2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 12:43:55 +08:00
linux-next/include/linux/rds.h
Andy Grover 244546f0d3 RDS: Add GET_MR_FOR_DEST sockopt
RDS currently supports a GET_MR sockopt to establish a
memory region (MR) for a chunk of memory. However, the fastreg
method ties a MR to a particular destination. The GET_MR_FOR_DEST
sockopt allows the remote machine to be specified, and thus
support for fastreg (aka FRWRs).

Note that this patch does *not* do all of this - it simply
implements the new sockopt in terms of the old one, so applications
can begin to use the new sockopt in preparation for cutover to
FRWRs.

Signed-off-by: Andy Grover <andy.grover@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-10-30 15:06:37 -07:00

271 lines
7.5 KiB
C

/*
* Copyright (c) 2008 Oracle. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _LINUX_RDS_H
#define _LINUX_RDS_H
#include <linux/types.h>
/* These sparse annotated types shouldn't be in any user
* visible header file. We should clean this up rather
* than kludging around them. */
#ifndef __KERNEL__
#define __be16 u_int16_t
#define __be32 u_int32_t
#define __be64 u_int64_t
#endif
#define RDS_IB_ABI_VERSION 0x301
/*
* setsockopt/getsockopt for SOL_RDS
*/
#define RDS_CANCEL_SENT_TO 1
#define RDS_GET_MR 2
#define RDS_FREE_MR 3
/* deprecated: RDS_BARRIER 4 */
#define RDS_RECVERR 5
#define RDS_CONG_MONITOR 6
#define RDS_GET_MR_FOR_DEST 7
/*
* Control message types for SOL_RDS.
*
* CMSG_RDMA_ARGS (sendmsg)
* Request a RDMA transfer to/from the specified
* memory ranges.
* The cmsg_data is a struct rds_rdma_args.
* RDS_CMSG_RDMA_DEST (recvmsg, sendmsg)
* Kernel informs application about intended
* source/destination of a RDMA transfer
* RDS_CMSG_RDMA_MAP (sendmsg)
* Application asks kernel to map the given
* memory range into a IB MR, and send the
* R_Key along in an RDS extension header.
* The cmsg_data is a struct rds_get_mr_args,
* the same as for the GET_MR setsockopt.
* RDS_CMSG_RDMA_STATUS (recvmsg)
* Returns the status of a completed RDMA operation.
*/
#define RDS_CMSG_RDMA_ARGS 1
#define RDS_CMSG_RDMA_DEST 2
#define RDS_CMSG_RDMA_MAP 3
#define RDS_CMSG_RDMA_STATUS 4
#define RDS_CMSG_CONG_UPDATE 5
#define RDS_INFO_FIRST 10000
#define RDS_INFO_COUNTERS 10000
#define RDS_INFO_CONNECTIONS 10001
/* 10002 aka RDS_INFO_FLOWS is deprecated */
#define RDS_INFO_SEND_MESSAGES 10003
#define RDS_INFO_RETRANS_MESSAGES 10004
#define RDS_INFO_RECV_MESSAGES 10005
#define RDS_INFO_SOCKETS 10006
#define RDS_INFO_TCP_SOCKETS 10007
#define RDS_INFO_IB_CONNECTIONS 10008
#define RDS_INFO_CONNECTION_STATS 10009
#define RDS_INFO_IWARP_CONNECTIONS 10010
#define RDS_INFO_LAST 10010
struct rds_info_counter {
u_int8_t name[32];
u_int64_t value;
} __attribute__((packed));
#define RDS_INFO_CONNECTION_FLAG_SENDING 0x01
#define RDS_INFO_CONNECTION_FLAG_CONNECTING 0x02
#define RDS_INFO_CONNECTION_FLAG_CONNECTED 0x04
#define TRANSNAMSIZ 16
struct rds_info_connection {
u_int64_t next_tx_seq;
u_int64_t next_rx_seq;
__be32 laddr;
__be32 faddr;
u_int8_t transport[TRANSNAMSIZ]; /* null term ascii */
u_int8_t flags;
} __attribute__((packed));
struct rds_info_flow {
__be32 laddr;
__be32 faddr;
u_int32_t bytes;
__be16 lport;
__be16 fport;
} __attribute__((packed));
#define RDS_INFO_MESSAGE_FLAG_ACK 0x01
#define RDS_INFO_MESSAGE_FLAG_FAST_ACK 0x02
struct rds_info_message {
u_int64_t seq;
