPNOTSUPP;
}
}
/* Or in standard mode */
else {
i = gfar_read(&regs->rctrl);
i &= RCTRL_PRSDEP_MASK;
if (i == RCTRL_PRSDEP_MASK) {
netdev_info(priv->ndev,
"Receive Queue Filtering enabled\n");
} else {
netdev_warn(priv->ndev,
"Receive Queue Filtering disabled\n");
return -EOPNOTSUPP;
}
}
/* Sets the properties for arbitrary filer rule
* to the first 4 Layer 4 Bytes
*/
regs->rbifx = 0xC0C1C2C3;
return 0;
}
static int gfar_comp_asc(const void *a, const void *b)
{
return memcmp(a, b, 4);
}
static int gfar_comp_desc(const void *a, const void *b)
{
return -memcmp(a, b, 4);
}
static void gfar_swap(void *a, void *b, int size)
{
u32 *_a = a;
u32 *_b = b;
swap(_a[0], _b[0]);
swap(_a[1], _b[1]);
swap(_a[2], _b[2]);
swap(_a[3], _b[3]);
}
/* Write a mask to filer cache */
static void gfar_set_mask(u32 mask, struct filer_table *tab)
{
tab->fe[tab->index].ctrl = RQFCR_AND | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
tab->fe[tab->index].prop = mask;
tab->index++;
}
/* Sets parse bits (e.g. IP or TCP) */
static void gfar_set_parse_bits(u32 value, u32 mask, struct filer_table *tab)
{
gfar_set_mask(mask, tab);
tab->fe[tab->index].ctrl = RQFCR_CMP_EXACT | RQFCR_PID_PARSE |
RQFCR_AND;
tab->fe[tab->index].prop = value;
tab->index++;
}
static void gfar_set_general_attribute(u32 value, u32 mask, u32 flag,
struct filer_table *tab)
{
gfar_set_mask(mask, tab);
tab->fe[tab->index].ctrl = RQFCR_CMP_EXACT | RQFCR_AND | flag;
tab->fe[tab->index].prop = value;
tab->index++;
}
/* For setting a tuple of value and mask of type flag
* Example:
* IP-Src = 10.0.0.0/255.0.0.0
* value: 0x0A000000 mask: FF000000 flag: RQFPR_IPV4
*
* Ethtool gives us a value=0 and mask=~0 for don't care a tuple
* For a don't care mask it gives us a 0
*
* The check if don't care and the mask adjustment if mask=0 is done for VLAN
* and MAC stuff on an upper level (due to missing information on this level).
* For these guys we can discard them if they are value=0 and mask=0.
*
* Further the all masks are one-padded for better hardware efficiency.
*/
static void gfar_set_attribute(u32 value, u32 mask, u32 flag,
struct filer_table *tab)
{
switch (flag) {
/* 3bit */
case RQFCR_PID_PRI:
if (!(value | mask))
return;
mask |= RQFCR_PID_PRI_MASK;
break;
/* 8bit */
case RQFCR_PID_L4P:
case RQFCR_PID_TOS:
if (!~(mask | RQFCR_PID_L4P_MASK))
return;
if (!mask)
mask = ~0;
else
mask |= RQFCR_PID_L4P_MASK;
break;
/* 12bit */
case RQFCR_PID_VID:
if (!(value | mask))
return;
mask |= RQFCR_PID_VID_MASK;
break;
/* 16bit */
case RQFCR_PID_DPT:
case RQFCR_PID_SPT:
case RQFCR_PID_ETY:
if (!~(mask | RQFCR_PID_PORT_MASK))
return;
if (!mask)
mask = ~0;
else
mask |= RQFCR_PID_PORT_MASK;
break;
/* 24bit */
case RQFCR_PID_DAH:
case RQFCR_PID_DAL:
