2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 21:24:00 +08:00
linux-next/drivers/gpio/gpiolib.c
Sergio Paracuellos 4e804c39f1 gpiolib: convert 'devprop_gpiochip_set_names' to support multiple gpiochip banks per device
The default gpiolib-of implementation does not work with the multiple
gpiochip banks per device structure used for example by the gpio-mt7621
and gpio-brcmstb drivers. To fix these kind of situations driver code
is forced to fill the names to avoid the gpiolib code to set names
repeated along the banks. Instead of continue with that antipattern
fix the gpiolib core function to get expected behaviour for every
single situation adding a field 'offset' in the gpiochip structure.
Doing in this way, we can assume this offset will be zero for normal
driver code where only one gpiochip bank per device is used but
can be set explicitly in those drivers that really need more than
one gpiochip.

Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Reviewed-by: Gregory Fong <gregory.0xf0@gmail.com>
Signed-off-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
2021-07-29 19:41:12 +02:00

4445 lines
119 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/bitmap.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/gpio.h>
#include <linux/idr.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/gpio/driver.h>
#include <linux/gpio/machine.h>
#include <linux/pinctrl/consumer.h>
#include <linux/fs.h>
#include <linux/compat.h>
#include <linux/file.h>
#include <uapi/linux/gpio.h>
#include "gpiolib.h"
#include "gpiolib-of.h"
#include "gpiolib-acpi.h"
#include "gpiolib-cdev.h"
#include "gpiolib-sysfs.h"
#define CREATE_TRACE_POINTS
#include <trace/events/gpio.h>
/* Implementation infrastructure for GPIO interfaces.
*
* The GPIO programming interface allows for inlining speed-critical
* get/set operations for common cases, so that access to SOC-integrated
* GPIOs can sometimes cost only an instruction or two per bit.
*/
/* When debugging, extend minimal trust to callers and platform code.
* Also emit diagnostic messages that may help initial bringup, when
* board setup or driver bugs are most common.
*
* Otherwise, minimize overhead in what may be bitbanging codepaths.
*/
#ifdef DEBUG
#define extra_checks 1
#else
#define extra_checks 0
#endif
/* Device and char device-related information */
static DEFINE_IDA(gpio_ida);
static dev_t gpio_devt;
#define GPIO_DEV_MAX 256 /* 256 GPIO chip devices supported */
static int gpio_bus_match(struct device *dev, struct device_driver *drv);
static struct bus_type gpio_bus_type = {
.name = "gpio",
.match = gpio_bus_match,
};
/*
* Number of GPIOs to use for the fast path in set array
*/
#define FASTPATH_NGPIO CONFIG_GPIOLIB_FASTPATH_LIMIT
/* gpio_lock prevents conflicts during gpio_desc[] table updates.
* While any GPIO is requested, its gpio_chip is not removable;
* each GPIO's "requested" flag serves as a lock and refcount.
*/
DEFINE_SPINLOCK(gpio_lock);
static DEFINE_MUTEX(gpio_lookup_lock);
static LIST_HEAD(gpio_lookup_list);
LIST_HEAD(gpio_devices);
static DEFINE_MUTEX(gpio_machine_hogs_mutex);
static LIST_HEAD(gpio_machine_hogs);
static void gpiochip_free_hogs(struct gpio_chip *gc);
static int gpiochip_add_irqchip(struct gpio_chip *gc,
struct lock_class_key *lock_key,
struct lock_class_key *request_key);
static void gpiochip_irqchip_remove(struct gpio_chip *gc);
static int gpiochip_irqchip_init_hw(struct gpio_chip *gc);
static int gpiochip_irqchip_init_valid_mask(struct gpio_chip *gc);
static void gpiochip_irqchip_free_valid_mask(struct gpio_chip *gc);
static bool gpiolib_initialized;
static inline void desc_set_label(struct gpio_desc *d, const char *label)
{
d->label = label;
}
/**
* gpio_to_desc - Convert a GPIO number to its descriptor
* @gpio: global GPIO number
*
* Returns:
* The GPIO descriptor associated with the given GPIO, or %NULL if no GPIO
* with the given number exists in the system.
*/
struct gpio_desc *gpio_to_desc(unsigned gpio)
{
struct gpio_device *gdev;
unsigned long flags;
spin_lock_irqsave(&gpio_lock, flags);
list_for_each_entry(gdev, &gpio_devices, list) {
if (gdev->base <= gpio &&
gdev->base + gdev->ngpio > gpio) {
spin_unlock_irqrestore(&gpio_lock, flags);
return &gdev->descs[gpio - gdev->base];
}
}
spin_unlock_irqrestore(&gpio_lock, flags);
if (!gpio_is_valid(gpio))
pr_warn("invalid GPIO %d\n", gpio);
return NULL;
}
EXPORT_SYMBOL_GPL(gpio_to_desc);
/**
* gpiochip_get_desc - get the GPIO descriptor corresponding to the given
* hardware number for this chip
* @gc: GPIO chip
* @hwnum: hardware number of the GPIO for this chip
*
* Returns:
* A pointer to the GPIO descriptor or ``ERR_PTR(-EINVAL)`` if no GPIO exists
* in the given chip for the specified hardware number.
*/
struct gpio_desc *gpiochip_get_desc(struct gpio_chip *gc,
unsigned int hwnum)
{
struct gpio_device *gdev = gc->gpiodev;
if (hwnum >= gdev->ngpio)
return ERR_PTR(-EINVAL);
return &gdev->descs[hwnum];
}
EXPORT_SYMBOL_GPL(gpiochip_get_desc);
/**
* desc_to_gpio - convert a GPIO descriptor to the integer namespace
* @desc: GPIO descriptor
*
* This should disappear in the future but is needed since we still
* use GPIO numbers for error messages and sysfs nodes.
*
* Returns:
* The global GPIO number for the GPIO specified by its descriptor.
*/
int desc_to_gpio(const struct gpio_desc *desc)
{
return desc->gdev->base + (desc - &desc->gdev->descs[0]);
}
EXPORT_SYMBOL_GPL(desc_to_gpio);
/**
* gpiod_to_chip - Return the GPIO chip to which a GPIO descriptor belongs
* @desc: descriptor to return the chip of
*/
struct gpio_chip *gpiod_to_chip(const struct gpio_desc *desc)
{
if (!desc || !desc->gdev)
return NULL;
return desc->gdev->chip;
}
EXPORT_SYMBOL_GPL(gpiod_to_chip);
/* dynamic allocation of GPIOs, e.g. on a hotplugged device */
static int gpiochip_find_base(int ngpio)
{
struct gpio_device *gdev;
int base = ARCH_NR_GPIOS - ngpio;
list_for_each_entry_reverse(gdev, &gpio_devices, list) {
/* found a free space? */
if (gdev->base + gdev->ngpio <= base)
break;
else
/* nope, check the space right before the chip */
base = gdev->base - ngpio;
}
if (gpio_is_valid(base)) {
pr_debug("%s: found new base at %d\n", __func__, base);
return base;
} else {
pr_err("%s: cannot find free range\n", __func__);
return -ENOSPC;
}
}
/**
* gpiod_get_direction - return the current direction of a GPIO
* @desc: GPIO to get the direction of
*
* Returns 0 for output, 1 for input, or an error code in case of error.
*
* This function may sleep if gpiod_cansleep() is true.
*/
int gpiod_get_direction(struct gpio_desc *desc)
{
struct gpio_chip *gc;
unsigned int offset;
int ret;
gc = gpiod_to_chip(desc);
offset = gpio_chip_hwgpio(desc);
/*
* Open drain emulation using input mode may incorrectly report
* input here, fix that up.
*/
if (test_bit(FLAG_OPEN_DRAIN, &desc->flags) &&
test_bit(FLAG_IS_OUT, &desc->flags))
return 0;
if (!gc->get_direction)
return -ENOTSUPP;
ret = gc->get_direction(gc, offset);
if (ret < 0)
return ret;
/* GPIOF_DIR_IN or other positive, otherwise GPIOF_DIR_OUT */
if (ret > 0)
ret = 1;
assign_bit(FLAG_IS_OUT, &desc->flags, !ret);
return ret;
}
EXPORT_SYMBOL_GPL(gpiod_get_direction);
/*
* Add a new chip to the global chips list, keeping the list of chips sorted
* by range(means [base, base + ngpio - 1]) order.
*
* Return -EBUSY if the new chip overlaps with some other chip's integer
* space.
*/
static int gpiodev_add_to_list(struct gpio_device *gdev)
{
struct gpio_device *prev, *next;
if (list_empty(&gpio_devices)) {
/* initial entry in list */
list_add_tail(&gdev->list, &gpio_devices);
return 0;
}
next = list_entry(gpio_devices.next, struct gpio_device, list);
if (gdev->base + gdev->ngpio <= next->base) {
/* add before first entry */
list_add(&gdev->list, &gpio_devices);
return 0;
}
prev = list_entry(gpio_devices.prev, struct gpio_device, list);
if (prev->base + prev->ngpio <= gdev->base) {
/* add behind last entry */
list_add_tail(&gdev->list, &gpio_devices);
return 0;
}
list_for_each_entry_safe(prev, next, &gpio_devices, list) {
/* at the end of the list */
if (&next->list == &gpio_devices)
break;
/* add between prev and next */
if (prev->base + prev->ngpio <= gdev->base
&& gdev->base + gdev->ngpio <= next->base) {
list_add(&gdev->list, &prev->list);
return 0;
}
}
dev_err(&gdev->dev, "GPIO integer space overlap, cannot add chip\n");
return -EBUSY;
}
/*
* Convert a GPIO name to its descriptor
* Note that there is no guarantee that GPIO names are globally unique!
* Hence this function will return, if it exists, a reference to the first GPIO
* line found that matches the given name.
*/
static struct gpio_desc *gpio_name_to_desc(const char * const name)
{
struct gpio_device *gdev;
unsigned long flags;
if (!name)
return NULL;
spin_lock_irqsave(&gpio_lock, flags);
list_for_each_entry(gdev, &gpio_devices, list) {
int i;
for (i = 0; i != gdev->ngpio; ++i) {
struct gpio_desc *desc = &gdev->descs[i];
if (!desc->name)
continue;
if (!strcmp(desc->name, name)) {
spin_unlock_irqrestore(&gpio_lock, flags);
return desc;
}
}
}
spin_unlock_irqrestore(&gpio_lock, flags);
return NULL;
}
/*
* Take the names from gc->names and assign them to their GPIO descriptors.
* Warn if a name is already used for a GPIO line on a different GPIO chip.
*
* Note that:
* 1. Non-unique names are still accepted,
* 2. Name collisions within the same GPIO chip are not reported.
*/
static int gpiochip_set_desc_names(struct gpio_chip *gc)
{
struct gpio_device *gdev = gc->gpiodev;
int i;
/* First check all names if they are unique */
for (i = 0; i != gc->ngpio; ++i) {
struct gpio_desc *gpio;
gpio = gpio_name_to_desc(gc->names[i]);
if (gpio)
dev_warn(&gdev->dev,
"Detected name collision for GPIO name '%s'\n",
gc->names[i]);
}
/* Then add all names to the GPIO descriptors */
for (i = 0; i != gc->ngpio; ++i)
gdev->descs[i].name = gc->names[i];
return 0;
}
/*
* devprop_gpiochip_set_names - Set GPIO line names using device properties
* @chip: GPIO chip whose lines should be named, if possible
*
* Looks for device property "gpio-line-names" and if it exists assigns
* GPIO line names for the chip. The memory allocated for the assigned
* names belong to the underlying firmware node and should not be released
* by the caller.
*/
static int devprop_gpiochip_set_names(struct gpio_chip *chip)
{
struct gpio_device *gdev = chip->gpiodev;
struct fwnode_handle *fwnode = dev_fwnode(&gdev->dev);
const char **names;
int ret, i;
int count;
count = fwnode_property_string_array_count(fwnode, "gpio-line-names");
if (count < 0)
return 0;
/*
* When offset is set in the driver side we assume the driver internally
* is using more than one gpiochip per the same device. We have to stop
* setting friendly names if the specified ones with 'gpio-line-names'
* are less than the offset in the device itself. This means all the
* lines are not present for every single pin within all the internal
* gpiochips.
*/
if (count <= chip->offset) {
dev_warn(&gdev->dev, "gpio-line-names too short (length %d), cannot map names for the gpiochip at offset %u\n",
count, chip->offset);
return 0;
}
names = kcalloc(count, sizeof(*names), GFP_KERNEL);
if (!names)
return -ENOMEM;
ret = fwnode_property_read_string_array(fwnode, "gpio-line-names",
names, count);
if (ret < 0) {
dev_warn(&gdev->dev, "failed to read GPIO line names\n");
kfree(names);
return ret;
}
/*
* When more that one gpiochip per device is used, 'count' can
* contain at most number gpiochips x chip->ngpio. We have to
* correctly distribute all defined lines taking into account
* chip->offset as starting point from where we will assign
* the names to pins from the 'names' array. Since property
* 'gpio-line-names' cannot contains gaps, we have to be sure
* we only assign those pins that really exists since chip->ngpio
* can be different of the chip->offset.
*/
count = (count > chip->offset) ? count - chip->offset : count;
if (count > chip->ngpio)
count = chip->ngpio;
for (i = 0; i < count; i++)
gdev->descs[i].name = names[chip->offset + i];
kfree(names);
return 0;
}
static unsigned long *gpiochip_allocate_mask(struct gpio_chip *gc)
{
unsigned long *p;
p = bitmap_alloc(gc->ngpio, GFP_KERNEL);
if (!p)
return NULL;
/* Assume by default all GPIOs are valid */
bitmap_fill(p, gc->ngpio);
return p;
}
static int gpiochip_alloc_valid_mask(struct gpio_chip *gc)
{
if (!(of_gpio_need_valid_mask(gc) || gc->init_valid_mask))
return 0;
gc->valid_mask = gpiochip_allocate_mask(gc);
if (!gc->valid_mask)
return -ENOMEM;
return 0;
}
static int gpiochip_init_valid_mask(struct gpio_chip *gc)
{
if (gc->init_valid_mask)
return gc->init_valid_mask(gc,
gc->valid_mask,
gc->ngpio);
return 0;
}
static void gpiochip_free_valid_mask(struct gpio_chip *gc)
{
bitmap_free(gc->valid_mask);
gc->valid_mask = NULL;
}
static int gpiochip_add_pin_ranges(struct gpio_chip *gc)
{
if (gc->add_pin_ranges)
return gc->add_pin_ranges(gc);
return 0;
}
bool gpiochip_line_is_valid(const struct gpio_chip *gc,
unsigned int offset)
{
/* No mask means all valid */
if (likely(!gc->valid_mask))
return true;
return test_bit(offset, gc->valid_mask);
}
EXPORT_SYMBOL_GPL(gpiochip_line_is_valid);
static void gpiodevice_release(struct device *dev)
{
struct gpio_device *gdev = container_of(dev, struct gpio_device, dev);
unsigned long flags;
spin_lock_irqsave(&gpio_lock, flags);
list_del(&gdev->list);
spin_unlock_irqrestore(&gpio_lock, flags);
ida_free(&gpio_ida, gdev->id);
kfree_const(gdev->label);
kfree(gdev->descs);
kfree(gdev);
}
#ifdef CONFIG_GPIO_CDEV
#define gcdev_register(gdev, devt) gpiolib_cdev_register((gdev), (devt))
#define gcdev_unregister(gdev) gpiolib_cdev_unregister((gdev))
#else
/*
* gpiolib_cdev_register() indirectly calls device_add(), which is still
* required even when cdev is not selected.
*/
#define gcdev_register(gdev, devt) device_add(&(gdev)->dev)
#define gcdev_unregister(gdev) device_del(&(gdev)->dev)
#endif
static int gpiochip_setup_dev(struct gpio_device *gdev)
{
int ret;
ret = gcdev_register(gdev, gpio_devt);
if (ret)
return ret;
ret = gpiochip_sysfs_register(gdev);
if (ret)
goto err_remove_device;
/* From this point, the .release() function cleans up gpio_device */
gdev->dev.release = gpiodevice_release;
dev_dbg(&gdev->dev, "registered GPIOs %d to %d on %s\n", gdev->base,
gdev->base + gdev->ngpio - 1, gdev->chip->label ? : "generic");
return 0;
err_remove_device:
gcdev_unregister(gdev);
return ret;
}
static void gpiochip_machine_hog(struct gpio_chip *gc, struct gpiod_hog *hog)
{
struct gpio_desc *desc;
int rv;
desc = gpiochip_get_desc(gc, hog->chip_hwnum);
if (IS_ERR(desc)) {
chip_err(gc, "%s: unable to get GPIO desc: %ld\n", __func__,
PTR_ERR(desc));
return;
}
if (test_bit(FLAG_IS_HOGGED, &desc->flags))
return;
rv = gpiod_hog(desc, hog->line_name, hog->lflags, hog->dflags);
if (rv)
gpiod_err(desc, "%s: unable to hog GPIO line (%s:%u): %d\n",
__func__, gc->label, hog->chip_hwnum, rv);
}
static void machine_gpiochip_add(struct gpio_chip *gc)
{
struct gpiod_hog *hog;
mutex_lock(&gpio_machine_hogs_mutex);
list_for_each_entry(hog, &gpio_machine_hogs, list) {
if (!strcmp(gc->label, hog->chip_label))
gpiochip_machine_hog(gc, hog);
}
mutex_unlock(&gpio_machine_hogs_mutex);
}
static void gpiochip_setup_devs(void)
{
struct gpio_device *gdev;
int ret;
list_for_each_entry(gdev, &gpio_devices, list) {
ret = gpiochip_setup_dev(gdev);
if (ret)
dev_err(&gdev->dev,
"Failed to initialize gpio device (%d)\n", ret);
}
}
int gpiochip_add_data_with_key(struct gpio_chip *gc, void *data,
struct lock_class_key *lock_key,
struct lock_class_key *request_key)
{
struct fwnode_handle *fwnode = gc->parent ? dev_fwnode(gc->parent) : NULL;
unsigned long flags;
int ret = 0;
unsigned i;
int base = gc->base;
struct gpio_device *gdev;
/*
* First: allocate and populate the internal stat container, and
* set up the struct device.