u_int32_t len;
__be32 laddr;
__be32 faddr;
__be16 lport;
__be16 fport;
u_int8_t flags;
} __attribute__((packed));
struct rds_info_socket {
u_int32_t sndbuf;
__be32 bound_addr;
__be32 connected_addr;
__be16 bound_port;
__be16 connected_port;
u_int32_t rcvbuf;
u_int64_t inum;
} __attribute__((packed));
struct rds_info_tcp_socket {
__be32 local_addr;
__be16 local_port;
__be32 peer_addr;
__be16 peer_port;
u_int64_t hdr_rem;
u_int64_t data_rem;
u_int32_t last_sent_nxt;
u_int32_t last_expected_una;
u_int32_t last_seen_una;
} __attribute__((packed));
#define RDS_IB_GID_LEN 16
struct rds_info_rdma_connection {
__be32 src_addr;
__be32 dst_addr;
uint8_t src_gid[RDS_IB_GID_LEN];
uint8_t dst_gid[RDS_IB_GID_LEN];
uint32_t max_send_wr;
uint32_t max_recv_wr;
uint32_t max_send_sge;
uint32_t rdma_mr_max;
uint32_t rdma_mr_size;
};
/*
* Congestion monitoring.
* Congestion control in RDS happens at the host connection
* level by exchanging a bitmap marking congested ports.
* By default, a process sleeping in poll() is always woken
* up when the congestion map is updated.
* With explicit monitoring, an application can have more
* fine-grained control.
* The application installs a 64bit mask value in the socket,
* where each bit corresponds to a group of ports.
* When a congestion update arrives, RDS checks the set of
* ports that are now uncongested against the list bit mask
* installed in the socket, and if they overlap, we queue a
* cong_notification on the socket.
*
* To install the congestion monitor bitmask, use RDS_CONG_MONITOR
* with the 64bit mask.
* Congestion updates are received via RDS_CMSG_CONG_UPDATE
* control messages.
*
* The correspondence between bits and ports is
* 1 << (portnum % 64)
*/
#define RDS_CONG_MONITOR_SIZE 64
#define RDS_CONG_MONITOR_BIT(port) (((unsigned int) port) % RDS_CONG_MONITOR_SIZE)
#define RDS_CONG_MONITOR_MASK(port) (1ULL << RDS_CONG_MONITOR_BIT(port))
/*
* RDMA related types
*/
/*
* This encapsulates a remote memory location.
* In the current implementation, it contains the R_Key
* of the remote memory region, and the offset into it
* (so that the application does not have to worry about
* alignment).
*/
typedef u_int64_t rds_rdma_cookie_t;
struct rds_iovec {
u_int64_t addr;
u_int64_t bytes;
};
struct rds_get_mr_args {
struct rds_iovec vec;
u_int64_t cookie_addr;
uint64_t flags;
};
struct rds_get_mr_for_dest_args {
struct sockaddr_storage dest_addr;
struct rds_iovec vec;
u_int64_t cookie_addr;
uint64_t flags;
};
struct rds_free_mr_args {
rds_rdma_cookie_t cookie;
u_int64_t flags;
};
struct rds_rdma_args {
rds_rdma_cookie_t cookie;
struct rds_iovec remote_vec;
u_int64_t local_vec_addr;
u_int64_t nr_local;
u_int64_t flags;
u_int64_t user_token;
};
struct rds_rdma_notify {
u_int64_t user_token;
int32_t status;
};
#define RDS_RDMA_SUCCESS 0
#define RDS_RDMA_REMOTE_ERROR 1
#define RDS_RDMA_CANCELED 2
#define RDS_RDMA_DROPPED 3
#define RDS_RDMA_OTHER_ERROR 4
/*
* Common set of flags for all RDMA related structs
*/
#define RDS_RDMA_READWRITE 0x0001
#define RDS_RDMA_FENCE 0x0002 /* use FENCE for immediate send */
#define RDS_RDMA_INVALIDATE 0x0004 /* invalidate R_Key after freeing MR */
#define RDS_RDMA_USE_ONCE 0x0008 /* free MR after use */
#define RDS_RDMA_DONTWAIT 0x0010 /* Don't wait in SET_BARRIER */
#define RDS_RDMA_NOTIFY_ME 0x0020 /* Notify when operation completes */
#endif /* IB_RDS_H */