case RQFCR_PID_SAH:
case RQFCR_PID_SAL:
if (!(value | mask))
return;
mask |= RQFCR_PID_MAC_MASK;
break;
/* for all real 32bit masks */
default:
if (!~mask)
return;
if (!mask)
mask = ~0;
break;
}
gfar_set_general_attribute(value, mask, flag, tab);
}
/* Translates value and mask for UDP, TCP or SCTP */
static void gfar_set_basic_ip(struct ethtool_tcpip4_spec *value,
struct ethtool_tcpip4_spec *mask,
struct filer_table *tab)
{
gfar_set_attribute(value->ip4src, mask->ip4src, RQFCR_PID_SIA, tab);
gfar_set_attribute(value->ip4dst, mask->ip4dst, RQFCR_PID_DIA, tab);
gfar_set_attribute(value->pdst, mask->pdst, RQFCR_PID_DPT, tab);
gfar_set_attribute(value->psrc, mask->psrc, RQFCR_PID_SPT, tab);
gfar_set_attribute(value->tos, mask->tos, RQFCR_PID_TOS, tab);
}
/* Translates value and mask for RAW-IP4 */
static void gfar_set_user_ip(struct ethtool_usrip4_spec *value,
struct ethtool_usrip4_spec *mask,
struct filer_table *tab)
{
gfar_set_attribute(value->ip4src, mask->ip4src, RQFCR_PID_SIA, tab);
gfar_set_attribute(value->ip4dst, mask->ip4dst, RQFCR_PID_DIA, tab);
gfar_set_attribute(value->tos, mask->tos, RQFCR_PID_TOS, tab);
gfar_set_attribute(value->proto, mask->proto, RQFCR_PID_L4P, tab);
gfar_set_attribute(value->l4_4_bytes, mask->l4_4_bytes, RQFCR_PID_ARB,
tab);
}
/* Translates value and mask for ETHER spec */
static void gfar_set_ether(struct ethhdr *value, struct ethhdr *mask,
struct filer_table *tab)
{
u32 upper_temp_mask = 0;
u32 lower_temp_mask = 0;
/* Source address */
if (!is_broadcast_ether_addr(mask->h_source)) {
if (is_zero_ether_addr(mask->h_source)) {
upper_temp_mask = 0xFFFFFFFF;
lower_temp_mask = 0xFFFFFFFF;
} else {
upper_temp_mask = mask->h_source[0] << 16 |
mask->h_source[1] << 8 |
mask->h_source[2];
lower_temp_mask = mask->h_source[3] << 16 |
mask->h_source[4] << 8 |
mask->h_source[5];
}
/* Upper 24bit */
gfar_set_attribute(value->h_source[0] << 16 |
value->h_source[1] << 8 |
value->h_source[2],
upper_temp_mask, RQFCR_PID_SAH, tab);
/* And the same for the lower part */
gfar_set_attribute(value->h_source[3] << 16 |
value->h_source[4] << 8 |
value->h_source[5],
lower_temp_mask, RQFCR_PID_SAL, tab);
}
/* Destination address */
if (!is_broadcast_ether_addr(mask->h_dest)) {
/* Special for destination is limited broadcast */
if ((is_broadcast_ether_addr(value->h_dest) &&
is_zero_ether_addr(mask->h_dest))) {
gfar_set_parse_bits(RQFPR_EBC, RQFPR_EBC, tab);
} else {
if (is_zero_ether_addr(mask->h_dest)) {
upper_temp_mask = 0xFFFFFFFF;
lower_temp_mask = 0xFFFFFFFF;
} else {
upper_temp_mask = mask->h_dest[0] << 16 |
mask->h_dest[1] << 8 |
mask->h_dest[2];
lower_temp_mask = mask->h_dest[3] << 16 |
mask->h_dest[4] << 8 |
mask->h_dest[5];
}
/* Upper 24bit */
gfar_set_attribute(value->h_dest[0] << 16 |