*/
gdev = kzalloc(sizeof(*gdev), GFP_KERNEL);
if (!gdev)
return -ENOMEM;
gdev->dev.bus = &gpio_bus_type;
gdev->dev.parent = gc->parent;
gdev->chip = gc;
gc->gpiodev = gdev;
of_gpio_dev_init(gc, gdev);
acpi_gpio_dev_init(gc, gdev);
/*
* Assign fwnode depending on the result of the previous calls,
* if none of them succeed, assign it to the parent's one.
*/
gdev->dev.fwnode = dev_fwnode(&gdev->dev) ?: fwnode;
gdev->id = ida_alloc(&gpio_ida, GFP_KERNEL);
if (gdev->id < 0) {
ret = gdev->id;
goto err_free_gdev;
}
ret = dev_set_name(&gdev->dev, GPIOCHIP_NAME "%d", gdev->id);
if (ret)
goto err_free_ida;
device_initialize(&gdev->dev);
if (gc->parent && gc->parent->driver)
gdev->owner = gc->parent->driver->owner;
else if (gc->owner)
/* TODO: remove chip->owner */
gdev->owner = gc->owner;
else
gdev->owner = THIS_MODULE;
gdev->descs = kcalloc(gc->ngpio, sizeof(gdev->descs[0]), GFP_KERNEL);
if (!gdev->descs) {
ret = -ENOMEM;
goto err_free_dev_name;
}
if (gc->ngpio == 0) {
chip_err(gc, "tried to insert a GPIO chip with zero lines\n");
ret = -EINVAL;
goto err_free_descs;
}
if (gc->ngpio > FASTPATH_NGPIO)
chip_warn(gc, "line cnt %u is greater than fast path cnt %u\n",
gc->ngpio, FASTPATH_NGPIO);
gdev->label = kstrdup_const(gc->label ?: "unknown", GFP_KERNEL);
if (!gdev->label) {
ret = -ENOMEM;
goto err_free_descs;
}
gdev->ngpio = gc->ngpio;
gdev->data = data;
spin_lock_irqsave(&gpio_lock, flags);
/*
* TODO: this allocates a Linux GPIO number base in the global
* GPIO numberspace for this chip. In the long run we want to
* get *rid* of this numberspace and use only descriptors, but
* it may be a pipe dream. It will not happen before we get rid
* of the sysfs interface anyways.
*/
if (base < 0) {
base = gpiochip_find_base(gc->ngpio);
if (base < 0) {
ret = base;
spin_unlock_irqrestore(&gpio_lock, flags);
goto err_free_label;
}
/*
* TODO: it should not be necessary to reflect the assigned
* base outside of the GPIO subsystem. Go over drivers and
* see if anyone makes use of this, else drop this and assign
* a poison instead.
*/
gc->base = base;
}
gdev->base = base;
ret = gpiodev_add_to_list(gdev);
if (ret) {
spin_unlock_irqrestore(&gpio_lock, flags);
goto err_free_label;
}
for (i = 0; i < gc->ngpio; i++)
gdev->descs[i].gdev = gdev;
spin_unlock_irqrestore(&gpio_lock, flags);
BLOCKING_INIT_NOTIFIER_HEAD(&gdev->notifier);
#ifdef CONFIG_PINCTRL
INIT_LIST_HEAD(&gdev->pin_ranges);
#endif
if (gc->names)
ret = gpiochip_set_desc_names(gc);
else
ret = devprop_gpiochip_set_names(gc);
if (ret)
goto err_remove_from_list;
ret = gpiochip_alloc_valid_mask(gc);
if (ret)
goto err_remove_from_list;
ret = of_gpiochip_add(gc);
if (ret)
goto err_free_gpiochip_mask;
ret = gpiochip_init_valid_mask(gc);
if (ret)
goto err_remove_of_chip;
for (i = 0; i < gc->ngpio; i++) {
struct gpio_desc *desc = &gdev->descs[i];
if (gc->get_direction && gpiochip_line_is_valid(gc, i)) {
assign_bit(FLAG_IS_OUT,
&desc->flags, !gc->get_direction(gc, i));
} else {
assign_bit(FLAG_IS_OUT,
&desc->flags, !gc->direction_input);
}
}
ret = gpiochip_add_pin_ranges(gc);
if (ret)
goto err_remove_of_chip;
acpi_gpiochip_add(gc);
machine_gpiochip_add(gc);
ret = gpiochip_irqchip_init_valid_mask(gc);
if (ret)
goto err_remove_acpi_chip;
ret = gpiochip_irqchip_init_hw(gc);
if (ret)
goto err_remove_acpi_chip;
ret = gpiochip_add_irqchip(gc, lock_key, request_key);
if (ret)
goto err_remove_irqchip_mask;
/*
* By first adding the chardev, and then adding the device,
* we get a device node entry in sysfs under
* /sys/bus/gpio/devices/gpiochipN/dev that can be used for
* coldplug of device nodes and other udev business.
* We can do this only if gpiolib has been initialized.
* Otherwise, defer until later.
*/
if (gpiolib_initialized) {
ret = gpiochip_setup_dev(gdev);
if (ret)
goto err_remove_irqchip;
}
return 0;
err_remove_irqchip:
gpiochip_irqchip_remove(gc);
err_remove_irqchip_mask:
gpiochip_irqchip_free_valid_mask(gc);
err_remove_acpi_chip:
acpi_gpiochip_remove(gc);
err_remove_of_chip:
gpiochip_free_hogs(gc);
of_gpiochip_remove(gc);
err_free_gpiochip_mask:
gpiochip_remove_pin_ranges(gc);
gpiochip_free_valid_mask(gc);
err_remove_from_list:
spin_lock_irqsave(&gpio_lock, flags);
list_del(&gdev->list);
spin_unlock_irqrestore(&gpio_lock, flags);
err_free_label:
kfree_const(gdev->label);
err_free_descs:
kfree(gdev->descs);
err_free_dev_name:
kfree(dev_name(&gdev->dev));
err_free_ida:
ida_free(&gpio_ida, gdev->id);
err_free_gdev:
/* failures here can mean systems won't boot... */
if (ret != -EPROBE_DEFER) {
pr_err("%s: GPIOs %d..%d (%s) failed to register, %d\n", __func__,
gdev->base, gdev->base + gdev->ngpio - 1,
gc->label ? : "generic", ret);
}
kfree(gdev);
return ret;
}
EXPORT_SYMBOL_GPL(gpiochip_add_data_with_key);
/**
* gpiochip_get_data() - get per-subdriver data for the chip
* @gc: GPIO chip
*
* Returns:
* The per-subdriver data for the chip.
*/
void *gpiochip_get_data(struct gpio_chip *gc)
{
return gc->gpiodev->data;
}
EXPORT_SYMBOL_GPL(gpiochip_get_data);
/**
* gpiochip_remove() - unregister a gpio_chip
* @gc: the chip to unregister
*
* A gpio_chip with any GPIOs still requested may not be removed.
*/
void gpiochip_remove(struct gpio_chip *gc)
{
struct gpio_device *gdev = gc->gpiodev;
unsigned long flags;
unsigned int i;
/* FIXME: should the legacy sysfs handling be moved to gpio_device? */
gpiochip_sysfs_unregister(gdev);
gpiochip_free_hogs(gc);
/* Numb the device, cancelling all outstanding operations */
gdev->chip = NULL;
gpiochip_irqchip_remove(gc);
acpi_gpiochip_remove(gc);
of_gpiochip_remove(gc);
gpiochip_remove_pin_ranges(gc);
gpiochip_free_valid_mask(gc);
/*
* We accept no more calls into the driver from this point, so
* NULL the driver data pointer
*/
gdev->data = NULL;
spin_lock_irqsave(&gpio_lock, flags);
for (i = 0; i < gdev->ngpio; i++) {
if (gpiochip_is_requested(gc, i))
break;
}
spin_unlock_irqrestore(&gpio_lock, flags);
if (i != gdev->ngpio)
dev_crit(&gdev->dev,
"REMOVING GPIOCHIP WITH GPIOS STILL REQUESTED\n");
/*
* The gpiochip side puts its use of the device to rest here:
* if there are no userspace clients, the chardev and device will
* be removed, else it will be dangling until the last user is
* gone.
*/
gcdev_unregister(gdev);
put_device(&gdev->dev);
}
EXPORT_SYMBOL_GPL(gpiochip_remove);
/**
* gpiochip_find() - iterator for locating a specific gpio_chip
* @data: data to pass to match function
* @match: Callback function to check gpio_chip
*
* Similar to bus_find_device. It returns a reference to a gpio_chip as
* determined by a user supplied @match callback. The callback should return
* 0 if the device doesn't match and non-zero if it does. If the callback is
* non-zero, this function will return to the caller and not iterate over any
* more gpio_chips.
*/
struct gpio_chip *gpiochip_find(void *data,
int (*match)(struct gpio_chip *gc,
void *data))
{
struct gpio_device *gdev;
struct gpio_chip *gc = NULL;
unsigned long flags;
spin_lock_irqsave(&gpio_lock, flags);
list_for_each_entry(gdev, &gpio_devices, list)
if (gdev->chip && match(gdev->chip, data)) {
gc = gdev->chip;
break;
}
spin_unlock_irqrestore(&gpio_lock, flags);
return gc;
}
EXPORT_SYMBOL_GPL(gpiochip_find);
static int gpiochip_match_name(struct gpio_chip *gc, void *data)
{
const char *name = data;
return !strcmp(gc->label, name);
}
static struct gpio_chip *find_chip_by_name(const char *name)
{
return gpiochip_find((void *)name, gpiochip_match_name);
}
#ifdef CONFIG_GPIOLIB_IRQCHIP
/*
* The following is irqchip helper code for gpiochips.
*/
static int gpiochip_irqchip_init_hw(struct gpio_chip *gc)
{
struct gpio_irq_chip *girq = &gc->irq;
if (!girq->init_hw)
return 0;
return girq->init_hw(gc);
}
static int gpiochip_irqchip_init_valid_mask(struct gpio_chip *gc)
{
struct gpio_irq_chip *girq = &gc->irq;
if (!girq->init_valid_mask)
return 0;
girq->valid_mask = gpiochip_allocate_mask(gc);
if (!girq->valid_mask)
return -ENOMEM;
girq->init_valid_mask(gc, girq->valid_mask, gc->ngpio);
return 0;
}
static void gpiochip_irqchip_free_valid_mask(struct gpio_chip *gc)
{
bitmap_free(gc->irq.valid_mask);
gc->irq.valid_mask = NULL;
}
bool gpiochip_irqchip_irq_valid(const struct gpio_chip *gc,
unsigned int offset)
{
if (!gpiochip_line_is_valid(gc, offset))
return false;
/* No mask means all valid */
if (likely(!gc->irq.valid_mask))
return true;
return test_bit(offset, gc->irq.valid_mask);
}
EXPORT_SYMBOL_GPL(gpiochip_irqchip_irq_valid);
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
/**
* gpiochip_set_hierarchical_irqchip() - connects a hierarchical irqchip
* to a gpiochip
* @gc: the gpiochip to set the irqchip hierarchical handler to
* @irqchip: the irqchip to handle this level of the hierarchy, the interrupt
* will then percolate up to the parent
*/
static void gpiochip_set_hierarchical_irqchip(struct gpio_chip *gc,
struct irq_chip *irqchip)
{
/* DT will deal with mapping each IRQ as we go along */
if (is_of_node(gc->irq.fwnode))
return;
/*
* This is for legacy and boardfile "irqchip" fwnodes: allocate
* irqs upfront instead of dynamically since we don't have the
* dynamic type of allocation that hardware description languages
* provide. Once all GPIO drivers using board files are gone from
* the kernel we can delete this code, but for a transitional period
* it is necessary to keep this around.
*/
if (is_fwnode_irqchip(gc->irq.fwnode)) {
int i;
int ret;
for (i = 0; i < gc->ngpio; i++) {
struct irq_fwspec fwspec;
unsigned int parent_hwirq;
unsigned int parent_type;
struct gpio_irq_chip *girq = &gc->irq;
/*
* We call the child to parent translation function
* only to check if the child IRQ is valid or not.
* Just pick the rising edge type here as that is what
* we likely need to support.
*/
ret = girq->child_to_parent_hwirq(gc, i,
IRQ_TYPE_EDGE_RISING,
&parent_hwirq,
&parent_type);
if (ret) {
chip_err(gc, "skip set-up on hwirq %d\n",
i);
continue;
}
fwspec.fwnode = gc->irq.fwnode;
/* This is the hwirq for the GPIO line side of things */
fwspec.param[0] = girq->child_offset_to_irq(gc, i);
/* Just pick something */
fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
fwspec.param_count = 2;
ret = __irq_domain_alloc_irqs(gc->irq.domain,
/* just pick something */
-1,
1,
NUMA_NO_NODE,
&fwspec,
false,
NULL);
if (ret < 0) {
chip_err(gc,
"can not allocate irq for GPIO line %d parent hwirq %d in hierarchy domain: %d\n",
i, parent_hwirq,
ret);
}
}
}
chip_err(gc, "%s unknown fwnode type proceed anyway\n", __func__);
return;
}
static int gpiochip_hierarchy_irq_domain_translate(struct irq_domain *d,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
/* We support standard DT translation */
if (is_of_node(fwspec->fwnode) && fwspec->param_count == 2) {
return irq_domain_translate_twocell(d, fwspec, hwirq, type);
}
/* This is for board files and others not using DT */
if (is_fwnode_irqchip(fwspec->fwnode)) {
int ret;
ret = irq_domain_translate_twocell(d, fwspec, hwirq, type);
if (ret)
return ret;
WARN_ON(*type == IRQ_TYPE_NONE);
return 0;
}
return -EINVAL;
}
static int gpiochip_hierarchy_irq_domain_alloc(struct irq_domain *d,
unsigned int irq,
unsigned int nr_irqs,
void *data)
{
struct gpio_chip *gc = d->host_data;
irq_hw_number_t hwirq;
unsigned int type = IRQ_TYPE_NONE;
struct irq_fwspec *fwspec = data;
void *parent_arg;
unsigned int parent_hwirq;
unsigned int parent_type;
struct gpio_irq_chip *girq = &gc->irq;
int ret;
/*
* The nr_irqs parameter is always one except for PCI multi-MSI
* so this should not happen.
*/
WARN_ON(nr_irqs != 1);
ret = gc->irq.child_irq_domain_ops.translate(d, fwspec, &hwirq, &type);
if (ret)
return ret;
chip_dbg(gc, "allocate IRQ %d, hwirq %lu\n", irq, hwirq);
ret = girq->child_to_parent_hwirq(gc, hwirq, type,
&parent_hwirq, &parent_type);
if (ret) {
chip_err(gc, "can't look up hwirq %lu\n", hwirq);
return ret;
}
chip_dbg(gc, "found parent hwirq %u\n", parent_hwirq);
/*
* We set handle_bad_irq because the .set_type() should
* always be invoked and set the right type of handler.
*/
irq_domain_set_info(d,
irq,
hwirq,
gc->irq.chip,
gc,
girq->handler,
NULL, NULL);
irq_set_probe(irq);
/* This parent only handles asserted level IRQs */
parent_arg = girq->populate_parent_alloc_arg(gc, parent_hwirq, parent_type);
if (!parent_arg)
return -ENOMEM;
chip_dbg(gc, "alloc_irqs_parent for %d parent hwirq %d\n",
irq, parent_hwirq);
irq_set_lockdep_class(irq, gc->irq.lock_key, gc->irq.request_key);
ret = irq_domain_alloc_irqs_parent(d, irq, 1, parent_arg);
/*
* If the parent irqdomain is msi, the interrupts have already
* been allocated, so the EEXIST is good.
*/
if (irq_domain_is_msi(d->parent) && (ret == -EEXIST))
ret = 0;
if (ret)
chip_err(gc,
"failed to allocate parent hwirq %d for hwirq %lu\n",
parent_hwirq, hwirq);
kfree(parent_arg);
return ret;
}
static unsigned int gpiochip_child_offset_to_irq_noop(struct gpio_chip *gc,
unsigned int offset)
{
return offset;
}
static void gpiochip_hierarchy_setup_domain_ops(struct irq_domain_ops *ops)
{
ops->activate = gpiochip_irq_domain_activate;
ops->deactivate = gpiochip_irq_domain_deactivate;
ops->alloc = gpiochip_hierarchy_irq_domain_alloc;
ops->free = irq_domain_free_irqs_common;
/*
* We only allow overriding the translate() function for
* hierarchical chips, and this should only be done if the user
* really need something other than 1:1 translation.
