2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 13:43:55 +08:00
linux-next/arch/x86/xen/mmu_hvm.c
Jiri Bohac 2a3e83c6f9 x86/gart: Exclude GART aperture from vmcore
On machines where the GART aperture is mapped over physical RAM
/proc/vmcore contains the remapped range and reading it may cause hangs or
reboots.

In the past, the GART region was added into the resource map, implemented
by commit 56dd669a13 ("[PATCH] Insert GART region into resource map")

However, inserting the iomem_resource from the early GART code caused
resource conflicts with some AGP drivers (bko#72201), which got avoided by
reverting the patch in commit 707d4eefbd ("Revert [PATCH] Insert GART
region into resource map"). This revert introduced the /proc/vmcore bug.

The vmcore ELF header is either prepared by the kernel (when using the
kexec_file_load syscall) or by the kexec userspace (when using the kexec_load
syscall). Since we no longer have the GART iomem resource, the userspace
kexec has no way of knowing which region to exclude from the ELF header.

Changes from v1 of this patch:
Instead of excluding the aperture from the ELF header, this patch
makes /proc/vmcore return zeroes in the second kernel when attempting to
read the aperture region. This is done by reusing the
gart_oldmem_pfn_is_ram infrastructure originally intended to exclude XEN
balooned memory. This works for both, the kexec_file_load and kexec_load
syscalls.

[Note that the GART region is the same in the first and second kernels:
regardless whether the first kernel fixed up the northbridge/bios setting
and mapped the aperture over physical memory, the second kernel finds the
northbridge properly configured by the first kernel and the aperture
never overlaps with e820 memory because the second kernel has a fake e820
map created from the crashkernel memory regions. Thus, the second kernel
keeps the aperture address/size as configured by the first kernel.]

register_oldmem_pfn_is_ram can only register one callback and returns an error
if the callback has been registered already. Since XEN used to be the only user
of this function, it never checks the return value. Now that we have more than
one user, I added a WARN_ON just in case agp, XEN, or any other future user of
register_oldmem_pfn_is_ram were to step on each other's toes.

Fixes: 707d4eefbd ("Revert [PATCH] Insert GART region into resource map")
Signed-off-by: Jiri Bohac <jbohac@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: David Airlie <airlied@linux.ie>
Cc: yinghai@kernel.org
Cc: joro@8bytes.org
Cc: kexec@lists.infradead.org
Cc: Borislav Petkov <bp@alien8.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Link: https://lkml.kernel.org/r/20180106010013.73suskgxm7lox7g6@dwarf.suse.cz
2018-01-11 15:09:24 +01:00

81 lines
1.7 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/types.h>
#include <linux/crash_dump.h>
#include <xen/interface/xen.h>
#include <xen/hvm.h>
#include "mmu.h"
#ifdef CONFIG_PROC_VMCORE
/*
* This function is used in two contexts:
* - the kdump kernel has to check whether a pfn of the crashed kernel
* was a ballooned page. vmcore is using this function to decide
* whether to access a pfn of the crashed kernel.
* - the kexec kernel has to check whether a pfn was ballooned by the
* previous kernel. If the pfn is ballooned, handle it properly.
* Returns 0 if the pfn is not backed by a RAM page, the caller may
* handle the pfn special in this case.
*/
static int xen_oldmem_pfn_is_ram(unsigned long pfn)
{
struct xen_hvm_get_mem_type a = {
.domid = DOMID_SELF,
.pfn = pfn,
};
int ram;
if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
return -ENXIO;
switch (a.mem_type) {
case HVMMEM_mmio_dm:
ram = 0;
break;
case HVMMEM_ram_rw:
case HVMMEM_ram_ro:
default:
ram = 1;
break;
}
return ram;
}
#endif
static void xen_hvm_exit_mmap(struct mm_struct *mm)
{
struct xen_hvm_pagetable_dying a;
int rc;
a.domid = DOMID_SELF;
a.gpa = __pa(mm->pgd);
rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
WARN_ON_ONCE(rc < 0);
}
static int is_pagetable_dying_supported(void)
{
struct xen_hvm_pagetable_dying a;
int rc = 0;
a.domid = DOMID_SELF;
a.gpa = 0x00;
rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
if (rc < 0) {
printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
return 0;
}
return 1;
}
void __init xen_hvm_init_mmu_ops(void)
{
if (is_pagetable_dying_supported())
pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
#ifdef CONFIG_PROC_VMCORE
WARN_ON(register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram));
#endif
}