value->h_dest[1] << 8 |
value->h_dest[2],
upper_temp_mask, RQFCR_PID_DAH, tab);
/* And the same for the lower part */
gfar_set_attribute(value->h_dest[3] << 16 |
value->h_dest[4] << 8 |
value->h_dest[5],
lower_temp_mask, RQFCR_PID_DAL, tab);
}
}
gfar_set_attribute(value->h_proto, mask->h_proto, RQFCR_PID_ETY, tab);
}
/* Convert a rule to binary filter format of gianfar */
static int gfar_convert_to_filer(struct ethtool_rx_flow_spec *rule,
struct filer_table *tab)
{
u32 vlan = 0, vlan_mask = 0;
u32 id = 0, id_mask = 0;
u32 cfi = 0, cfi_mask = 0;
u32 prio = 0, prio_mask = 0;
u32 old_index = tab->index;
/* Check if vlan is wanted */
if ((rule->flow_type & FLOW_EXT) && (rule->m_ext.vlan_tci != 0xFFFF)) {
if (!rule->m_ext.vlan_tci)
rule->m_ext.vlan_tci = 0xFFFF;
vlan = RQFPR_VLN;
vlan_mask = RQFPR_VLN;
/* Separate the fields */
id = rule->h_ext.vlan_tci & VLAN_VID_MASK;
id_mask = rule->m_ext.vlan_tci & VLAN_VID_MASK;
cfi = rule->h_ext.vlan_tci & VLAN_CFI_MASK;
cfi_mask = rule->m_ext.vlan_tci & VLAN_CFI_MASK;
prio = (rule->h_ext.vlan_tci & VLAN_PRIO_MASK) >>
VLAN_PRIO_SHIFT;
prio_mask = (rule->m_ext.vlan_tci & VLAN_PRIO_MASK) >>
VLAN_PRIO_SHIFT;
if (cfi == VLAN_TAG_PRESENT && cfi_mask == VLAN_TAG_PRESENT) {
vlan |= RQFPR_CFI;
vlan_mask |= RQFPR_CFI;
} else if (cfi != VLAN_TAG_PRESENT &&
cfi_mask == VLAN_TAG_PRESENT) {
vlan_mask |= RQFPR_CFI;
}
}
switch (rule->flow_type & ~FLOW_EXT) {
case TCP_V4_FLOW:
gfar_set_parse_bits(RQFPR_IPV4 | RQFPR_TCP | vlan,
RQFPR_IPV4 | RQFPR_TCP | vlan_mask, tab);
gfar_set_basic_ip(&rule->h_u.tcp_ip4_spec,
&rule->m_u.tcp_ip4_spec, tab);
break;
case UDP_V4_FLOW:
gfar_set_parse_bits(RQFPR_IPV4 | RQFPR_UDP | vlan,
RQFPR_IPV4 | RQFPR_UDP | vlan_mask, tab);
gfar_set_basic_ip(&rule->h_u.udp_ip4_spec,
&rule->m_u.udp_ip4_spec, tab);
break;
case SCTP_V4_FLOW:
gfar_set_parse_bits(RQFPR_IPV4 | vlan, RQFPR_IPV4 | vlan_mask,
tab);
gfar_set_attribute(132, 0, RQFCR_PID_L4P, tab);
gfar_set_basic_ip((struct ethtool_tcpip4_spec *)&rule->h_u,
(struct ethtool_tcpip4_spec *)&rule->m_u,
tab);
break;
case IP_USER_FLOW:
gfar_set_parse_bits(RQFPR_IPV4 | vlan, RQFPR_IPV4 | vlan_mask,
tab);
gfar_set_user_ip((struct ethtool_usrip4_spec *) &rule->h_u,
(struct ethtool_usrip4_spec *) &rule->m_u,
tab);
break;
case ETHER_FLOW:
if (vlan)
gfar_set_parse_bits(vlan, vlan_mask, tab);
gfar_set_ether((struct ethhdr *) &rule->h_u,
(struct ethhdr *) &rule->m_u, tab);
break;
default:
return -1;
}
/* Set the vlan attributes in the end */
if (vlan) {
gfar_set_attribute(id, id_mask, RQFCR_PID_VID, tab);
gfar_set_attribute(prio, prio_mask, RQFCR_PID_PRI, tab);
}
/* If there has been nothing written till now, it must be a default */
if (tab->index == old_index) {
gfar_set_mask(0xFFFFFFFF, tab);