*/
if (!ops->translate)
ops->translate = gpiochip_hierarchy_irq_domain_translate;
}
static int gpiochip_hierarchy_add_domain(struct gpio_chip *gc)
{
if (!gc->irq.child_to_parent_hwirq ||
!gc->irq.fwnode) {
chip_err(gc, "missing irqdomain vital data\n");
return -EINVAL;
}
if (!gc->irq.child_offset_to_irq)
gc->irq.child_offset_to_irq = gpiochip_child_offset_to_irq_noop;
if (!gc->irq.populate_parent_alloc_arg)
gc->irq.populate_parent_alloc_arg =
gpiochip_populate_parent_fwspec_twocell;
gpiochip_hierarchy_setup_domain_ops(&gc->irq.child_irq_domain_ops);
gc->irq.domain = irq_domain_create_hierarchy(
gc->irq.parent_domain,
0,
gc->ngpio,
gc->irq.fwnode,
&gc->irq.child_irq_domain_ops,
gc);
if (!gc->irq.domain)
return -ENOMEM;
gpiochip_set_hierarchical_irqchip(gc, gc->irq.chip);
return 0;
}
static bool gpiochip_hierarchy_is_hierarchical(struct gpio_chip *gc)
{
return !!gc->irq.parent_domain;
}
void *gpiochip_populate_parent_fwspec_twocell(struct gpio_chip *gc,
unsigned int parent_hwirq,
unsigned int parent_type)
{
struct irq_fwspec *fwspec;
fwspec = kmalloc(sizeof(*fwspec), GFP_KERNEL);
if (!fwspec)
return NULL;
fwspec->fwnode = gc->irq.parent_domain->fwnode;
fwspec->param_count = 2;
fwspec->param[0] = parent_hwirq;
fwspec->param[1] = parent_type;
return fwspec;
}
EXPORT_SYMBOL_GPL(gpiochip_populate_parent_fwspec_twocell);
void *gpiochip_populate_parent_fwspec_fourcell(struct gpio_chip *gc,
unsigned int parent_hwirq,
unsigned int parent_type)
{
struct irq_fwspec *fwspec;
fwspec = kmalloc(sizeof(*fwspec), GFP_KERNEL);
if (!fwspec)
return NULL;
fwspec->fwnode = gc->irq.parent_domain->fwnode;
fwspec->param_count = 4;
fwspec->param[0] = 0;
fwspec->param[1] = parent_hwirq;
fwspec->param[2] = 0;
fwspec->param[3] = parent_type;
return fwspec;
}
EXPORT_SYMBOL_GPL(gpiochip_populate_parent_fwspec_fourcell);
#else
static int gpiochip_hierarchy_add_domain(struct gpio_chip *gc)
{
return -EINVAL;
}
static bool gpiochip_hierarchy_is_hierarchical(struct gpio_chip *gc)
{
return false;
}
#endif /* CONFIG_IRQ_DOMAIN_HIERARCHY */
/**
* gpiochip_irq_map() - maps an IRQ into a GPIO irqchip
* @d: the irqdomain used by this irqchip
* @irq: the global irq number used by this GPIO irqchip irq
* @hwirq: the local IRQ/GPIO line offset on this gpiochip
*
* This function will set up the mapping for a certain IRQ line on a
* gpiochip by assigning the gpiochip as chip data, and using the irqchip
* stored inside the gpiochip.
*/
int gpiochip_irq_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hwirq)
{
struct gpio_chip *gc = d->host_data;
int ret = 0;
if (!gpiochip_irqchip_irq_valid(gc, hwirq))
return -ENXIO;
irq_set_chip_data(irq, gc);
/*
* This lock class tells lockdep that GPIO irqs are in a different
* category than their parents, so it won't report false recursion.
*/
irq_set_lockdep_class(irq, gc->irq.lock_key, gc->irq.request_key);
irq_set_chip_and_handler(irq, gc->irq.chip, gc->irq.handler);
/* Chips that use nested thread handlers have them marked */
if (gc->irq.threaded)
irq_set_nested_thread(irq, 1);
irq_set_noprobe(irq);
if (gc->irq.num_parents == 1)
ret = irq_set_parent(irq, gc->irq.parents[0]);
else if (gc->irq.map)
ret = irq_set_parent(irq, gc->irq.map[hwirq]);
if (ret < 0)
return ret;
/*
* No set-up of the hardware will happen if IRQ_TYPE_NONE
* is passed as default type.
*/
if (gc->irq.default_type != IRQ_TYPE_NONE)
irq_set_irq_type(irq, gc->irq.default_type);
return 0;
}
EXPORT_SYMBOL_GPL(gpiochip_irq_map);
void gpiochip_irq_unmap(struct irq_domain *d, unsigned int irq)
{
struct gpio_chip *gc = d->host_data;
if (gc->irq.threaded)
irq_set_nested_thread(irq, 0);
irq_set_chip_and_handler(irq, NULL, NULL);
irq_set_chip_data(irq, NULL);
}
EXPORT_SYMBOL_GPL(gpiochip_irq_unmap);
static const struct irq_domain_ops gpiochip_domain_ops = {
.map = gpiochip_irq_map,
.unmap = gpiochip_irq_unmap,
/* Virtually all GPIO irqchips are twocell:ed */
.xlate = irq_domain_xlate_twocell,
};
/*
* TODO: move these activate/deactivate in under the hierarchicial
* irqchip implementation as static once SPMI and SSBI (all external
* users) are phased over.
*/
/**
* gpiochip_irq_domain_activate() - Lock a GPIO to be used as an IRQ
* @domain: The IRQ domain used by this IRQ chip
* @data: Outermost irq_data associated with the IRQ
* @reserve: If set, only reserve an interrupt vector instead of assigning one
*
* This function is a wrapper that calls gpiochip_lock_as_irq() and is to be
* used as the activate function for the &struct irq_domain_ops. The host_data
* for the IRQ domain must be the &struct gpio_chip.
*/
int gpiochip_irq_domain_activate(struct irq_domain *domain,
struct irq_data *data, bool reserve)
{
struct gpio_chip *gc = domain->host_data;
return gpiochip_lock_as_irq(gc, data->hwirq);
}
EXPORT_SYMBOL_GPL(gpiochip_irq_domain_activate);
/**
* gpiochip_irq_domain_deactivate() - Unlock a GPIO used as an IRQ
* @domain: The IRQ domain used by this IRQ chip
* @data: Outermost irq_data associated with the IRQ
*
* This function is a wrapper that will call gpiochip_unlock_as_irq() and is to
* be used as the deactivate function for the &struct irq_domain_ops. The
* host_data for the IRQ domain must be the &struct gpio_chip.
*/
void gpiochip_irq_domain_deactivate(struct irq_domain *domain,
struct irq_data *data)
{
struct gpio_chip *gc = domain->host_data;
return gpiochip_unlock_as_irq(gc, data->hwirq);
}
EXPORT_SYMBOL_GPL(gpiochip_irq_domain_deactivate);
static int gpiochip_to_irq(struct gpio_chip *gc, unsigned int offset)
{
struct irq_domain *domain = gc->irq.domain;
if (!gpiochip_irqchip_irq_valid(gc, offset))
return -ENXIO;
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
if (irq_domain_is_hierarchy(domain)) {
struct irq_fwspec spec;
spec.fwnode = domain->fwnode;
spec.param_count = 2;
spec.param[0] = gc->irq.child_offset_to_irq(gc, offset);
spec.param[1] = IRQ_TYPE_NONE;
return irq_create_fwspec_mapping(&spec);
}
#endif
return irq_create_mapping(domain, offset);
}
static int gpiochip_irq_reqres(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
return gpiochip_reqres_irq(gc, d->hwirq);
}
static void gpiochip_irq_relres(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
gpiochip_relres_irq(gc, d->hwirq);
}
static void gpiochip_irq_mask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
if (gc->irq.irq_mask)
gc->irq.irq_mask(d);
gpiochip_disable_irq(gc, d->hwirq);
}
static void gpiochip_irq_unmask(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
gpiochip_enable_irq(gc, d->hwirq);
if (gc->irq.irq_unmask)
gc->irq.irq_unmask(d);
}
static void gpiochip_irq_enable(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
gpiochip_enable_irq(gc, d->hwirq);
gc->irq.irq_enable(d);
}
static void gpiochip_irq_disable(struct irq_data *d)
{
struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
gc->irq.irq_disable(d);
gpiochip_disable_irq(gc, d->hwirq);
}
static void gpiochip_set_irq_hooks(struct gpio_chip *gc)
{
struct irq_chip *irqchip = gc->irq.chip;
if (!irqchip->irq_request_resources &&
!irqchip->irq_release_resources) {
irqchip->irq_request_resources = gpiochip_irq_reqres;
irqchip->irq_release_resources = gpiochip_irq_relres;
}
if (WARN_ON(gc->irq.irq_enable))
return;
/* Check if the irqchip already has this hook... */
if (irqchip->irq_enable == gpiochip_irq_enable ||
irqchip->irq_mask == gpiochip_irq_mask) {
/*
* ...and if so, give a gentle warning that this is bad
* practice.
*/
chip_info(gc,
"detected irqchip that is shared with multiple gpiochips: please fix the driver.\n");
return;
}
if (irqchip->irq_disable) {
gc->irq.irq_disable = irqchip->irq_disable;
irqchip->irq_disable = gpiochip_irq_disable;
} else {
gc->irq.irq_mask = irqchip->irq_mask;
irqchip->irq_mask = gpiochip_irq_mask;
}
if (irqchip->irq_enable) {
gc->irq.irq_enable = irqchip->irq_enable;
irqchip->irq_enable = gpiochip_irq_enable;
} else {
gc->irq.irq_unmask = irqchip->irq_unmask;
irqchip->irq_unmask = gpiochip_irq_unmask;
}
}
/**
* gpiochip_add_irqchip() - adds an IRQ chip to a GPIO chip
* @gc: the GPIO chip to add the IRQ chip to
* @lock_key: lockdep class for IRQ lock
* @request_key: lockdep class for IRQ request
*/
static int gpiochip_add_irqchip(struct gpio_chip *gc,
struct lock_class_key *lock_key,
struct lock_class_key *request_key)
{
struct fwnode_handle *fwnode = dev_fwnode(&gc->gpiodev->dev);
struct irq_chip *irqchip = gc->irq.chip;
unsigned int type;
unsigned int i;
if (!irqchip)
return 0;
if (gc->irq.parent_handler && gc->can_sleep) {
chip_err(gc, "you cannot have chained interrupts on a chip that may sleep\n");
return -EINVAL;
}
type = gc->irq.default_type;
/*
* Specifying a default trigger is a terrible idea if DT or ACPI is
* used to configure the interrupts, as you may end up with
* conflicting triggers. Tell the user, and reset to NONE.
*/
if (WARN(fwnode && type != IRQ_TYPE_NONE,
"%pfw: Ignoring %u default trigger\n", fwnode, type))
type = IRQ_TYPE_NONE;
if (gc->to_irq)
chip_warn(gc, "to_irq is redefined in %s and you shouldn't rely on it\n", __func__);
gc->to_irq = gpiochip_to_irq;
gc->irq.default_type = type;
gc->irq.lock_key = lock_key;
gc->irq.request_key = request_key;
/* If a parent irqdomain is provided, let's build a hierarchy */
if (gpiochip_hierarchy_is_hierarchical(gc)) {
int ret = gpiochip_hierarchy_add_domain(gc);
if (ret)
return ret;
} else {
/* Some drivers provide custom irqdomain ops */
gc->irq.domain = irq_domain_create_simple(fwnode,
gc->ngpio,
gc->irq.first,
gc->irq.domain_ops ?: &gpiochip_domain_ops,
gc);
if (!gc->irq.domain)
return -EINVAL;
}
if (gc->irq.parent_handler) {
void *data = gc->irq.parent_handler_data ?: gc;
for (i = 0; i < gc->irq.num_parents; i++) {
/*
* The parent IRQ chip is already using the chip_data
* for this IRQ chip, so our callbacks simply use the
* handler_data.
*/
irq_set_chained_handler_and_data(gc->irq.parents[i],
gc->irq.parent_handler,
data);
}
}
gpiochip_set_irq_hooks(gc);
acpi_gpiochip_request_interrupts(gc);
return 0;
}
/**
* gpiochip_irqchip_remove() - removes an irqchip added to a gpiochip
* @gc: the gpiochip to remove the irqchip from
*
* This is called only from gpiochip_remove()
*/
static void gpiochip_irqchip_remove(struct gpio_chip *gc)
{
struct irq_chip *irqchip = gc->irq.chip;
unsigned int offset;
acpi_gpiochip_free_interrupts(gc);
if (irqchip && gc->irq.parent_handler) {
struct gpio_irq_chip *irq = &gc->irq;
unsigned int i;
for (i = 0; i < irq->num_parents; i++)
irq_set_chained_handler_and_data(irq->parents[i],
NULL, NULL);
}
/* Remove all IRQ mappings and delete the domain */
if (gc->irq.domain) {
unsigned int irq;
for (offset = 0; offset < gc->ngpio; offset++) {
if (!gpiochip_irqchip_irq_valid(gc, offset))
continue;
irq = irq_find_mapping(gc->irq.domain, offset);
irq_dispose_mapping(irq);
}
irq_domain_remove(gc->irq.domain);
}
if (irqchip) {
if (irqchip->irq_request_resources == gpiochip_irq_reqres) {
irqchip->irq_request_resources = NULL;
irqchip->irq_release_resources = NULL;
}
if (irqchip->irq_enable == gpiochip_irq_enable) {
irqchip->irq_enable = gc->irq.irq_enable;
irqchip->irq_disable = gc->irq.irq_disable;
}
}
gc->irq.irq_enable = NULL;
gc->irq.irq_disable = NULL;
gc->irq.chip = NULL;
gpiochip_irqchip_free_valid_mask(gc);
}
/**
* gpiochip_irqchip_add_domain() - adds an irqdomain to a gpiochip
* @gc: the gpiochip to add the irqchip to
* @domain: the irqdomain to add to the gpiochip
*
* This function adds an IRQ domain to the gpiochip.
*/
int gpiochip_irqchip_add_domain(struct gpio_chip *gc,
struct irq_domain *domain)
{
if (!domain)
return -EINVAL;
gc->to_irq = gpiochip_to_irq;
gc->irq.domain = domain;
return 0;
}
EXPORT_SYMBOL_GPL(gpiochip_irqchip_add_domain);
#else /* CONFIG_GPIOLIB_IRQCHIP */
static inline int gpiochip_add_irqchip(struct gpio_chip *gc,
struct lock_class_key *lock_key,
struct lock_class_key *request_key)
{
return 0;
}
static void gpiochip_irqchip_remove(struct gpio_chip *gc) {}
static inline int gpiochip_irqchip_init_hw(struct gpio_chip *gc)
{
return 0;
}
static inline int gpiochip_irqchip_init_valid_mask(struct gpio_chip *gc)
{
return 0;
}
static inline void gpiochip_irqchip_free_valid_mask(struct gpio_chip *gc)
{ }
#endif /* CONFIG_GPIOLIB_IRQCHIP */
/**
* gpiochip_generic_request() - request the gpio function for a pin
* @gc: the gpiochip owning the GPIO
* @offset: the offset of the GPIO to request for GPIO function
*/
int gpiochip_generic_request(struct gpio_chip *gc, unsigned int offset)
{
#ifdef CONFIG_PINCTRL
if (list_empty(&gc->gpiodev->pin_ranges))
return 0;
#endif
return pinctrl_gpio_request(gc->gpiodev->base + offset);
}
EXPORT_SYMBOL_GPL(gpiochip_generic_request);
/**
* gpiochip_generic_free() - free the gpio function from a pin
* @gc: the gpiochip to request the gpio function for
* @offset: the offset of the GPIO to free from GPIO function
*/
void gpiochip_generic_free(struct gpio_chip *gc, unsigned int offset)
{
#ifdef CONFIG_PINCTRL
if (list_empty(&gc->gpiodev->pin_ranges))
return;
#endif
pinctrl_gpio_free(gc->gpiodev->base + offset);
}
EXPORT_SYMBOL_GPL(gpiochip_generic_free);
/**
* gpiochip_generic_config() - apply configuration for a pin
* @gc: the gpiochip owning the GPIO
* @offset: the offset of the GPIO to apply the configuration
* @config: the configuration to be applied
*/
int gpiochip_generic_config(struct gpio_chip *gc, unsigned int offset,
unsigned long config)
{
return pinctrl_gpio_set_config(gc->gpiodev->base + offset, config);
}
EXPORT_SYMBOL_GPL(gpiochip_generic_config);
#ifdef CONFIG_PINCTRL
/**
* gpiochip_add_pingroup_range() - add a range for GPIO <-> pin mapping
* @gc: the gpiochip to add the range for
* @pctldev: the pin controller to map to
* @gpio_offset: the start offset in the current gpio_chip number space
* @pin_group: name of the pin group inside the pin controller
*
* Calling this function directly from a DeviceTree-supported
* pinctrl driver is DEPRECATED. Please see Section 2.1 of
* Documentation/devicetree/bindings/gpio/gpio.txt on how to
* bind pinctrl and gpio drivers via the "gpio-ranges" property.
