2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-24 14:45:12 +08:00
linux-next/arch/parisc/math-emu/dfsqrt.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

196 lines
5.4 KiB
C

/*
* Linux/PA-RISC Project (http://www.parisc-linux.org/)
*
* Floating-point emulation code
* Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* BEGIN_DESC
*
* File:
* @(#) pa/spmath/dfsqrt.c $Revision: 1.1 $
*
* Purpose:
* Double Floating-point Square Root
*
* External Interfaces:
* dbl_fsqrt(srcptr,nullptr,dstptr,status)
*
* Internal Interfaces:
*
* Theory:
* <<please update with a overview of the operation of this file>>
*
* END_DESC
*/
#include "float.h"
#include "dbl_float.h"
/*
* Double Floating-point Square Root
*/
/*ARGSUSED*/
unsigned int
dbl_fsqrt(
dbl_floating_point *srcptr,
unsigned int *nullptr,
dbl_floating_point *dstptr,
unsigned int *status)
{
register unsigned int srcp1, srcp2, resultp1, resultp2;
register unsigned int newbitp1, newbitp2, sump1, sump2;
register int src_exponent;
register boolean guardbit = FALSE, even_exponent;
Dbl_copyfromptr(srcptr,srcp1,srcp2);
/*
* check source operand for NaN or infinity
*/
if ((src_exponent = Dbl_exponent(srcp1)) == DBL_INFINITY_EXPONENT) {
/*
* is signaling NaN?
*/
if (Dbl_isone_signaling(srcp1)) {
/* trap if INVALIDTRAP enabled */
if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION);
/* make NaN quiet */
Set_invalidflag();
Dbl_set_quiet(srcp1);
}
/*
* Return quiet NaN or positive infinity.
* Fall thru to negative test if negative infinity.
*/
if (Dbl_iszero_sign(srcp1) ||
Dbl_isnotzero_mantissa(srcp1,srcp2)) {
Dbl_copytoptr(srcp1,srcp2,dstptr);
return(NOEXCEPTION);
}
}
/*
* check for zero source operand
*/
if (Dbl_iszero_exponentmantissa(srcp1,srcp2)) {
Dbl_copytoptr(srcp1,srcp2,dstptr);
return(NOEXCEPTION);
}
/*
* check for negative source operand
*/
if (Dbl_isone_sign(srcp1)) {
/* trap if INVALIDTRAP enabled */
if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION);
/* make NaN quiet */
Set_invalidflag();
Dbl_makequietnan(srcp1,srcp2);
Dbl_copytoptr(srcp1,srcp2,dstptr);
return(NOEXCEPTION);
}
/*
* Generate result
*/
if (src_exponent > 0) {
even_exponent = Dbl_hidden(srcp1);
Dbl_clear_signexponent_set_hidden(srcp1);
}
else {
/* normalize operand */
Dbl_clear_signexponent(srcp1);
src_exponent++;
Dbl_normalize(srcp1,srcp2,src_exponent);
even_exponent = src_exponent & 1;
}
if (even_exponent) {
/* exponent is even */
/* Add comment here. Explain why odd exponent needs correction */
Dbl_leftshiftby1(srcp1,srcp2);
}
/*
* Add comment here. Explain following algorithm.
*
* Trust me, it works.
*
*/
Dbl_setzero(resultp1,resultp2);
Dbl_allp1(newbitp1) = 1 << (DBL_P - 32);
Dbl_setzero_mantissap2(newbitp2);
while (Dbl_isnotzero(newbitp1,newbitp2) && Dbl_isnotzero(srcp1,srcp2)) {
Dbl_addition(resultp1,resultp2,newbitp1,newbitp2,sump1,sump2);
if(Dbl_isnotgreaterthan(sump1,sump2,srcp1,srcp2)) {
Dbl_leftshiftby1(newbitp1,newbitp2);
/* update result */
Dbl_addition(resultp1,resultp2,newbitp1,newbitp2,
resultp1,resultp2);
Dbl_subtract(srcp1,srcp2,sump1,sump2,srcp1,srcp2);
Dbl_rightshiftby2(newbitp1,newbitp2);
}
else {
Dbl_rightshiftby1(newbitp1,newbitp2);
}
Dbl_leftshiftby1(srcp1,srcp2);
}
/* correct exponent for pre-shift */
if (even_exponent) {
Dbl_rightshiftby1(resultp1,resultp2);
}
/* check for inexact */
if (Dbl_isnotzero(srcp1,srcp2)) {
if (!even_exponent && Dbl_islessthan(resultp1,resultp2,srcp1,srcp2)) {
Dbl_increment(resultp1,resultp2);
}
guardbit = Dbl_lowmantissap2(resultp2);
Dbl_rightshiftby1(resultp1,resultp2);
/* now round result */
switch (Rounding_mode()) {
case ROUNDPLUS:
Dbl_increment(resultp1,resultp2);
break;
case ROUNDNEAREST:
/* stickybit is always true, so guardbit
* is enough to determine rounding */
if (guardbit) {
Dbl_increment(resultp1,resultp2);
}
break;
}
/* increment result exponent by 1 if mantissa overflowed */
if (Dbl_isone_hiddenoverflow(resultp1)) src_exponent+=2;
if (Is_inexacttrap_enabled()) {
Dbl_set_exponent(resultp1,
((src_exponent-DBL_BIAS)>>1)+DBL_BIAS);
Dbl_copytoptr(resultp1,resultp2,dstptr);
return(INEXACTEXCEPTION);
}
else Set_inexactflag();
}
else {
Dbl_rightshiftby1(resultp1,resultp2);
}
Dbl_set_exponent(resultp1,((src_exponent-DBL_BIAS)>>1)+DBL_BIAS);
Dbl_copytoptr(resultp1,resultp2,dstptr);
return(NOEXCEPTION);
}