tab->fe[tab->index].ctrl = 0x20;
tab->fe[tab->index].prop = 0x0;
tab->index++;
}
/* Remove last AND */
tab->fe[tab->index - 1].ctrl &= (~RQFCR_AND);
/* Specify which queue to use or to drop */
if (rule->ring_cookie == RX_CLS_FLOW_DISC)
tab->fe[tab->index - 1].ctrl |= RQFCR_RJE;
else
tab->fe[tab->index - 1].ctrl |= (rule->ring_cookie << 10);
/* Only big enough entries can be clustered */
if (tab->index > (old_index + 2)) {
tab->fe[old_index + 1].ctrl |= RQFCR_CLE;
tab->fe[tab->index - 1].ctrl |= RQFCR_CLE;
}
/* In rare cases the cache can be full while there is
* free space in hw
*/
if (tab->index > MAX_FILER_CACHE_IDX - 1)
return -EBUSY;
return 0;
}
/* Copy size filer entries */
static void gfar_copy_filer_entries(struct gfar_filer_entry dst[0],
struct gfar_filer_entry src[0], s32 size)
{
while (size > 0) {
size--;
dst[size].ctrl = src[size].ctrl;
dst[size].prop = src[size].prop;
}
}
/* Delete the contents of the filer-table between start and end
* and collapse them
*/
static int gfar_trim_filer_entries(u32 begin, u32 end, struct filer_table *tab)
{
int length;
if (end > MAX_FILER_CACHE_IDX || end < begin)
return -EINVAL;
end++;
length = end - begin;
/* Copy */
while (end < tab->index) {
tab->fe[begin].ctrl = tab->fe[end].ctrl;
tab->fe[begin++].prop = tab->fe[end++].prop;
}
/* Fill up with don't cares */
while (begin < tab->index) {
tab->fe[begin].ctrl = 0x60;
tab->fe[begin].prop = 0xFFFFFFFF;
begin++;
}
tab->index -= length;
return 0;
}
/* Make space on the wanted location */
static int gfar_expand_filer_entries(u32 begin, u32 length,
struct filer_table *tab)
{
if (length == 0 || length + tab->index > MAX_FILER_CACHE_IDX ||
begin > MAX_FILER_CACHE_IDX)
return -EINVAL;
gfar_copy_filer_entries(&(tab->fe[begin + length]), &(tab->fe[begin]),
tab->index - length + 1);
tab->index += length;
return 0;
}
static int gfar_get_next_cluster_start(int start, struct filer_table *tab)
{
for (; (start < tab->index) && (start < MAX_FILER_CACHE_IDX - 1);
start++) {
if ((tab->fe[start].ctrl & (RQFCR_AND | RQFCR_CLE)) ==
(RQFCR_AND | RQFCR_CLE))
return start;
}
return -1;
}
static int gfar_get_next_cluster_end(int start, struct filer_table *tab)
{
for (; (start < tab->index) && (start < MAX_FILER_CACHE_IDX - 1);
start++) {
if ((tab->fe[start].ctrl & (RQFCR_AND | RQFCR_CLE)) ==
(RQFCR_CLE))
return start;
}
return -1;
}
/* Uses hardwares clustering option to reduce
* the number of filer table entries
*/
static void gfar_cluster_filer(struct filer_table *tab)
{
s32 i = -1, j, iend, jend;
while ((i = gfar_get_next_cluster_start(++i, tab)) != -1) {
j = i;
while ((j = gfar_get_next_cluster_start(++j, tab)) != -1) {
/* The cluster entries self and the previous one
* (a mask) must be identical!