*/
int gpiochip_add_pingroup_range(struct gpio_chip *gc,
struct pinctrl_dev *pctldev,
unsigned int gpio_offset, const char *pin_group)
{
struct gpio_pin_range *pin_range;
struct gpio_device *gdev = gc->gpiodev;
int ret;
pin_range = kzalloc(sizeof(*pin_range), GFP_KERNEL);
if (!pin_range) {
chip_err(gc, "failed to allocate pin ranges\n");
return -ENOMEM;
}
/* Use local offset as range ID */
pin_range->range.id = gpio_offset;
pin_range->range.gc = gc;
pin_range->range.name = gc->label;
pin_range->range.base = gdev->base + gpio_offset;
pin_range->pctldev = pctldev;
ret = pinctrl_get_group_pins(pctldev, pin_group,
&pin_range->range.pins,
&pin_range->range.npins);
if (ret < 0) {
kfree(pin_range);
return ret;
}
pinctrl_add_gpio_range(pctldev, &pin_range->range);
chip_dbg(gc, "created GPIO range %d->%d ==> %s PINGRP %s\n",
gpio_offset, gpio_offset + pin_range->range.npins - 1,
pinctrl_dev_get_devname(pctldev), pin_group);
list_add_tail(&pin_range->node, &gdev->pin_ranges);
return 0;
}
EXPORT_SYMBOL_GPL(gpiochip_add_pingroup_range);
/**
* gpiochip_add_pin_range() - add a range for GPIO <-> pin mapping
* @gc: the gpiochip to add the range for
* @pinctl_name: the dev_name() of the pin controller to map to
* @gpio_offset: the start offset in the current gpio_chip number space
* @pin_offset: the start offset in the pin controller number space
* @npins: the number of pins from the offset of each pin space (GPIO and
* pin controller) to accumulate in this range
*
* Returns:
* 0 on success, or a negative error-code on failure.
*
* Calling this function directly from a DeviceTree-supported
* pinctrl driver is DEPRECATED. Please see Section 2.1 of
* Documentation/devicetree/bindings/gpio/gpio.txt on how to
* bind pinctrl and gpio drivers via the "gpio-ranges" property.
*/
int gpiochip_add_pin_range(struct gpio_chip *gc, const char *pinctl_name,
unsigned int gpio_offset, unsigned int pin_offset,
unsigned int npins)
{
struct gpio_pin_range *pin_range;
struct gpio_device *gdev = gc->gpiodev;
int ret;
pin_range = kzalloc(sizeof(*pin_range), GFP_KERNEL);
if (!pin_range) {
chip_err(gc, "failed to allocate pin ranges\n");
return -ENOMEM;
}
/* Use local offset as range ID */
pin_range->range.id = gpio_offset;
pin_range->range.gc = gc;
pin_range->range.name = gc->label;
pin_range->range.base = gdev->base + gpio_offset;
pin_range->range.pin_base = pin_offset;
pin_range->range.npins = npins;
pin_range->pctldev = pinctrl_find_and_add_gpio_range(pinctl_name,
&pin_range->range);
if (IS_ERR(pin_range->pctldev)) {
ret = PTR_ERR(pin_range->pctldev);
chip_err(gc, "could not create pin range\n");
kfree(pin_range);
return ret;
}
chip_dbg(gc, "created GPIO range %d->%d ==> %s PIN %d->%d\n",
gpio_offset, gpio_offset + npins - 1,
pinctl_name,
pin_offset, pin_offset + npins - 1);
list_add_tail(&pin_range->node, &gdev->pin_ranges);
return 0;
}
EXPORT_SYMBOL_GPL(gpiochip_add_pin_range);
/**
* gpiochip_remove_pin_ranges() - remove all the GPIO <-> pin mappings
* @gc: the chip to remove all the mappings for
*/
void gpiochip_remove_pin_ranges(struct gpio_chip *gc)
{
struct gpio_pin_range *pin_range, *tmp;
struct gpio_device *gdev = gc->gpiodev;
list_for_each_entry_safe(pin_range, tmp, &gdev->pin_ranges, node) {
list_del(&pin_range->node);
pinctrl_remove_gpio_range(pin_range->pctldev,
&pin_range->range);
kfree(pin_range);
}
}
EXPORT_SYMBOL_GPL(gpiochip_remove_pin_ranges);
#endif /* CONFIG_PINCTRL */
/* These "optional" allocation calls help prevent drivers from stomping
* on each other, and help provide better diagnostics in debugfs.
* They're called even less than the "set direction" calls.
*/
static int gpiod_request_commit(struct gpio_desc *desc, const char *label)
{
struct gpio_chip *gc = desc->gdev->chip;
int ret;
unsigned long flags;
unsigned offset;
if (label) {
label = kstrdup_const(label, GFP_KERNEL);
if (!label)
return -ENOMEM;
}
spin_lock_irqsave(&gpio_lock, flags);
/* NOTE: gpio_request() can be called in early boot,
* before IRQs are enabled, for non-sleeping (SOC) GPIOs.
*/
if (test_and_set_bit(FLAG_REQUESTED, &desc->flags) == 0) {
desc_set_label(desc, label ? : "?");
} else {
ret = -EBUSY;
goto out_free_unlock;
}
if (gc->request) {
/* gc->request may sleep */
spin_unlock_irqrestore(&gpio_lock, flags);
offset = gpio_chip_hwgpio(desc);
if (gpiochip_line_is_valid(gc, offset))
ret = gc->request(gc, offset);
else
ret = -EINVAL;
spin_lock_irqsave(&gpio_lock, flags);
if (ret) {
desc_set_label(desc, NULL);
clear_bit(FLAG_REQUESTED, &desc->flags);
goto out_free_unlock;
}
}
if (gc->get_direction) {
/* gc->get_direction may sleep */
spin_unlock_irqrestore(&gpio_lock, flags);
gpiod_get_direction(desc);
spin_lock_irqsave(&gpio_lock, flags);
}
spin_unlock_irqrestore(&gpio_lock, flags);
return 0;
out_free_unlock:
spin_unlock_irqrestore(&gpio_lock, flags);
kfree_const(label);
return ret;
}
/*
* This descriptor validation needs to be inserted verbatim into each
* function taking a descriptor, so we need to use a preprocessor
* macro to avoid endless duplication. If the desc is NULL it is an
* optional GPIO and calls should just bail out.
*/
static int validate_desc(const struct gpio_desc *desc, const char *func)
{
if (!desc)
return 0;
if (IS_ERR(desc)) {
pr_warn("%s: invalid GPIO (errorpointer)\n", func);
return PTR_ERR(desc);
}
if (!desc->gdev) {
pr_warn("%s: invalid GPIO (no device)\n", func);
return -EINVAL;
}
if (!desc->gdev->chip) {
dev_warn(&desc->gdev->dev,
"%s: backing chip is gone\n", func);
return 0;
}
return 1;
}
#define VALIDATE_DESC(desc) do { \
int __valid = validate_desc(desc, __func__); \
if (__valid <= 0) \
return __valid; \
} while (0)
#define VALIDATE_DESC_VOID(desc) do { \
int __valid = validate_desc(desc, __func__); \
if (__valid <= 0) \
return; \
} while (0)
int gpiod_request(struct gpio_desc *desc, const char *label)
{
int ret = -EPROBE_DEFER;
struct gpio_device *gdev;
VALIDATE_DESC(desc);
gdev = desc->gdev;
if (try_module_get(gdev->owner)) {
ret = gpiod_request_commit(desc, label);
if (ret)
module_put(gdev->owner);
else
get_device(&gdev->dev);
}
if (ret)
gpiod_dbg(desc, "%s: status %d\n", __func__, ret);
return ret;
}
static bool gpiod_free_commit(struct gpio_desc *desc)
{
bool ret = false;
unsigned long flags;
struct gpio_chip *gc;
might_sleep();
gpiod_unexport(desc);
spin_lock_irqsave(&gpio_lock, flags);
gc = desc->gdev->chip;
if (gc && test_bit(FLAG_REQUESTED, &desc->flags)) {
if (gc->free) {
spin_unlock_irqrestore(&gpio_lock, flags);
might_sleep_if(gc->can_sleep);
gc->free(gc, gpio_chip_hwgpio(desc));
spin_lock_irqsave(&gpio_lock, flags);
}
kfree_const(desc->label);
desc_set_label(desc, NULL);
clear_bit(FLAG_ACTIVE_LOW, &desc->flags);
clear_bit(FLAG_REQUESTED, &desc->flags);
clear_bit(FLAG_OPEN_DRAIN, &desc->flags);
clear_bit(FLAG_OPEN_SOURCE, &desc->flags);
clear_bit(FLAG_PULL_UP, &desc->flags);
clear_bit(FLAG_PULL_DOWN, &desc->flags);
clear_bit(FLAG_BIAS_DISABLE, &desc->flags);
clear_bit(FLAG_EDGE_RISING, &desc->flags);
clear_bit(FLAG_EDGE_FALLING, &desc->flags);
clear_bit(FLAG_IS_HOGGED, &desc->flags);
#ifdef CONFIG_OF_DYNAMIC
desc->hog = NULL;
#endif
#ifdef CONFIG_GPIO_CDEV
WRITE_ONCE(desc->debounce_period_us, 0);
#endif
ret = true;
}
spin_unlock_irqrestore(&gpio_lock, flags);
blocking_notifier_call_chain(&desc->gdev->notifier,
GPIOLINE_CHANGED_RELEASED, desc);
return ret;
}
void gpiod_free(struct gpio_desc *desc)
{
if (desc && desc->gdev && gpiod_free_commit(desc)) {
module_put(desc->gdev->owner);
put_device(&desc->gdev->dev);
} else {
WARN_ON(extra_checks);
}
}
/**
* gpiochip_is_requested - return string iff signal was requested
* @gc: controller managing the signal
* @offset: of signal within controller's 0..(ngpio - 1) range
*
* Returns NULL if the GPIO is not currently requested, else a string.
* The string returned is the label passed to gpio_request(); if none has been
* passed it is a meaningless, non-NULL constant.
*
* This function is for use by GPIO controller drivers. The label can
* help with diagnostics, and knowing that the signal is used as a GPIO
* can help avoid accidentally multiplexing it to another controller.
*/
const char *gpiochip_is_requested(struct gpio_chip *gc, unsigned int offset)
{
struct gpio_desc *desc;
desc = gpiochip_get_desc(gc, offset);
if (IS_ERR(desc))
return NULL;
if (test_bit(FLAG_REQUESTED, &desc->flags) == 0)
return NULL;
return desc->label;
}
EXPORT_SYMBOL_GPL(gpiochip_is_requested);
/**
* gpiochip_request_own_desc - Allow GPIO chip to request its own descriptor
* @gc: GPIO chip
* @hwnum: hardware number of the GPIO for which to request the descriptor
* @label: label for the GPIO
* @lflags: lookup flags for this GPIO or 0 if default, this can be used to
* specify things like line inversion semantics with the machine flags
* such as GPIO_OUT_LOW
* @dflags: descriptor request flags for this GPIO or 0 if default, this
* can be used to specify consumer semantics such as open drain
*
* Function allows GPIO chip drivers to request and use their own GPIO
* descriptors via gpiolib API. Difference to gpiod_request() is that this
* function will not increase reference count of the GPIO chip module. This
* allows the GPIO chip module to be unloaded as needed (we assume that the
* GPIO chip driver handles freeing the GPIOs it has requested).
*
* Returns:
* A pointer to the GPIO descriptor, or an ERR_PTR()-encoded negative error
* code on failure.
*/
struct gpio_desc *gpiochip_request_own_desc(struct gpio_chip *gc,
unsigned int hwnum,
const char *label,
enum gpio_lookup_flags lflags,
enum gpiod_flags dflags)
{
struct gpio_desc *desc = gpiochip_get_desc(gc, hwnum);
int ret;
if (IS_ERR(desc)) {
chip_err(gc, "failed to get GPIO descriptor\n");
return desc;
}
ret = gpiod_request_commit(desc, label);
if (ret < 0)
return ERR_PTR(ret);
ret = gpiod_configure_flags(desc, label, lflags, dflags);
if (ret) {
chip_err(gc, "setup of own GPIO %s failed\n", label);
gpiod_free_commit(desc);
return ERR_PTR(ret);
}
return desc;
}
EXPORT_SYMBOL_GPL(gpiochip_request_own_desc);
/**
* gpiochip_free_own_desc - Free GPIO requested by the chip driver
* @desc: GPIO descriptor to free
*
* Function frees the given GPIO requested previously with
* gpiochip_request_own_desc().
*/
void gpiochip_free_own_desc(struct gpio_desc *desc)
{
if (desc)
gpiod_free_commit(desc);
}
EXPORT_SYMBOL_GPL(gpiochip_free_own_desc);
/*
* Drivers MUST set GPIO direction before making get/set calls. In
* some cases this is done in early boot, before IRQs are enabled.
*
* As a rule these aren't called more than once (except for drivers
* using the open-drain emulation idiom) so these are natural places
* to accumulate extra debugging checks. Note that we can't (yet)
* rely on gpio_request() having been called beforehand.
*/
static int gpio_do_set_config(struct gpio_chip *gc, unsigned int offset,
unsigned long config)
{
if (!gc->set_config)
return -ENOTSUPP;
return gc->set_config(gc, offset, config);
}
static int gpio_set_config_with_argument(struct gpio_desc *desc,
enum pin_config_param mode,
u32 argument)
{
struct gpio_chip *gc = desc->gdev->chip;
unsigned long config;
config = pinconf_to_config_packed(mode, argument);
return gpio_do_set_config(gc, gpio_chip_hwgpio(desc), config);
}
static int gpio_set_config_with_argument_optional(struct gpio_desc *desc,
enum pin_config_param mode,
u32 argument)
{
struct device *dev = &desc->gdev->dev;
int gpio = gpio_chip_hwgpio(desc);
int ret;
ret = gpio_set_config_with_argument(desc, mode, argument);
if (ret != -ENOTSUPP)
return ret;
switch (mode) {
case PIN_CONFIG_PERSIST_STATE:
dev_dbg(dev, "Persistence not supported for GPIO %d\n", gpio);
break;
default:
break;
}
return 0;
}
static int gpio_set_config(struct gpio_desc *desc, enum pin_config_param mode)
{
return gpio_set_config_with_argument(desc, mode, 0);
}
static int gpio_set_bias(struct gpio_desc *desc)
{
enum pin_config_param bias;
unsigned int arg;
if (test_bit(FLAG_BIAS_DISABLE, &desc->flags))
bias = PIN_CONFIG_BIAS_DISABLE;
else if (test_bit(FLAG_PULL_UP, &desc->flags))
bias = PIN_CONFIG_BIAS_PULL_UP;
else if (test_bit(FLAG_PULL_DOWN, &desc->flags))
bias = PIN_CONFIG_BIAS_PULL_DOWN;
else
return 0;
switch (bias) {
case PIN_CONFIG_BIAS_PULL_DOWN:
case PIN_CONFIG_BIAS_PULL_UP:
arg = 1;
break;
default:
arg = 0;
break;
}
return gpio_set_config_with_argument_optional(desc, bias, arg);
}
int gpio_set_debounce_timeout(struct gpio_desc *desc, unsigned int debounce)
{
return gpio_set_config_with_argument_optional(desc,
PIN_CONFIG_INPUT_DEBOUNCE,
debounce);
}
/**
* gpiod_direction_input - set the GPIO direction to input
* @desc: GPIO to set to input
*
* Set the direction of the passed GPIO to input, such as gpiod_get_value() can
* be called safely on it.
*
* Return 0 in case of success, else an error code.
*/
int gpiod_direction_input(struct gpio_desc *desc)
{
struct gpio_chip *gc;
int ret = 0;
VALIDATE_DESC(desc);
gc = desc->gdev->chip;
/*
* It is legal to have no .get() and .direction_input() specified if
* the chip is output-only, but you can't specify .direction_input()
* and not support the .get() operation, that doesn't make sense.
*/
if (!gc->get && gc->direction_input) {
gpiod_warn(desc,
"%s: missing get() but have direction_input()\n",
__func__);
return -EIO;
}
/*
* If we have a .direction_input() callback, things are simple,
* just call it. Else we are some input-only chip so try to check the
* direction (if .get_direction() is supported) else we silently
* assume we are in input mode after this.
*/
if (gc->direction_input) {
ret = gc->direction_input(gc, gpio_chip_hwgpio(desc));
} else if (gc->get_direction &&
(gc->get_direction(gc, gpio_chip_hwgpio(desc)) != 1)) {
gpiod_warn(desc,
"%s: missing direction_input() operation and line is output\n",
__func__);
return -EIO;
}
if (ret == 0) {
clear_bit(FLAG_IS_OUT, &desc->flags);
ret = gpio_set_bias(desc);
}
trace_gpio_direction(desc_to_gpio(desc), 1, ret);
return ret;
}
EXPORT_SYMBOL_GPL(gpiod_direction_input);
static int gpiod_direction_output_raw_commit(struct gpio_desc *desc, int value)
{
struct gpio_chip *gc = desc->gdev->chip;
int val = !!value;
int ret = 0;
/*
* It's OK not to specify .direction_output() if the gpiochip is
* output-only, but if there is then not even a .set() operation it
* is pretty tricky to drive the output line.