*/
if (tab->fe[i].ctrl != tab->fe[j].ctrl)
break;
if (tab->fe[i].prop != tab->fe[j].prop)
break;
if (tab->fe[i - 1].ctrl != tab->fe[j - 1].ctrl)
break;
if (tab->fe[i - 1].prop != tab->fe[j - 1].prop)
break;
iend = gfar_get_next_cluster_end(i, tab);
jend = gfar_get_next_cluster_end(j, tab);
if (jend == -1 || iend == -1)
break;
/* First we make some free space, where our cluster
* element should be. Then we copy it there and finally
* delete in from its old location.
*/
if (gfar_expand_filer_entries(iend, (jend - j), tab) ==
-EINVAL)
break;
gfar_copy_filer_entries(&(tab->fe[iend + 1]),
&(tab->fe[jend + 1]), jend - j);
if (gfar_trim_filer_entries(jend - 1,
jend + (jend - j),
tab) == -EINVAL)
return;
/* Mask out cluster bit */
tab->fe[iend].ctrl &= ~(RQFCR_CLE);
}
}
}
/* Swaps the masked bits of a1<>a2 and b1<>b2 */
static void gfar_swap_bits(struct gfar_filer_entry *a1,
struct gfar_filer_entry *a2,
struct gfar_filer_entry *b1,
struct gfar_filer_entry *b2, u32 mask)
{
u32 temp[4];
temp[0] = a1->ctrl & mask;
temp[1] = a2->ctrl & mask;
temp[2] = b1->ctrl & mask;
temp[3] = b2->ctrl & mask;
a1->ctrl &= ~mask;
a2->ctrl &= ~mask;
b1->ctrl &= ~mask;
b2->ctrl &= ~mask;
a1->ctrl |= temp[1];
a2->ctrl |= temp[0];
b1->ctrl |= temp[3];
b2->ctrl |= temp[2];
}
/* Generate a list consisting of masks values with their start and
* end of validity and block as indicator for parts belonging
* together (glued by ANDs) in mask_table
*/
static u32 gfar_generate_mask_table(struct gfar_mask_entry *mask_table,
struct filer_table *tab)
{
u32 i, and_index = 0, block_index = 1;
for (i = 0; i < tab->index; i++) {
/* LSByte of control = 0 sets a mask */
if (!(tab->fe[i].ctrl & 0xF)) {
mask_table[and_index].mask = tab->fe[i].prop;
mask_table[and_index].start = i;
mask_table[and_index].block = block_index;
if (and_index >= 1)
mask_table[and_index - 1].end = i - 1;
and_index++;
}
/* cluster starts and ends will be separated because they should
* hold their position
*/
if (tab->fe[i].ctrl & RQFCR_CLE)
block_index++;
/* A not set AND indicates the end of a depended block */
if (!(tab->fe[i].ctrl & RQFCR_AND))
block_index++;
}
mask_table[and_index - 1].end = i - 1;
return and_index;
}
/* Sorts the entries of mask_table by the values of the masks.
* Important: The 0xFF80 flags of the first and last entry of a
* block must hold their position (which queue, CLusterEnable, ReJEct,
* AND)
*/
static void gfar_sort_mask_table(struct gfar_mask_entry *mask_table,
struct filer_table *temp_table, u32 and_index)
{
/* Pointer to compare function (_asc or _desc) */
int (*gfar_comp)(const void *, const void *);
u32 i, size = 0, start = 0, prev = 1;
u32 old_first, old_last, new_first, new_last;
gfar_comp = &gfar_comp_desc;
for (i = 0; i < and_index; i++) {
if (prev != mask_table[i].block) {
old_first = mask_table[start].start + 1;
old_last = mask_table[i - 1].end;
sort(mask_table + start, size,
sizeof(struct gfar_mask_entry),
gfar_comp, &gfar_swap);
/* Toggle order for every block. This makes the
* thing more efficient!