*/
if (!gc->set && !gc->direction_output) {
gpiod_warn(desc,
"%s: missing set() and direction_output() operations\n",
__func__);
return -EIO;
}
if (gc->direction_output) {
ret = gc->direction_output(gc, gpio_chip_hwgpio(desc), val);
} else {
/* Check that we are in output mode if we can */
if (gc->get_direction &&
gc->get_direction(gc, gpio_chip_hwgpio(desc))) {
gpiod_warn(desc,
"%s: missing direction_output() operation\n",
__func__);
return -EIO;
}
/*
* If we can't actively set the direction, we are some
* output-only chip, so just drive the output as desired.
*/
gc->set(gc, gpio_chip_hwgpio(desc), val);
}
if (!ret)
set_bit(FLAG_IS_OUT, &desc->flags);
trace_gpio_value(desc_to_gpio(desc), 0, val);
trace_gpio_direction(desc_to_gpio(desc), 0, ret);
return ret;
}
/**
* gpiod_direction_output_raw - set the GPIO direction to output
* @desc: GPIO to set to output
* @value: initial output value of the GPIO
*
* Set the direction of the passed GPIO to output, such as gpiod_set_value() can
* be called safely on it. The initial value of the output must be specified
* as raw value on the physical line without regard for the ACTIVE_LOW status.
*
* Return 0 in case of success, else an error code.
*/
int gpiod_direction_output_raw(struct gpio_desc *desc, int value)
{
VALIDATE_DESC(desc);
return gpiod_direction_output_raw_commit(desc, value);
}
EXPORT_SYMBOL_GPL(gpiod_direction_output_raw);
/**
* gpiod_direction_output - set the GPIO direction to output
* @desc: GPIO to set to output
* @value: initial output value of the GPIO
*
* Set the direction of the passed GPIO to output, such as gpiod_set_value() can
* be called safely on it. The initial value of the output must be specified
* as the logical value of the GPIO, i.e. taking its ACTIVE_LOW status into
* account.
*
* Return 0 in case of success, else an error code.
*/
int gpiod_direction_output(struct gpio_desc *desc, int value)
{
int ret;
VALIDATE_DESC(desc);
if (test_bit(FLAG_ACTIVE_LOW, &desc->flags))
value = !value;
else
value = !!value;
/* GPIOs used for enabled IRQs shall not be set as output */
if (test_bit(FLAG_USED_AS_IRQ, &desc->flags) &&
test_bit(FLAG_IRQ_IS_ENABLED, &desc->flags)) {
gpiod_err(desc,
"%s: tried to set a GPIO tied to an IRQ as output\n",
__func__);
return -EIO;
}
if (test_bit(FLAG_OPEN_DRAIN, &desc->flags)) {
/* First see if we can enable open drain in hardware */
ret = gpio_set_config(desc, PIN_CONFIG_DRIVE_OPEN_DRAIN);
if (!ret)
goto set_output_value;
/* Emulate open drain by not actively driving the line high */
if (value) {
ret = gpiod_direction_input(desc);
goto set_output_flag;
}
}
else if (test_bit(FLAG_OPEN_SOURCE, &desc->flags)) {
ret = gpio_set_config(desc, PIN_CONFIG_DRIVE_OPEN_SOURCE);
if (!ret)
goto set_output_value;
/* Emulate open source by not actively driving the line low */
if (!value) {
ret = gpiod_direction_input(desc);
goto set_output_flag;
}
} else {
gpio_set_config(desc, PIN_CONFIG_DRIVE_PUSH_PULL);
}
set_output_value:
ret = gpio_set_bias(desc);
if (ret)
return ret;
return gpiod_direction_output_raw_commit(desc, value);
set_output_flag:
/*
* When emulating open-source or open-drain functionalities by not
* actively driving the line (setting mode to input) we still need to
* set the IS_OUT flag or otherwise we won't be able to set the line
* value anymore.
*/
if (ret == 0)
set_bit(FLAG_IS_OUT, &desc->flags);
return ret;
}
EXPORT_SYMBOL_GPL(gpiod_direction_output);
/**
* gpiod_set_config - sets @config for a GPIO
* @desc: descriptor of the GPIO for which to set the configuration
* @config: Same packed config format as generic pinconf
*
* Returns:
* 0 on success, %-ENOTSUPP if the controller doesn't support setting the
* configuration.
*/
int gpiod_set_config(struct gpio_desc *desc, unsigned long config)
{
struct gpio_chip *gc;
VALIDATE_DESC(desc);
gc = desc->gdev->chip;
return gpio_do_set_config(gc, gpio_chip_hwgpio(desc), config);
}
EXPORT_SYMBOL_GPL(gpiod_set_config);
/**
* gpiod_set_debounce - sets @debounce time for a GPIO
* @desc: descriptor of the GPIO for which to set debounce time
* @debounce: debounce time in microseconds
*
* Returns:
* 0 on success, %-ENOTSUPP if the controller doesn't support setting the
* debounce time.
*/
int gpiod_set_debounce(struct gpio_desc *desc, unsigned int debounce)
{
unsigned long config;
config = pinconf_to_config_packed(PIN_CONFIG_INPUT_DEBOUNCE, debounce);
return gpiod_set_config(desc, config);
}
EXPORT_SYMBOL_GPL(gpiod_set_debounce);
/**
* gpiod_set_transitory - Lose or retain GPIO state on suspend or reset
* @desc: descriptor of the GPIO for which to configure persistence
* @transitory: True to lose state on suspend or reset, false for persistence
*
* Returns:
* 0 on success, otherwise a negative error code.
*/
int gpiod_set_transitory(struct gpio_desc *desc, bool transitory)
{
VALIDATE_DESC(desc);
/*
* Handle FLAG_TRANSITORY first, enabling queries to gpiolib for
* persistence state.
*/
assign_bit(FLAG_TRANSITORY, &desc->flags, transitory);
/* If the driver supports it, set the persistence state now */
return gpio_set_config_with_argument_optional(desc,
PIN_CONFIG_PERSIST_STATE,
!transitory);
}
EXPORT_SYMBOL_GPL(gpiod_set_transitory);
/**
* gpiod_is_active_low - test whether a GPIO is active-low or not
* @desc: the gpio descriptor to test
*
* Returns 1 if the GPIO is active-low, 0 otherwise.
*/
int gpiod_is_active_low(const struct gpio_desc *desc)
{
VALIDATE_DESC(desc);
return test_bit(FLAG_ACTIVE_LOW, &desc->flags);
}
EXPORT_SYMBOL_GPL(gpiod_is_active_low);
/**
* gpiod_toggle_active_low - toggle whether a GPIO is active-low or not
* @desc: the gpio descriptor to change
*/
void gpiod_toggle_active_low(struct gpio_desc *desc)
{
VALIDATE_DESC_VOID(desc);
change_bit(FLAG_ACTIVE_LOW, &desc->flags);
}
EXPORT_SYMBOL_GPL(gpiod_toggle_active_low);
/* I/O calls are only valid after configuration completed; the relevant
* "is this a valid GPIO" error checks should already have been done.
*
* "Get" operations are often inlinable as reading a pin value register,
* and masking the relevant bit in that register.
*
* When "set" operations are inlinable, they involve writing that mask to
* one register to set a low value, or a different register to set it high.
* Otherwise locking is needed, so there may be little value to inlining.
*
*------------------------------------------------------------------------
*
* IMPORTANT!!! The hot paths -- get/set value -- assume that callers
* have requested the GPIO. That can include implicit requesting by
* a direction setting call. Marking a gpio as requested locks its chip
* in memory, guaranteeing that these table lookups need no more locking
* and that gpiochip_remove() will fail.
*
* REVISIT when debugging, consider adding some instrumentation to ensure
* that the GPIO was actually requested.
*/
static int gpiod_get_raw_value_commit(const struct gpio_desc *desc)
{
struct gpio_chip *gc;
int offset;
int value;
gc = desc->gdev->chip;
offset = gpio_chip_hwgpio(desc);
value = gc->get ? gc->get(gc, offset) : -EIO;
value = value < 0 ? value : !!value;
trace_gpio_value(desc_to_gpio(desc), 1, value);
return value;
}
static int gpio_chip_get_multiple(struct gpio_chip *gc,
unsigned long *mask, unsigned long *bits)
{
if (gc->get_multiple) {
return gc->get_multiple(gc, mask, bits);
} else if (gc->get) {
int i, value;
for_each_set_bit(i, mask, gc->ngpio) {
value = gc->get(gc, i);
if (value < 0)
return value;
__assign_bit(i, bits, value);
}
return 0;
}
return -EIO;
}
int gpiod_get_array_value_complex(bool raw, bool can_sleep,
unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)
{
int ret, i = 0;
/*
* Validate array_info against desc_array and its size.
* It should immediately follow desc_array if both
* have been obtained from the same gpiod_get_array() call.
*/
if (array_info && array_info->desc == desc_array &&
array_size <= array_info->size &&
(void *)array_info == desc_array + array_info->size) {
if (!can_sleep)
WARN_ON(array_info->chip->can_sleep);
ret = gpio_chip_get_multiple(array_info->chip,
array_info->get_mask,
value_bitmap);
if (ret)
return ret;
if (!raw && !bitmap_empty(array_info->invert_mask, array_size))
bitmap_xor(value_bitmap, value_bitmap,
array_info->invert_mask, array_size);
i = find_first_zero_bit(array_info->get_mask, array_size);
if (i == array_size)
return 0;
} else {
array_info = NULL;
}
while (i < array_size) {
struct gpio_chip *gc = desc_array[i]->gdev->chip;
DECLARE_BITMAP(fastpath_mask, FASTPATH_NGPIO);
DECLARE_BITMAP(fastpath_bits, FASTPATH_NGPIO);
unsigned long *mask, *bits;
int first, j;
if (likely(gc->ngpio <= FASTPATH_NGPIO)) {
mask = fastpath_mask;
bits = fastpath_bits;
} else {
gfp_t flags = can_sleep ? GFP_KERNEL : GFP_ATOMIC;
mask = bitmap_alloc(gc->ngpio, flags);
if (!mask)
return -ENOMEM;
bits = bitmap_alloc(gc->ngpio, flags);
if (!bits) {
bitmap_free(mask);
return -ENOMEM;
}
}
bitmap_zero(mask, gc->ngpio);
if (!can_sleep)
WARN_ON(gc->can_sleep);
/* collect all inputs belonging to the same chip */
first = i;
do {
const struct gpio_desc *desc = desc_array[i];
int hwgpio = gpio_chip_hwgpio(desc);
__set_bit(hwgpio, mask);
i++;
if (array_info)
i = find_next_zero_bit(array_info->get_mask,
array_size, i);
} while ((i < array_size) &&
(desc_array[i]->gdev->chip == gc));
ret = gpio_chip_get_multiple(gc, mask, bits);
if (ret) {
if (mask != fastpath_mask)
bitmap_free(mask);
if (bits != fastpath_bits)
bitmap_free(bits);
return ret;
}
for (j = first; j < i; ) {
const struct gpio_desc *desc = desc_array[j];
int hwgpio = gpio_chip_hwgpio(desc);
int value = test_bit(hwgpio, bits);
if (!raw && test_bit(FLAG_ACTIVE_LOW, &desc->flags))
value = !value;
__assign_bit(j, value_bitmap, value);
trace_gpio_value(desc_to_gpio(desc), 1, value);
j++;
if (array_info)
j = find_next_zero_bit(array_info->get_mask, i,
j);
}
if (mask != fastpath_mask)
bitmap_free(mask);
if (bits != fastpath_bits)
bitmap_free(bits);
}
return 0;
}
/**
* gpiod_get_raw_value() - return a gpio's raw value
* @desc: gpio whose value will be returned
*
* Return the GPIO's raw value, i.e. the value of the physical line disregarding
* its ACTIVE_LOW status, or negative errno on failure.
*
* This function can be called from contexts where we cannot sleep, and will
* complain if the GPIO chip functions potentially sleep.
*/
int gpiod_get_raw_value(const struct gpio_desc *desc)
{
VALIDATE_DESC(desc);
/* Should be using gpiod_get_raw_value_cansleep() */
WARN_ON(desc->gdev->chip->can_sleep);
return gpiod_get_raw_value_commit(desc);
}
EXPORT_SYMBOL_GPL(gpiod_get_raw_value);
/**
* gpiod_get_value() - return a gpio's value
* @desc: gpio whose value will be returned
*
* Return the GPIO's logical value, i.e. taking the ACTIVE_LOW status into
* account, or negative errno on failure.
*
* This function can be called from contexts where we cannot sleep, and will
* complain if the GPIO chip functions potentially sleep.
*/
int gpiod_get_value(const struct gpio_desc *desc)
{
int value;
VALIDATE_DESC(desc);
/* Should be using gpiod_get_value_cansleep() */
WARN_ON(desc->gdev->chip->can_sleep);
value = gpiod_get_raw_value_commit(desc);
if (value < 0)
return value;
if (test_bit(FLAG_ACTIVE_LOW, &desc->flags))
value = !value;
return value;
}
EXPORT_SYMBOL_GPL(gpiod_get_value);
/**
* gpiod_get_raw_array_value() - read raw values from an array of GPIOs
* @array_size: number of elements in the descriptor array / value bitmap
* @desc_array: array of GPIO descriptors whose values will be read
* @array_info: information on applicability of fast bitmap processing path
* @value_bitmap: bitmap to store the read values
*
* Read the raw values of the GPIOs, i.e. the values of the physical lines
* without regard for their ACTIVE_LOW status. Return 0 in case of success,
* else an error code.
*
* This function can be called from contexts where we cannot sleep,
* and it will complain if the GPIO chip functions potentially sleep.
*/
int gpiod_get_raw_array_value(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)
{
if (!desc_array)
return -EINVAL;
return gpiod_get_array_value_complex(true, false, array_size,
desc_array, array_info,
value_bitmap);
}
EXPORT_SYMBOL_GPL(gpiod_get_raw_array_value);
/**
* gpiod_get_array_value() - read values from an array of GPIOs
* @array_size: number of elements in the descriptor array / value bitmap
* @desc_array: array of GPIO descriptors whose values will be read
* @array_info: information on applicability of fast bitmap processing path
* @value_bitmap: bitmap to store the read values
*
* Read the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status
* into account. Return 0 in case of success, else an error code.
*
* This function can be called from contexts where we cannot sleep,
* and it will complain if the GPIO chip functions potentially sleep.
*/
int gpiod_get_array_value(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)
{
if (!desc_array)
return -EINVAL;
return gpiod_get_array_value_complex(false, false, array_size,
desc_array, array_info,
value_bitmap);
}
EXPORT_SYMBOL_GPL(gpiod_get_array_value);
/*
* gpio_set_open_drain_value_commit() - Set the open drain gpio's value.
* @desc: gpio descriptor whose state need to be set.
* @value: Non-zero for setting it HIGH otherwise it will set to LOW.
*/
static void gpio_set_open_drain_value_commit(struct gpio_desc *desc, bool value)
{
int ret = 0;
struct gpio_chip *gc = desc->gdev->chip;
int offset = gpio_chip_hwgpio(desc);
if (value) {
ret = gc->direction_input(gc, offset);
} else {
ret = gc->direction_output(gc, offset, 0);
if (!ret)
set_bit(FLAG_IS_OUT, &desc->flags);
}
trace_gpio_direction(desc_to_gpio(desc), value, ret);
if (ret < 0)
gpiod_err(desc,
"%s: Error in set_value for open drain err %d\n",
__func__, ret);
}
/*
* _gpio_set_open_source_value() - Set the open source gpio's value.
* @desc: gpio descriptor whose state need to be set.
* @value: Non-zero for setting it HIGH otherwise it will set to LOW.
*/
static void gpio_set_open_source_value_commit(struct gpio_desc *desc, bool value)
{
int ret = 0;
struct gpio_chip *gc = desc->gdev->chip;
int offset = gpio_chip_hwgpio(desc);
if (value) {
ret = gc->direction_output(gc, offset, 1);
if (!ret)
set_bit(FLAG_IS_OUT, &desc->flags);
} else {
ret = gc->direction_input(gc, offset);
}
trace_gpio_direction(desc_to_gpio(desc), !value, ret);
if (ret < 0)
gpiod_err(desc,
"%s: Error in set_value for open source err %d\n",
__func__, ret);
}
static void gpiod_set_raw_value_commit(struct gpio_desc *desc, bool value)
{
struct gpio_chip *gc;
gc = desc->gdev->chip;
trace_gpio_value(desc_to_gpio(desc), 0, value);
gc->set(gc, gpio_chip_hwgpio(desc), value);
}
/*
* set multiple outputs on the same chip;
* use the chip's set_multiple function if available;
* otherwise set the outputs sequentially;
* @chip: the GPIO chip we operate on
* @mask: bit mask array; one bit per output; BITS_PER_LONG bits per word
* defines which outputs are to be changed
* @bits: bit value array; one bit per output; BITS_PER_LONG bits per word
* defines the values the outputs specified by mask are to be set to
*/
static void gpio_chip_set_multiple(struct gpio_chip *gc,
unsigned long *mask, unsigned long *bits)
{
if (gc->set_multiple) {
gc->set_multiple(gc, mask, bits);
} else {
unsigned int i;
/* set outputs if the corresponding mask bit is set */
for_each_set_bit(i, mask, gc->ngpio)
gc->set(gc, i, test_bit(i, bits));
}
}
int gpiod_set_array_value_complex(bool raw, bool can_sleep,
unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)
{
int i = 0;
/*
* Validate array_info against desc_array and its size.
* It should immediately follow desc_array if both
* have been obtained from the same gpiod_get_array() call.
*/
if (array_info && array_info->desc == desc_array &&
array_size <= array_info->size &&
(void *)array_info == desc_array + array_info->size) {
if (!can_sleep)
WARN_ON(array_info->chip->can_sleep);
if (!raw && !bitmap_empty(array_info->invert_mask, array_size))
bitmap_xor(value_bitmap, value_bitmap,
array_info->invert_mask, array_size);
gpio_chip_set_multiple(array_info->chip, array_info->set_mask,
value_bitmap);
i = find_first_zero_bit(array_info->set_mask, array_size);
if (i == array_size)
return 0;
} else {
array_info = NULL;
}
while (i < array_size) {
struct gpio_chip *gc = desc_array[i]->gdev->chip;
DECLARE_BITMAP(fastpath_mask, FASTPATH_NGPIO);
DECLARE_BITMAP(fastpath_bits, FASTPATH_NGPIO);
unsigned long *mask, *bits;
int count = 0;
if (likely(gc->ngpio <= FASTPATH_NGPIO)) {
mask = fastpath_mask;
bits = fastpath_bits;
} else {
gfp_t flags = can_sleep ? GFP_KERNEL : GFP_ATOMIC;
mask = bitmap_alloc(gc->ngpio, flags);
if (!mask)
return -ENOMEM;
bits = bitmap_alloc(gc->ngpio, flags);
if (!bits) {
bitmap_free(mask);
return -ENOMEM;
}
}
bitmap_zero(mask, gc->ngpio);
if (!can_sleep)
WARN_ON(gc->can_sleep);
do {
struct gpio_desc *desc = desc_array[i];
int hwgpio = gpio_chip_hwgpio(desc);
int value = test_bit(i, value_bitmap);
/*
* Pins applicable for fast input but not for
* fast output processing may have been already
* inverted inside the fast path, skip them.
*/
if (!raw && !(array_info &&
test_bit(i, array_info->invert_mask)) &&
test_bit(FLAG_ACTIVE_LOW, &desc->flags))
value = !value;
trace_gpio_value(desc_to_gpio(desc), 0, value);
/*
* collect all normal outputs belonging to the same chip
* open drain and open source outputs are set individually
*/
if (test_bit(FLAG_OPEN_DRAIN, &desc->flags) && !raw) {
gpio_set_open_drain_value_commit(desc, value);
} else if (test_bit(FLAG_OPEN_SOURCE, &desc->flags) && !raw) {
gpio_set_open_source_value_commit(desc, value);
} else {
__set_bit(hwgpio, mask);
__assign_bit(hwgpio, bits, value);
count++;
}
i++;
if (array_info)
i = find_next_zero_bit(array_info->set_mask,
array_size, i);
} while ((i < array_size) &&
(desc_array[i]->gdev->chip == gc));
/* push collected bits to outputs */
if (count != 0)
gpio_chip_set_multiple(gc, mask, bits);
if (mask != fastpath_mask)
bitmap_free(mask);
if (bits != fastpath_bits)
bitmap_free(bits);
}
return 0;
}
/**
* gpiod_set_raw_value() - assign a gpio's raw value
* @desc: gpio whose value will be assigned
* @value: value to assign
*
* Set the raw value of the GPIO, i.e. the value of its physical line without
* regard for its ACTIVE_LOW status.
*
* This function can be called from contexts where we cannot sleep, and will
* complain if the GPIO chip functions potentially sleep.
*/
void gpiod_set_raw_value(struct gpio_desc *desc, int value)
{
VALIDATE_DESC_VOID(desc);
/* Should be using gpiod_set_raw_value_cansleep() */
WARN_ON(desc->gdev->chip->can_sleep);
gpiod_set_raw_value_commit(desc, value);
}
EXPORT_SYMBOL_GPL(gpiod_set_raw_value);
/**
* gpiod_set_value_nocheck() - set a GPIO line value without checking
* @desc: the descriptor to set the value on
* @value: value to set
*
* This sets the value of a GPIO line backing a descriptor, applying
* different semantic quirks like active low and open drain/source
* handling.
*/
static void gpiod_set_value_nocheck(struct gpio_desc *desc, int value)
{
if (test_bit(FLAG_ACTIVE_LOW, &desc->flags))
value = !value;
if (test_bit(FLAG_OPEN_DRAIN, &desc->flags))
gpio_set_open_drain_value_commit(desc, value);
else if (test_bit(FLAG_OPEN_SOURCE, &desc->flags))
gpio_set_open_source_value_commit(desc, value);
else
gpiod_set_raw_value_commit(desc, value);
}
/**
* gpiod_set_value() - assign a gpio's value
* @desc: gpio whose value will be assigned
* @value: value to assign
*
* Set the logical value of the GPIO, i.e. taking its ACTIVE_LOW,
* OPEN_DRAIN and OPEN_SOURCE flags into account.
*
* This function can be called from contexts where we cannot sleep, and will
* complain if the GPIO chip functions potentially sleep.
*/
void gpiod_set_value(struct gpio_desc *desc, int value)
{
VALIDATE_DESC_VOID(desc);
/* Should be using gpiod_set_value_cansleep() */
WARN_ON(desc->gdev->chip->can_sleep);
gpiod_set_value_nocheck(desc, value);
}
EXPORT_SYMBOL_GPL(gpiod_set_value);
/**
* gpiod_set_raw_array_value() - assign values to an array of GPIOs
* @array_size: number of elements in the descriptor array / value bitmap
* @desc_array: array of GPIO descriptors whose values will be assigned
* @array_info: information on applicability of fast bitmap processing path
* @value_bitmap: bitmap of values to assign
*
* Set the raw values of the GPIOs, i.e. the values of the physical lines
* without regard for their ACTIVE_LOW status.
*
* This function can be called from contexts where we cannot sleep, and will
* complain if the GPIO chip functions potentially sleep.
*/
int gpiod_set_raw_array_value(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)
{
if (!desc_array)
return -EINVAL;
return gpiod_set_array_value_complex(true, false, array_size,
desc_array, array_info, value_bitmap);
}
EXPORT_SYMBOL_GPL(gpiod_set_raw_array_value);
/**
* gpiod_set_array_value() - assign values to an array of GPIOs
* @array_size: number of elements in the descriptor array / value bitmap
* @desc_array: array of GPIO descriptors whose values will be assigned
* @array_info: information on applicability of fast bitmap processing path
* @value_bitmap: bitmap of values to assign
*
* Set the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status
* into account.
*
* This function can be called from contexts where we cannot sleep, and will
* complain if the GPIO chip functions potentially sleep.
*/
int gpiod_set_array_value(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)
{
if (!desc_array)
return -EINVAL;
return gpiod_set_array_value_complex(false, false, array_size,
desc_array, array_info,
value_bitmap);
}
EXPORT_SYMBOL_GPL(gpiod_set_array_value);
/**
* gpiod_cansleep() - report whether gpio value access may sleep
* @desc: gpio to check
*
*/
int gpiod_cansleep(const struct gpio_desc *desc)
{
VALIDATE_DESC(desc);
return desc->gdev->chip->can_sleep;
}
EXPORT_SYMBOL_GPL(gpiod_cansleep);
/**
* gpiod_set_consumer_name() - set the consumer name for the descriptor
* @desc: gpio to set the consumer name on
* @name: the new consumer name
*/
int gpiod_set_consumer_name(struct gpio_desc *desc, const char *name)
{
VALIDATE_DESC(desc);
if (name) {
name = kstrdup_const(name, GFP_KERNEL);
if (!name)
return -ENOMEM;
}
kfree_const(desc->label);
desc_set_label(desc, name);
return 0;
}
EXPORT_SYMBOL_GPL(gpiod_set_consumer_name);
/**
* gpiod_to_irq() - return the IRQ corresponding to a GPIO
* @desc: gpio whose IRQ will be returned (already requested)
*
* Return the IRQ corresponding to the passed GPIO, or an error code in case of
* error.
*/
int gpiod_to_irq(const struct gpio_desc *desc)
{
struct gpio_chip *gc;
int offset;
/*
* Cannot VALIDATE_DESC() here as gpiod_to_irq() consumer semantics
* requires this function to not return zero on an invalid descriptor
* but rather a negative error number.
*/
if (!desc || IS_ERR(desc) || !desc->gdev || !desc->gdev->chip)
return -EINVAL;
gc = desc->gdev->chip;
offset = gpio_chip_hwgpio(desc);
if (gc->to_irq) {
int retirq = gc->to_irq(gc, offset);
/* Zero means NO_IRQ */
if (!retirq)
return -ENXIO;
return retirq;
}
return -ENXIO;
}
EXPORT_SYMBOL_GPL(gpiod_to_irq);
/**
* gpiochip_lock_as_irq() - lock a GPIO to be used as IRQ
* @gc: the chip the GPIO to lock belongs to
* @offset: the offset of the GPIO to lock as IRQ
*
* This is used directly by GPIO drivers that want to lock down
* a certain GPIO line to be used for IRQs.
*/
int gpiochip_lock_as_irq(struct gpio_chip *gc, unsigned int offset)
{
struct gpio_desc *desc;
desc = gpiochip_get_desc(gc, offset);
if (IS_ERR(desc))
return PTR_ERR(desc);
/*
* If it's fast: flush the direction setting if something changed
* behind our back
*/
if (!gc->can_sleep && gc->get_direction) {
int dir = gpiod_get_direction(desc);
if (dir < 0) {
chip_err(gc, "%s: cannot get GPIO direction\n",
__func__);
return dir;
}
}
/* To be valid for IRQ the line needs to be input or open drain */
if (test_bit(FLAG_IS_OUT, &desc->flags) &&
!test_bit(FLAG_OPEN_DRAIN, &desc->flags)) {
chip_err(gc,
"%s: tried to flag a GPIO set as output for IRQ\n",
__func__);
return -EIO;
}
set_bit(FLAG_USED_AS_IRQ, &desc->flags);
set_bit(FLAG_IRQ_IS_ENABLED, &desc->flags);
/*
* If the consumer has not set up a label (such as when the
* IRQ is referenced from .to_irq()) we set up a label here
* so it is clear this is used as an interrupt.
*/
if (!desc->label)
desc_set_label(desc, "interrupt");
return 0;
}
EXPORT_SYMBOL_GPL(gpiochip_lock_as_irq);
/**
* gpiochip_unlock_as_irq() - unlock a GPIO used as IRQ
* @gc: the chip the GPIO to lock belongs to
* @offset: the offset of the GPIO to lock as IRQ
*
* This is used directly by GPIO drivers that want to indicate
* that a certain GPIO is no longer used exclusively for IRQ.
*/
void gpiochip_unlock_as_irq(struct gpio_chip *gc, unsigned int offset)
{
struct gpio_desc *desc;
desc = gpiochip_get_desc(gc, offset);
if (IS_ERR(desc))
return;
clear_bit(FLAG_USED_AS_IRQ, &desc->flags);
clear_bit(FLAG_IRQ_IS_ENABLED, &desc->flags);
/* If we only had this marking, erase it */
if (desc->label && !strcmp(desc->label, "interrupt"))
desc_set_label(desc, NULL);
}
EXPORT_SYMBOL_GPL(gpiochip_unlock_as_irq);
void gpiochip_disable_irq(struct gpio_chip *gc, unsigned int offset)
{
struct gpio_desc *desc = gpiochip_get_desc(gc, offset);
if (!IS_ERR(desc) &&
!WARN_ON(!test_bit(FLAG_USED_AS_IRQ, &desc->flags)))
clear_bit(FLAG_IRQ_IS_ENABLED, &desc->flags);
}
EXPORT_SYMBOL_GPL(gpiochip_disable_irq);
void gpiochip_enable_irq(struct gpio_chip *gc, unsigned int offset)
{
struct gpio_desc *desc = gpiochip_get_desc(gc, offset);
if (!IS_ERR(desc) &&
!WARN_ON(!test_bit(FLAG_USED_AS_IRQ, &desc->flags))) {
/*
* We must not be output when using IRQ UNLESS we are
* open drain.
*/
WARN_ON(test_bit(FLAG_IS_OUT, &desc->flags) &&
!test_bit(FLAG_OPEN_DRAIN, &desc->flags));
set_bit(FLAG_IRQ_IS_ENABLED, &desc->flags);
}
}
EXPORT_SYMBOL_GPL(gpiochip_enable_irq);
bool gpiochip_line_is_irq(struct gpio_chip *gc, unsigned int offset)
{
if (offset >= gc->ngpio)
return false;
return test_bit(FLAG_USED_AS_IRQ, &gc->gpiodev->descs[offset].flags);
}
EXPORT_SYMBOL_GPL(gpiochip_line_is_irq);
int gpiochip_reqres_irq(struct gpio_chip *gc, unsigned int offset)
{
int ret;
if (!try_module_get(gc->gpiodev->owner))
return -ENODEV;
ret = gpiochip_lock_as_irq(gc, offset);
if (ret) {
chip_err(gc, "unable to lock HW IRQ %u for IRQ\n", offset);
module_put(gc->gpiodev->owner);
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(gpiochip_reqres_irq);
void gpiochip_relres_irq(struct gpio_chip *gc, unsigned int offset)
{
gpiochip_unlock_as_irq(gc, offset);
module_put(gc->gpiodev->owner);
}
EXPORT_SYMBOL_GPL(gpiochip_relres_irq);
bool gpiochip_line_is_open_drain(struct gpio_chip *gc, unsigned int offset)
{
if (offset >= gc->ngpio)
return false;
return test_bit(FLAG_OPEN_DRAIN, &gc->gpiodev->descs[offset].flags);
}
EXPORT_SYMBOL_GPL(gpiochip_line_is_open_drain);
bool gpiochip_line_is_open_source(struct gpio_chip *gc, unsigned int offset)
{
if (offset >= gc->ngpio)
return false;
return test_bit(FLAG_OPEN_SOURCE, &gc->gpiodev->descs[offset].flags);
}
EXPORT_SYMBOL_GPL(gpiochip_line_is_open_source);
bool gpiochip_line_is_persistent(struct gpio_chip *gc, unsigned int offset)
{
if (offset >= gc->ngpio)
return false;
return !test_bit(FLAG_TRANSITORY, &gc->gpiodev->descs[offset].flags);
}
EXPORT_SYMBOL_GPL(gpiochip_line_is_persistent);
/**
* gpiod_get_raw_value_cansleep() - return a gpio's raw value
* @desc: gpio whose value will be returned
*
* Return the GPIO's raw value, i.e. the value of the physical line disregarding
* its ACTIVE_LOW status, or negative errno on failure.
*
* This function is to be called from contexts that can sleep.
*/
int gpiod_get_raw_value_cansleep(const struct gpio_desc *desc)
{
might_sleep_if(extra_checks);
VALIDATE_DESC(desc);
return gpiod_get_raw_value_commit(desc);
}
EXPORT_SYMBOL_GPL(gpiod_get_raw_value_cansleep);
/**
* gpiod_get_value_cansleep() - return a gpio's value
* @desc: gpio whose value will be returned
*
* Return the GPIO's logical value, i.e. taking the ACTIVE_LOW status into
* account, or negative errno on failure.
*
* This function is to be called from contexts that can sleep.
*/
int gpiod_get_value_cansleep(const struct gpio_desc *desc)
{
int value;
might_sleep_if(extra_checks);
VALIDATE_DESC(desc);
value = gpiod_get_raw_value_commit(desc);
if (value < 0)
return value;
if (test_bit(FLAG_ACTIVE_LOW, &desc->flags))
value = !value;
return value;
}
EXPORT_SYMBOL_GPL(gpiod_get_value_cansleep);
/**
* gpiod_get_raw_array_value_cansleep() - read raw values from an array of GPIOs
* @array_size: number of elements in the descriptor array / value bitmap
* @desc_array: array of GPIO descriptors whose values will be read
* @array_info: information on applicability of fast bitmap processing path
* @value_bitmap: bitmap to store the read values
*
* Read the raw values of the GPIOs, i.e. the values of the physical lines
* without regard for their ACTIVE_LOW status. Return 0 in case of success,
* else an error code.
*
* This function is to be called from contexts that can sleep.
*/
int gpiod_get_raw_array_value_cansleep(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)
{
might_sleep_if(extra_checks);
if (!desc_array)
return -EINVAL;
return gpiod_get_array_value_complex(true, true, array_size,
desc_array, array_info,
value_bitmap);
}
EXPORT_SYMBOL_GPL(gpiod_get_raw_array_value_cansleep);
/**
* gpiod_get_array_value_cansleep() - read values from an array of GPIOs
* @array_size: number of elements in the descriptor array / value bitmap
* @desc_array: array of GPIO descriptors whose values will be read
* @array_info: information on applicability of fast bitmap processing path
* @value_bitmap: bitmap to store the read values
*
* Read the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status
* into account. Return 0 in case of success, else an error code.