*/
if (gfar_comp == gfar_comp_desc)
gfar_comp = &gfar_comp_asc;
else
gfar_comp = &gfar_comp_desc;
new_first = mask_table[start].start + 1;
new_last = mask_table[i - 1].end;
gfar_swap_bits(&temp_table->fe[new_first],
&temp_table->fe[old_first],
&temp_table->fe[new_last],
&temp_table->fe[old_last],
RQFCR_QUEUE | RQFCR_CLE |
RQFCR_RJE | RQFCR_AND);
start = i;
size = 0;
}
size++;
prev = mask_table[i].block;
}
}
/* Reduces the number of masks needed in the filer table to save entries
* This is done by sorting the masks of a depended block. A depended block is
* identified by gluing ANDs or CLE. The sorting order toggles after every
* block. Of course entries in scope of a mask must change their location with
* it.
*/
static int gfar_optimize_filer_masks(struct filer_table *tab)
{
struct filer_table *temp_table;
struct gfar_mask_entry *mask_table;
u32 and_index = 0, previous_mask = 0, i = 0, j = 0, size = 0;
s32 ret = 0;
/* We need a copy of the filer table because
* we want to change its order
*/
temp_table = kmemdup(tab, sizeof(*temp_table), GFP_KERNEL);
if (temp_table == NULL)
return -ENOMEM;
mask_table = kcalloc(MAX_FILER_CACHE_IDX / 2 + 1,
sizeof(struct gfar_mask_entry), GFP_KERNEL);
if (mask_table == NULL) {
ret = -ENOMEM;
goto end;
}
and_index = gfar_generate_mask_table(mask_table, tab);
gfar_sort_mask_table(mask_table, temp_table, and_index);
/* Now we can copy the data from our duplicated filer table to
* the real one in the order the mask table says
*/
for (i = 0; i < and_index; i++) {
size = mask_table[i].end - mask_table[i].start + 1;
gfar_copy_filer_entries(&(tab->fe[j]),
&(temp_table->fe[mask_table[i].start]), size);
j += size;
}
/* And finally we just have to check for duplicated masks and drop the
* second ones
*/
for (i = 0; i < tab->index && i < MAX_FILER_CACHE_IDX; i++) {
if (tab->fe[i].ctrl == 0x80) {
previous_mask = i++;
break;
}
}
for (; i < tab->index && i < MAX_FILER_CACHE_IDX; i++) {
if (tab->fe[i].ctrl == 0x80) {
if (tab->fe[i].prop == tab->fe[previous_mask].prop) {
/* Two identical ones found!
* So drop the second one!
*/
gfar_trim_filer_entries(i, i, tab);
} else
/* Not identical! */
previous_mask = i;
}
}
kfree(mask_table);
end: kfree(temp_table);
return ret;
}
/* Write the bit-pattern from software's buffer to hardware registers */
static int gfar_write_filer_table(struct gfar_private *priv,
struct filer_table *tab)
{
u32 i = 0;
if (tab->index > MAX_FILER_IDX - 1)
return -EBUSY;
/* Avoid inconsistent filer table to be processed */
lock_rx_qs(priv);
/* Fill regular entries */
for (; i < MAX_FILER_IDX - 1 && (tab->fe[i].ctrl | tab->fe[i].ctrl);
i++)
gfar_write_filer(priv, i, tab->fe[i].ctrl, tab->fe[i].prop);
/* Fill the rest with fall-troughs */
for (; i < MAX_FILER_IDX - 1; i++)
gfar_write_filer(priv, i, 0x60, 0xFFFFFFFF);
/* Last entry must be default accept
* because that's what people expect
*/
gfar_write_filer(priv, i, 0x20, 0x0);
unlock_rx_qs(priv);
return 0;
}
static int gfar_check_capability(struct ethtool_rx_flow_spec *flow,
struct gfar_private *priv)
{
if (flow->flow_type & FLOW_EXT) {
if (~flow->m_ext.data[0] || ~flow->m_ext.data[1])
netdev_warn(priv->ndev,