*
* This function is to be called from contexts that can sleep.
*/
int gpiod_get_array_value_cansleep(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)
{
might_sleep_if(extra_checks);
if (!desc_array)
return -EINVAL;
return gpiod_get_array_value_complex(false, true, array_size,
desc_array, array_info,
value_bitmap);
}
EXPORT_SYMBOL_GPL(gpiod_get_array_value_cansleep);
/**
* gpiod_set_raw_value_cansleep() - assign a gpio's raw value
* @desc: gpio whose value will be assigned
* @value: value to assign
*
* Set the raw value of the GPIO, i.e. the value of its physical line without
* regard for its ACTIVE_LOW status.
*
* This function is to be called from contexts that can sleep.
*/
void gpiod_set_raw_value_cansleep(struct gpio_desc *desc, int value)
{
might_sleep_if(extra_checks);
VALIDATE_DESC_VOID(desc);
gpiod_set_raw_value_commit(desc, value);
}
EXPORT_SYMBOL_GPL(gpiod_set_raw_value_cansleep);
/**
* gpiod_set_value_cansleep() - assign a gpio's value
* @desc: gpio whose value will be assigned
* @value: value to assign
*
* Set the logical value of the GPIO, i.e. taking its ACTIVE_LOW status into
* account
*
* This function is to be called from contexts that can sleep.
*/
void gpiod_set_value_cansleep(struct gpio_desc *desc, int value)
{
might_sleep_if(extra_checks);
VALIDATE_DESC_VOID(desc);
gpiod_set_value_nocheck(desc, value);
}
EXPORT_SYMBOL_GPL(gpiod_set_value_cansleep);
/**
* gpiod_set_raw_array_value_cansleep() - assign values to an array of GPIOs
* @array_size: number of elements in the descriptor array / value bitmap
* @desc_array: array of GPIO descriptors whose values will be assigned
* @array_info: information on applicability of fast bitmap processing path
* @value_bitmap: bitmap of values to assign
*
* Set the raw values of the GPIOs, i.e. the values of the physical lines
* without regard for their ACTIVE_LOW status.
*
* This function is to be called from contexts that can sleep.
*/
int gpiod_set_raw_array_value_cansleep(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)
{
might_sleep_if(extra_checks);
if (!desc_array)
return -EINVAL;
return gpiod_set_array_value_complex(true, true, array_size, desc_array,
array_info, value_bitmap);
}
EXPORT_SYMBOL_GPL(gpiod_set_raw_array_value_cansleep);
/**
* gpiod_add_lookup_tables() - register GPIO device consumers
* @tables: list of tables of consumers to register
* @n: number of tables in the list
*/
void gpiod_add_lookup_tables(struct gpiod_lookup_table **tables, size_t n)
{
unsigned int i;
mutex_lock(&gpio_lookup_lock);
for (i = 0; i < n; i++)
list_add_tail(&tables[i]->list, &gpio_lookup_list);
mutex_unlock(&gpio_lookup_lock);
}
/**
* gpiod_set_array_value_cansleep() - assign values to an array of GPIOs
* @array_size: number of elements in the descriptor array / value bitmap
* @desc_array: array of GPIO descriptors whose values will be assigned
* @array_info: information on applicability of fast bitmap processing path
* @value_bitmap: bitmap of values to assign
*
* Set the logical values of the GPIOs, i.e. taking their ACTIVE_LOW status
* into account.
*
* This function is to be called from contexts that can sleep.
*/
int gpiod_set_array_value_cansleep(unsigned int array_size,
struct gpio_desc **desc_array,
struct gpio_array *array_info,
unsigned long *value_bitmap)
{
might_sleep_if(extra_checks);
if (!desc_array)
return -EINVAL;
return gpiod_set_array_value_complex(false, true, array_size,
desc_array, array_info,
value_bitmap);
}
EXPORT_SYMBOL_GPL(gpiod_set_array_value_cansleep);
/**
* gpiod_add_lookup_table() - register GPIO device consumers
* @table: table of consumers to register
*/
void gpiod_add_lookup_table(struct gpiod_lookup_table *table)
{
mutex_lock(&gpio_lookup_lock);
list_add_tail(&table->list, &gpio_lookup_list);
mutex_unlock(&gpio_lookup_lock);
}
EXPORT_SYMBOL_GPL(gpiod_add_lookup_table);
/**
* gpiod_remove_lookup_table() - unregister GPIO device consumers
* @table: table of consumers to unregister
*/
void gpiod_remove_lookup_table(struct gpiod_lookup_table *table)
{
/* Nothing to remove */
if (!table)
return;
mutex_lock(&gpio_lookup_lock);
list_del(&table->list);
mutex_unlock(&gpio_lookup_lock);
}
EXPORT_SYMBOL_GPL(gpiod_remove_lookup_table);
/**
* gpiod_add_hogs() - register a set of GPIO hogs from machine code
* @hogs: table of gpio hog entries with a zeroed sentinel at the end
*/
void gpiod_add_hogs(struct gpiod_hog *hogs)
{
struct gpio_chip *gc;
struct gpiod_hog *hog;
mutex_lock(&gpio_machine_hogs_mutex);
for (hog = &hogs[0]; hog->chip_label; hog++) {
list_add_tail(&hog->list, &gpio_machine_hogs);
/*
* The chip may have been registered earlier, so check if it
* exists and, if so, try to hog the line now.
*/
gc = find_chip_by_name(hog->chip_label);
if (gc)
gpiochip_machine_hog(gc, hog);
}
mutex_unlock(&gpio_machine_hogs_mutex);
}
EXPORT_SYMBOL_GPL(gpiod_add_hogs);
static struct gpiod_lookup_table *gpiod_find_lookup_table(struct device *dev)
{
const char *dev_id = dev ? dev_name(dev) : NULL;
struct gpiod_lookup_table *table;
mutex_lock(&gpio_lookup_lock);
list_for_each_entry(table, &gpio_lookup_list, list) {
if (table->dev_id && dev_id) {
/*
* Valid strings on both ends, must be identical to have
* a match
*/
if (!strcmp(table->dev_id, dev_id))
goto found;
} else {
/*
* One of the pointers is NULL, so both must be to have
* a match
*/
if (dev_id == table->dev_id)
goto found;
}
}
table = NULL;
found:
mutex_unlock(&gpio_lookup_lock);
return table;
}
static struct gpio_desc *gpiod_find(struct device *dev, const char *con_id,
unsigned int idx, unsigned long *flags)
{
struct gpio_desc *desc = ERR_PTR(-ENOENT);
struct gpiod_lookup_table *table;
struct gpiod_lookup *p;
table = gpiod_find_lookup_table(dev);
if (!table)
return desc;
for (p = &table->table[0]; p->key; p++) {
struct gpio_chip *gc;
/* idx must always match exactly */
if (p->idx != idx)
continue;
/* If the lookup entry has a con_id, require exact match */
if (p->con_id && (!con_id || strcmp(p->con_id, con_id)))
continue;
if (p->chip_hwnum == U16_MAX) {
desc = gpio_name_to_desc(p->key);
if (desc) {
*flags = p->flags;
return desc;
}
dev_warn(dev, "cannot find GPIO line %s, deferring\n",
p->key);
return ERR_PTR(-EPROBE_DEFER);
}
gc = find_chip_by_name(p->key);
if (!gc) {
/*
* As the lookup table indicates a chip with
* p->key should exist, assume it may
* still appear later and let the interested
* consumer be probed again or let the Deferred
* Probe infrastructure handle the error.
*/
dev_warn(dev, "cannot find GPIO chip %s, deferring\n",
p->key);
return ERR_PTR(-EPROBE_DEFER);
}
if (gc->ngpio <= p->chip_hwnum) {
dev_err(dev,
"requested GPIO %u (%u) is out of range [0..%u] for chip %s\n",
idx, p->chip_hwnum, gc->ngpio - 1,
gc->label);
return ERR_PTR(-EINVAL);
}
desc = gpiochip_get_desc(gc, p->chip_hwnum);
*flags = p->flags;
return desc;
}
return desc;
}
static int platform_gpio_count(struct device *dev, const char *con_id)
{
struct gpiod_lookup_table *table;
struct gpiod_lookup *p;
unsigned int count = 0;
table = gpiod_find_lookup_table(dev);
if (!table)
return -ENOENT;
for (p = &table->table[0]; p->key; p++) {
if ((con_id && p->con_id && !strcmp(con_id, p->con_id)) ||
(!con_id && !p->con_id))
count++;
}
if (!count)
return -ENOENT;
return count;
}
/**
* fwnode_gpiod_get_index - obtain a GPIO from firmware node
* @fwnode: handle of the firmware node
* @con_id: function within the GPIO consumer
* @index: index of the GPIO to obtain for the consumer
* @flags: GPIO initialization flags
* @label: label to attach to the requested GPIO
*
* This function can be used for drivers that get their configuration
* from opaque firmware.
*
* The function properly finds the corresponding GPIO using whatever is the
* underlying firmware interface and then makes sure that the GPIO
* descriptor is requested before it is returned to the caller.
*
* Returns:
* On successful request the GPIO pin is configured in accordance with
* provided @flags.
*
* In case of error an ERR_PTR() is returned.
*/
struct gpio_desc *fwnode_gpiod_get_index(struct fwnode_handle *fwnode,
const char *con_id, int index,
enum gpiod_flags flags,
const char *label)
{
struct gpio_desc *desc;
char prop_name[32]; /* 32 is max size of property name */
unsigned int i;
for (i = 0; i < ARRAY_SIZE(gpio_suffixes); i++) {
if (con_id)
snprintf(prop_name, sizeof(prop_name), "%s-%s",
con_id, gpio_suffixes[i]);
else
snprintf(prop_name, sizeof(prop_name), "%s",
gpio_suffixes[i]);
desc = fwnode_get_named_gpiod(fwnode, prop_name, index, flags,
label);
if (!gpiod_not_found(desc))
break;
}
return desc;
}
EXPORT_SYMBOL_GPL(fwnode_gpiod_get_index);
/**
* gpiod_count - return the number of GPIOs associated with a device / function
* or -ENOENT if no GPIO has been assigned to the requested function
* @dev: GPIO consumer, can be NULL for system-global GPIOs
* @con_id: function within the GPIO consumer
*/
int gpiod_count(struct device *dev, const char *con_id)
{
const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
int count = -ENOENT;
if (is_of_node(fwnode))
count = of_gpio_get_count(dev, con_id);
else if (is_acpi_node(fwnode))
count = acpi_gpio_count(dev, con_id);
if (count < 0)
count = platform_gpio_count(dev, con_id);
return count;
}
EXPORT_SYMBOL_GPL(gpiod_count);
/**
* gpiod_get - obtain a GPIO for a given GPIO function
* @dev: GPIO consumer, can be NULL for system-global GPIOs
* @con_id: function within the GPIO consumer
* @flags: optional GPIO initialization flags
*
* Return the GPIO descriptor corresponding to the function con_id of device
* dev, -ENOENT if no GPIO has been assigned to the requested function, or
* another IS_ERR() code if an error occurred while trying to acquire the GPIO.
*/
struct gpio_desc *__must_check gpiod_get(struct device *dev, const char *con_id,
enum gpiod_flags flags)
{
return gpiod_get_index(dev, con_id, 0, flags);
}
EXPORT_SYMBOL_GPL(gpiod_get);
/**
* gpiod_get_optional - obtain an optional GPIO for a given GPIO function
* @dev: GPIO consumer, can be NULL for system-global GPIOs
* @con_id: function within the GPIO consumer
* @flags: optional GPIO initialization flags
*
* This is equivalent to gpiod_get(), except that when no GPIO was assigned to
* the requested function it will return NULL. This is convenient for drivers
* that need to handle optional GPIOs.
*/
struct gpio_desc *__must_check gpiod_get_optional(struct device *dev,
const char *con_id,
enum gpiod_flags flags)
{
return gpiod_get_index_optional(dev, con_id, 0, flags);
}
EXPORT_SYMBOL_GPL(gpiod_get_optional);
/**
* gpiod_configure_flags - helper function to configure a given GPIO
* @desc: gpio whose value will be assigned
* @con_id: function within the GPIO consumer
* @lflags: bitmask of gpio_lookup_flags GPIO_* values - returned from
* of_find_gpio() or of_get_gpio_hog()
* @dflags: gpiod_flags - optional GPIO initialization flags
*
* Return 0 on success, -ENOENT if no GPIO has been assigned to the
* requested function and/or index, or another IS_ERR() code if an error
* occurred while trying to acquire the GPIO.
*/
int gpiod_configure_flags(struct gpio_desc *desc, const char *con_id,
unsigned long lflags, enum gpiod_flags dflags)
{
int ret;
if (lflags & GPIO_ACTIVE_LOW)
set_bit(FLAG_ACTIVE_LOW, &desc->flags);
if (lflags & GPIO_OPEN_DRAIN)
set_bit(FLAG_OPEN_DRAIN, &desc->flags);
else if (dflags & GPIOD_FLAGS_BIT_OPEN_DRAIN) {
/*
* This enforces open drain mode from the consumer side.
* This is necessary for some busses like I2C, but the lookup
* should *REALLY* have specified them as open drain in the
* first place, so print a little warning here.
*/
set_bit(FLAG_OPEN_DRAIN, &desc->flags);
gpiod_warn(desc,
"enforced open drain please flag it properly in DT/ACPI DSDT/board file\n");
}
if (lflags & GPIO_OPEN_SOURCE)
set_bit(FLAG_OPEN_SOURCE, &desc->flags);
if ((lflags & GPIO_PULL_UP) && (lflags & GPIO_PULL_DOWN)) {
gpiod_err(desc,
"both pull-up and pull-down enabled, invalid configuration\n");
return -EINVAL;
}
if (lflags & GPIO_PULL_UP)
set_bit(FLAG_PULL_UP, &desc->flags);
else if (lflags & GPIO_PULL_DOWN)
set_bit(FLAG_PULL_DOWN, &desc->flags);
ret = gpiod_set_transitory(desc, (lflags & GPIO_TRANSITORY));
if (ret < 0)
return ret;
/* No particular flag request, return here... */
if (!(dflags & GPIOD_FLAGS_BIT_DIR_SET)) {
gpiod_dbg(desc, "no flags found for %s\n", con_id);
return 0;
}
/* Process flags */
if (dflags & GPIOD_FLAGS_BIT_DIR_OUT)
ret = gpiod_direction_output(desc,
!!(dflags & GPIOD_FLAGS_BIT_DIR_VAL));
else
ret = gpiod_direction_input(desc);
return ret;
}
/**
* gpiod_get_index - obtain a GPIO from a multi-index GPIO function
* @dev: GPIO consumer, can be NULL for system-global GPIOs
* @con_id: function within the GPIO consumer
* @idx: index of the GPIO to obtain in the consumer
* @flags: optional GPIO initialization flags
*
* This variant of gpiod_get() allows to access GPIOs other than the first
* defined one for functions that define several GPIOs.
*
* Return a valid GPIO descriptor, -ENOENT if no GPIO has been assigned to the
* requested function and/or index, or another IS_ERR() code if an error
* occurred while trying to acquire the GPIO.
*/
struct gpio_desc *__must_check gpiod_get_index(struct device *dev,
const char *con_id,
unsigned int idx,
enum gpiod_flags flags)
{
unsigned long lookupflags = GPIO_LOOKUP_FLAGS_DEFAULT;
struct gpio_desc *desc = NULL;
int ret;
/* Maybe we have a device name, maybe not */
const char *devname = dev ? dev_name(dev) : "?";
const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
dev_dbg(dev, "GPIO lookup for consumer %s\n", con_id);
/* Using device tree? */
if (is_of_node(fwnode)) {
dev_dbg(dev, "using device tree for GPIO lookup\n");
desc = of_find_gpio(dev, con_id, idx, &lookupflags);
} else if (is_acpi_node(fwnode)) {
dev_dbg(dev, "using ACPI for GPIO lookup\n");
desc = acpi_find_gpio(dev, con_id, idx, &flags, &lookupflags);
}
/*
* Either we are not using DT or ACPI, or their lookup did not return
* a result. In that case, use platform lookup as a fallback.
*/
if (!desc || gpiod_not_found(desc)) {
dev_dbg(dev, "using lookup tables for GPIO lookup\n");
desc = gpiod_find(dev, con_id, idx, &lookupflags);
}
if (IS_ERR(desc)) {
dev_dbg(dev, "No GPIO consumer %s found\n", con_id);
return desc;
}
/*
* If a connection label was passed use that, else attempt to use
* the device name as label
*/
ret = gpiod_request(desc, con_id ? con_id : devname);
if (ret) {
if (ret == -EBUSY && flags & GPIOD_FLAGS_BIT_NONEXCLUSIVE) {
/*
* This happens when there are several consumers for
* the same GPIO line: we just return here without
* further initialization. It is a bit if a hack.
* This is necessary to support fixed regulators.
*
* FIXME: Make this more sane and safe.