"User-specific data not supported!\n");
if (~flow->m_ext.vlan_etype)
netdev_warn(priv->ndev,
"VLAN-etype not supported!\n");
}
if (flow->flow_type == IP_USER_FLOW)
if (flow->h_u.usr_ip4_spec.ip_ver != ETH_RX_NFC_IP4)
netdev_warn(priv->ndev,
"IP-Version differing from IPv4 not supported!\n");
return 0;
}
static int gfar_process_filer_changes(struct gfar_private *priv)
{
struct ethtool_flow_spec_container *j;
struct filer_table *tab;
s32 i = 0;
s32 ret = 0;
/* So index is set to zero, too! */
tab = kzalloc(sizeof(*tab), GFP_KERNEL);
if (tab == NULL)
return -ENOMEM;
/* Now convert the existing filer data from flow_spec into
* filer tables binary format
*/
list_for_each_entry(j, &priv->rx_list.list, list) {
ret = gfar_convert_to_filer(&j->fs, tab);
if (ret == -EBUSY) {
netdev_err(priv->ndev,
"Rule not added: No free space!\n");
goto end;
}
if (ret == -1) {
netdev_err(priv->ndev,
"Rule not added: Unsupported Flow-type!\n");
goto end;
}
}
i = tab->index;
/* Optimizations to save entries */
gfar_cluster_filer(tab);
gfar_optimize_filer_masks(tab);
pr_debug("\tSummary:\n"
"\tData on hardware: %d\n"
"\tCompression rate: %d%%\n",
tab->index, 100 - (100 * tab->index) / i);
/* Write everything to hardware */
ret = gfar_write_filer_table(priv, tab);
if (ret == -EBUSY) {
netdev_err(priv->ndev, "Rule not added: No free space!\n");
goto end;
}
end:
kfree(tab);
return ret;
}
static void gfar_invert_masks(struct ethtool_rx_flow_spec *flow)
{
u32 i = 0;
for (i = 0; i < sizeof(flow->m_u); i++)
flow->m_u.hdata[i] ^= 0xFF;
flow->m_ext.vlan_etype ^= 0xFFFF;
flow->m_ext.vlan_tci ^= 0xFFFF;
flow->m_ext.data[0] ^= ~0;
flow->m_ext.data[1] ^= ~0;
}
static int gfar_add_cls(struct gfar_private *priv,
struct ethtool_rx_flow_spec *flow)
{
struct ethtool_flow_spec_container *temp, *comp;
int ret = 0;
temp = kmalloc(sizeof(*temp), GFP_KERNEL);
if (temp == NULL)
return -ENOMEM;
memcpy(&temp->fs, flow, sizeof(temp->fs));
gfar_invert_masks(&temp->fs);
ret = gfar_check_capability(&temp->fs, priv);
if (ret)
goto clean_mem;
/* Link in the new element at the right @location */
if (list_empty(&priv->rx_list.list)) {
ret = gfar_check_filer_hardware(priv);
if (ret != 0)
goto clean_mem;
list_add(&temp->list, &priv->rx_list.list);
goto process;
} else {
list_for_each_entry(comp, &priv->rx_list.list, list) {
if (comp->fs.location > flow->location) {
list_add_tail(&temp->list, &comp->list);
goto process;
}
if (comp->fs.location == flow->location) {
netdev_err(priv->ndev,
"Rule not added: ID %d not free!\n",
flow->location);
ret = -EBUSY;
goto clean_mem;
}
}
list_add_tail(&temp->list, &priv->rx_list.list);
}
process:
ret = gfar_process_filer_changes(priv);
if (ret)
goto clean_list;
priv->rx_list.count++;
return ret;
clean_list:
list_del(&temp->list);
clean_mem:
kfree(temp);
return ret;
}
static int gfar_del_cls(struct gfar_private *priv, u32 loc)
{
struct ethtool_flow_spec_container *comp;
u32 ret = -EINVAL;
if (list_empty(&priv->rx_list.list))
return ret;
list_for_each_entry(comp, &priv->rx_list.list, list) {
if (comp->fs.location == loc) {
list_del(&comp->list);
kfree(comp);
priv->rx_list.count--;
gfar_process_filer_changes(priv);