*/
dev_info(dev, "nonexclusive access to GPIO for %s\n",
con_id ? con_id : devname);
return desc;
} else {
return ERR_PTR(ret);
}
}
ret = gpiod_configure_flags(desc, con_id, lookupflags, flags);
if (ret < 0) {
dev_dbg(dev, "setup of GPIO %s failed\n", con_id);
gpiod_put(desc);
return ERR_PTR(ret);
}
blocking_notifier_call_chain(&desc->gdev->notifier,
GPIOLINE_CHANGED_REQUESTED, desc);
return desc;
}
EXPORT_SYMBOL_GPL(gpiod_get_index);
/**
* fwnode_get_named_gpiod - obtain a GPIO from firmware node
* @fwnode: handle of the firmware node
* @propname: name of the firmware property representing the GPIO
* @index: index of the GPIO to obtain for the consumer
* @dflags: GPIO initialization flags
* @label: label to attach to the requested GPIO
*
* This function can be used for drivers that get their configuration
* from opaque firmware.
*
* The function properly finds the corresponding GPIO using whatever is the
* underlying firmware interface and then makes sure that the GPIO
* descriptor is requested before it is returned to the caller.
*
* Returns:
* On successful request the GPIO pin is configured in accordance with
* provided @dflags.
*
* In case of error an ERR_PTR() is returned.
*/
struct gpio_desc *fwnode_get_named_gpiod(struct fwnode_handle *fwnode,
const char *propname, int index,
enum gpiod_flags dflags,
const char *label)
{
unsigned long lflags = GPIO_LOOKUP_FLAGS_DEFAULT;
struct gpio_desc *desc = ERR_PTR(-ENODEV);
int ret;
if (is_of_node(fwnode)) {
desc = gpiod_get_from_of_node(to_of_node(fwnode),
propname, index,
dflags,
label);
return desc;
} else if (is_acpi_node(fwnode)) {
struct acpi_gpio_info info;
desc = acpi_node_get_gpiod(fwnode, propname, index, &info);
if (IS_ERR(desc))
return desc;
acpi_gpio_update_gpiod_flags(&dflags, &info);
acpi_gpio_update_gpiod_lookup_flags(&lflags, &info);
} else
return ERR_PTR(-EINVAL);
/* Currently only ACPI takes this path */
ret = gpiod_request(desc, label);
if (ret)
return ERR_PTR(ret);
ret = gpiod_configure_flags(desc, propname, lflags, dflags);
if (ret < 0) {
gpiod_put(desc);
return ERR_PTR(ret);
}
blocking_notifier_call_chain(&desc->gdev->notifier,
GPIOLINE_CHANGED_REQUESTED, desc);
return desc;
}
EXPORT_SYMBOL_GPL(fwnode_get_named_gpiod);
/**
* gpiod_get_index_optional - obtain an optional GPIO from a multi-index GPIO
* function
* @dev: GPIO consumer, can be NULL for system-global GPIOs
* @con_id: function within the GPIO consumer
* @index: index of the GPIO to obtain in the consumer
* @flags: optional GPIO initialization flags
*
* This is equivalent to gpiod_get_index(), except that when no GPIO with the
* specified index was assigned to the requested function it will return NULL.
* This is convenient for drivers that need to handle optional GPIOs.
*/
struct gpio_desc *__must_check gpiod_get_index_optional(struct device *dev,
const char *con_id,
unsigned int index,
enum gpiod_flags flags)
{
struct gpio_desc *desc;
desc = gpiod_get_index(dev, con_id, index, flags);
if (gpiod_not_found(desc))
return NULL;
return desc;
}
EXPORT_SYMBOL_GPL(gpiod_get_index_optional);
/**
* gpiod_hog - Hog the specified GPIO desc given the provided flags
* @desc: gpio whose value will be assigned
* @name: gpio line name
* @lflags: bitmask of gpio_lookup_flags GPIO_* values - returned from
* of_find_gpio() or of_get_gpio_hog()
* @dflags: gpiod_flags - optional GPIO initialization flags
*/
int gpiod_hog(struct gpio_desc *desc, const char *name,
unsigned long lflags, enum gpiod_flags dflags)
{
struct gpio_chip *gc;
struct gpio_desc *local_desc;
int hwnum;
int ret;
gc = gpiod_to_chip(desc);
hwnum = gpio_chip_hwgpio(desc);
local_desc = gpiochip_request_own_desc(gc, hwnum, name,
lflags, dflags);
if (IS_ERR(local_desc)) {
ret = PTR_ERR(local_desc);
pr_err("requesting hog GPIO %s (chip %s, offset %d) failed, %d\n",
name, gc->label, hwnum, ret);
return ret;
}
/* Mark GPIO as hogged so it can be identified and removed later */
set_bit(FLAG_IS_HOGGED, &desc->flags);
gpiod_info(desc, "hogged as %s%s\n",
(dflags & GPIOD_FLAGS_BIT_DIR_OUT) ? "output" : "input",
(dflags & GPIOD_FLAGS_BIT_DIR_OUT) ?
(dflags & GPIOD_FLAGS_BIT_DIR_VAL) ? "/high" : "/low" : "");
return 0;
}
/**
* gpiochip_free_hogs - Scan gpio-controller chip and release GPIO hog
* @gc: gpio chip to act on
*/
static void gpiochip_free_hogs(struct gpio_chip *gc)
{
int id;
for (id = 0; id < gc->ngpio; id++) {
if (test_bit(FLAG_IS_HOGGED, &gc->gpiodev->descs[id].flags))
gpiochip_free_own_desc(&gc->gpiodev->descs[id]);
}
}
/**
* gpiod_get_array - obtain multiple GPIOs from a multi-index GPIO function
* @dev: GPIO consumer, can be NULL for system-global GPIOs
* @con_id: function within the GPIO consumer
* @flags: optional GPIO initialization flags
*
* This function acquires all the GPIOs defined under a given function.
*
* Return a struct gpio_descs containing an array of descriptors, -ENOENT if
* no GPIO has been assigned to the requested function, or another IS_ERR()
* code if an error occurred while trying to acquire the GPIOs.
*/
struct gpio_descs *__must_check gpiod_get_array(struct device *dev,
const char *con_id,
enum gpiod_flags flags)
{
struct gpio_desc *desc;
struct gpio_descs *descs;
struct gpio_array *array_info = NULL;
struct gpio_chip *gc;
int count, bitmap_size;
count = gpiod_count(dev, con_id);
if (count < 0)
return ERR_PTR(count);
descs = kzalloc(struct_size(descs, desc, count), GFP_KERNEL);
if (!descs)
return ERR_PTR(-ENOMEM);
for (descs->ndescs = 0; descs->ndescs < count; ) {
desc = gpiod_get_index(dev, con_id, descs->ndescs, flags);
if (IS_ERR(desc)) {
gpiod_put_array(descs);
return ERR_CAST(desc);
}
descs->desc[descs->ndescs] = desc;
gc = gpiod_to_chip(desc);
/*
* If pin hardware number of array member 0 is also 0, select
* its chip as a candidate for fast bitmap processing path.
*/
if (descs->ndescs == 0 && gpio_chip_hwgpio(desc) == 0) {
struct gpio_descs *array;
bitmap_size = BITS_TO_LONGS(gc->ngpio > count ?
gc->ngpio : count);
array = kzalloc(struct_size(descs, desc, count) +
struct_size(array_info, invert_mask,
3 * bitmap_size), GFP_KERNEL);
if (!array) {
gpiod_put_array(descs);
return ERR_PTR(-ENOMEM);
}
memcpy(array, descs,
struct_size(descs, desc, descs->ndescs + 1));
kfree(descs);
descs = array;
array_info = (void *)(descs->desc + count);
array_info->get_mask = array_info->invert_mask +
bitmap_size;
array_info->set_mask = array_info->get_mask +
bitmap_size;
array_info->desc = descs->desc;
array_info->size = count;
array_info->chip = gc;
bitmap_set(array_info->get_mask, descs->ndescs,
count - descs->ndescs);
bitmap_set(array_info->set_mask, descs->ndescs,
count - descs->ndescs);
descs->info = array_info;
}
/* Unmark array members which don't belong to the 'fast' chip */
if (array_info && array_info->chip != gc) {
__clear_bit(descs->ndescs, array_info->get_mask);
__clear_bit(descs->ndescs, array_info->set_mask);
}
/*
* Detect array members which belong to the 'fast' chip
* but their pins are not in hardware order.
*/
else if (array_info &&
gpio_chip_hwgpio(desc) != descs->ndescs) {
/*
* Don't use fast path if all array members processed so
* far belong to the same chip as this one but its pin
* hardware number is different from its array index.
*/
if (bitmap_full(array_info->get_mask, descs->ndescs)) {
array_info = NULL;
} else {
__clear_bit(descs->ndescs,
array_info->get_mask);
__clear_bit(descs->ndescs,
array_info->set_mask);
}
} else if (array_info) {
/* Exclude open drain or open source from fast output */
if (gpiochip_line_is_open_drain(gc, descs->ndescs) ||
gpiochip_line_is_open_source(gc, descs->ndescs))
__clear_bit(descs->ndescs,
array_info->set_mask);
/* Identify 'fast' pins which require invertion */
if (gpiod_is_active_low(desc))
__set_bit(descs->ndescs,
array_info->invert_mask);
}
descs->ndescs++;
}
if (array_info)
dev_dbg(dev,
"GPIO array info: chip=%s, size=%d, get_mask=%lx, set_mask=%lx, invert_mask=%lx\n",
array_info->chip->label, array_info->size,
*array_info->get_mask, *array_info->set_mask,
*array_info->invert_mask);
return descs;
}
EXPORT_SYMBOL_GPL(gpiod_get_array);
/**
* gpiod_get_array_optional - obtain multiple GPIOs from a multi-index GPIO
* function
* @dev: GPIO consumer, can be NULL for system-global GPIOs
* @con_id: function within the GPIO consumer
* @flags: optional GPIO initialization flags
*
* This is equivalent to gpiod_get_array(), except that when no GPIO was
* assigned to the requested function it will return NULL.
*/
struct gpio_descs *__must_check gpiod_get_array_optional(struct device *dev,
const char *con_id,
enum gpiod_flags flags)
{
struct gpio_descs *descs;
descs = gpiod_get_array(dev, con_id, flags);
if (gpiod_not_found(descs))
return NULL;
return descs;
}
EXPORT_SYMBOL_GPL(gpiod_get_array_optional);
/**
* gpiod_put - dispose of a GPIO descriptor
* @desc: GPIO descriptor to dispose of
*
* No descriptor can be used after gpiod_put() has been called on it.
*/
void gpiod_put(struct gpio_desc *desc)
{
if (desc)
gpiod_free(desc);
}
EXPORT_SYMBOL_GPL(gpiod_put);
/**
* gpiod_put_array - dispose of multiple GPIO descriptors
* @descs: struct gpio_descs containing an array of descriptors
*/
void gpiod_put_array(struct gpio_descs *descs)
{
unsigned int i;
for (i = 0; i < descs->ndescs; i++)
gpiod_put(descs->desc[i]);
kfree(descs);
}
EXPORT_SYMBOL_GPL(gpiod_put_array);
static int gpio_bus_match(struct device *dev, struct device_driver *drv)
{
struct fwnode_handle *fwnode = dev_fwnode(dev);
/*
* Only match if the fwnode doesn't already have a proper struct device
* created for it.
*/
if (fwnode && fwnode->dev != dev)
return 0;
return 1;
}
static int gpio_stub_drv_probe(struct device *dev)
{
/*
* The DT node of some GPIO chips have a "compatible" property, but
* never have a struct device added and probed by a driver to register
* the GPIO chip with gpiolib. In such cases, fw_devlink=on will cause
* the consumers of the GPIO chip to get probe deferred forever because
* they will be waiting for a device associated with the GPIO chip
* firmware node to get added and bound to a driver.
*
* To allow these consumers to probe, we associate the struct
* gpio_device of the GPIO chip with the firmware node and then simply
* bind it to this stub driver.
*/
return 0;
}
static struct device_driver gpio_stub_drv = {
.name = "gpio_stub_drv",
.bus = &gpio_bus_type,
.probe = gpio_stub_drv_probe,
};
static int __init gpiolib_dev_init(void)
{
int ret;
/* Register GPIO sysfs bus */
ret = bus_register(&gpio_bus_type);
if (ret < 0) {
pr_err("gpiolib: could not register GPIO bus type\n");
return ret;
}
ret = driver_register(&gpio_stub_drv);
if (ret < 0) {
pr_err("gpiolib: could not register GPIO stub driver\n");
bus_unregister(&gpio_bus_type);
return ret;
}
ret = alloc_chrdev_region(&gpio_devt, 0, GPIO_DEV_MAX, GPIOCHIP_NAME);
if (ret < 0) {
pr_err("gpiolib: failed to allocate char dev region\n");
driver_unregister(&gpio_stub_drv);
bus_unregister(&gpio_bus_type);
return ret;
}
gpiolib_initialized = true;
gpiochip_setup_devs();
#if IS_ENABLED(CONFIG_OF_DYNAMIC) && IS_ENABLED(CONFIG_OF_GPIO)
WARN_ON(of_reconfig_notifier_register(&gpio_of_notifier));
#endif /* CONFIG_OF_DYNAMIC && CONFIG_OF_GPIO */
return ret;
}
core_initcall(gpiolib_dev_init);
#ifdef CONFIG_DEBUG_FS
static void gpiolib_dbg_show(struct seq_file *s, struct gpio_device *gdev)
{
unsigned i;
struct gpio_chip *gc = gdev->chip;
unsigned gpio = gdev->base;
struct gpio_desc *gdesc = &gdev->descs[0];
bool is_out;
bool is_irq;
bool active_low;
for (i = 0; i < gdev->ngpio; i++, gpio++, gdesc++) {
if (!test_bit(FLAG_REQUESTED, &gdesc->flags)) {
if (gdesc->name) {
seq_printf(s, " gpio-%-3d (%-20.20s)\n",
gpio, gdesc->name);
}
continue;
}
gpiod_get_direction(gdesc);
is_out = test_bit(FLAG_IS_OUT, &gdesc->flags);
is_irq = test_bit(FLAG_USED_AS_IRQ, &gdesc->flags);
active_low = test_bit(FLAG_ACTIVE_LOW, &gdesc->flags);
seq_printf(s, " gpio-%-3d (%-20.20s|%-20.20s) %s %s %s%s",
gpio, gdesc->name ? gdesc->name : "", gdesc->label,
is_out ? "out" : "in ",
gc->get ? (gc->get(gc, i) ? "hi" : "lo") : "? ",
is_irq ? "IRQ " : "",
active_low ? "ACTIVE LOW" : "");
seq_printf(s, "\n");
}
}
static void *gpiolib_seq_start(struct seq_file *s, loff_t *pos)
{
unsigned long flags;
struct gpio_device *gdev = NULL;
loff_t index = *pos;
s->private = "";
spin_lock_irqsave(&gpio_lock, flags);
list_for_each_entry(gdev, &gpio_devices, list)
if (index-- == 0) {
spin_unlock_irqrestore(&gpio_lock, flags);
return gdev;
}
spin_unlock_irqrestore(&gpio_lock, flags);
return NULL;
}
static void *gpiolib_seq_next(struct seq_file *s, void *v, loff_t *pos)
{
unsigned long flags;
struct gpio_device *gdev = v;
void *ret = NULL;
spin_lock_irqsave(&gpio_lock, flags);
if (list_is_last(&gdev->list, &gpio_devices))
ret = NULL;
else
ret = list_entry(gdev->list.next, struct gpio_device, list);
spin_unlock_irqrestore(&gpio_lock, flags);
s->private = "\n";
++*pos;
return ret;
}
static void gpiolib_seq_stop(struct seq_file *s, void *v)
{
}
static int gpiolib_seq_show(struct seq_file *s, void *v)
{
struct gpio_device *gdev = v;
struct gpio_chip *gc = gdev->chip;
struct device *parent;
if (!gc) {
seq_printf(s, "%s%s: (dangling chip)", (char *)s->private,
dev_name(&gdev->dev));
return 0;
}
seq_printf(s, "%s%s: GPIOs %d-%d", (char *)s->private,
dev_name(&gdev->dev),
gdev->base, gdev->base + gdev->ngpio - 1);
parent = gc->parent;
if (parent)
seq_printf(s, ", parent: %s/%s",
parent->bus ? parent->bus->name : "no-bus",
dev_name(parent));
if (gc->label)
seq_printf(s, ", %s", gc->label);
if (gc->can_sleep)
seq_printf(s, ", can sleep");
seq_printf(s, ":\n");
if (gc->dbg_show)
gc->dbg_show(s, gc);
else
gpiolib_dbg_show(s, gdev);
return 0;
}
static const struct seq_operations gpiolib_sops = {
.start = gpiolib_seq_start,
.next = gpiolib_seq_next,
.stop = gpiolib_seq_stop,
.show = gpiolib_seq_show,
};
DEFINE_SEQ_ATTRIBUTE(gpiolib);
static int __init gpiolib_debugfs_init(void)
{
/* /sys/kernel/debug/gpio */
debugfs_create_file("gpio", 0444, NULL, NULL, &gpiolib_fops);
return 0;
}
subsys_initcall(gpiolib_debugfs_init);
#endif /* DEBUG_FS */