ret = 0;
break;
}
}
return ret;
}
static int gfar_get_cls(struct gfar_private *priv, struct ethtool_rxnfc *cmd)
{
struct ethtool_flow_spec_container *comp;
u32 ret = -EINVAL;
list_for_each_entry(comp, &priv->rx_list.list, list) {
if (comp->fs.location == cmd->fs.location) {
memcpy(&cmd->fs, &comp->fs, sizeof(cmd->fs));
gfar_invert_masks(&cmd->fs);
ret = 0;
break;
}
}
return ret;
}
static int gfar_get_cls_all(struct gfar_private *priv,
struct ethtool_rxnfc *cmd, u32 *rule_locs)
{
struct ethtool_flow_spec_container *comp;
u32 i = 0;
list_for_each_entry(comp, &priv->rx_list.list, list) {
if (i == cmd->rule_cnt)
return -EMSGSIZE;
rule_locs[i] = comp->fs.location;
i++;
}
cmd->data = MAX_FILER_IDX;
cmd->rule_cnt = i;
return 0;
}
static int gfar_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
{
struct gfar_private *priv = netdev_priv(dev);
int ret = 0;
mutex_lock(&priv->rx_queue_access);
switch (cmd->cmd) {
case ETHTOOL_SRXFH:
ret = gfar_set_hash_opts(priv, cmd);
break;
case ETHTOOL_SRXCLSRLINS:
if ((cmd->fs.ring_cookie != RX_CLS_FLOW_DISC &&
cmd->fs.ring_cookie >= priv->num_rx_queues) ||
cmd->fs.location >= MAX_FILER_IDX) {
ret = -EINVAL;
break;
}
ret = gfar_add_cls(priv, &cmd->fs);
break;
case ETHTOOL_SRXCLSRLDEL:
ret = gfar_del_cls(priv, cmd->fs.location);
break;
default:
ret = -EINVAL;
}
mutex_unlock(&priv->rx_queue_access);
return ret;
}
static int gfar_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
u32 *rule_locs)
{
struct gfar_private *priv = netdev_priv(dev);
int ret = 0;
switch (cmd->cmd) {
case ETHTOOL_GRXRINGS:
cmd->data = priv->num_rx_queues;
break;
case ETHTOOL_GRXCLSRLCNT:
cmd->rule_cnt = priv->rx_list.count;
break;
case ETHTOOL_GRXCLSRULE:
ret = gfar_get_cls(priv, cmd);
break;
case ETHTOOL_GRXCLSRLALL:
ret = gfar_get_cls_all(priv, cmd, rule_locs);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
int gfar_phc_index = -1;
EXPORT_SYMBOL(gfar_phc_index);
static int gfar_get_ts_info(struct net_device *dev,
struct ethtool_ts_info *info)
{
struct gfar_private *priv = netdev_priv(dev);
if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) {
info->so_timestamping = SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE;
info->phc_index = -1;
return 0;
}
info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->phc_index = gfar_phc_index;
info->tx_types = (1 << HWTSTAMP_TX_OFF) |
(1 << HWTSTAMP_TX_ON);
info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_ALL);
return 0;
}
const struct ethtool_ops gfar_ethtool_ops = {
.get_settings = gfar_gsettings,
.set_settings = gfar_ssettings,
.get_drvinfo = gfar_gdrvinfo,
.get_regs_len = gfar_reglen,
.get_regs = gfar_get_regs,
.get_link = ethtool_op_get_link,
.get_coalesce = gfar_gcoalesce,
.set_coalesce = gfar_scoalesce,
.get_ringparam = gfar_gringparam,
.set_ringparam = gfar_sringparam,
.get_strings = gfar_gstrings,
.get_sset_count = gfar_sset_count,
.get_ethtool_stats = gfar_fill_stats,
.get_msglevel = gfar_get_msglevel,
.set_msglevel = gfar_set_msglevel,
#ifdef CONFIG_PM
.get_wol = gfar_get_wol,
.set_wol = gfar_set_wol,
#endif
.set_rxnfc = gfar_set_nfc,
.get_rxnfc = gfar_get_nfc,
.get_ts_info = gfar_get_ts_info,
};