2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 07:06:40 +08:00
linux-next/arch/powerpc/boot/flatdevtree.c
Scott Wood a9ec7669fc [POWERPC] bootwrapper: Make ft_get_parent() return a phandle, and NULL if already top-level.
Most of ft_get_parent() is factored out into __ft_get_parent(), which
deals only in internal node pointers.  The ft_get_parent() wrapper
handles phandle conversion in both directions (previously,
ft_get_parent() did not convert its return value).

It also now returns NULL as the parent of the toplevel node, rather than
just returning the toplevel node again (which made it rather useless in
loops).

Signed-off-by: Scott Wood <scottwood@freescale.com>
Acked-by: Mark A. Greer <mgreer@mvista.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-03-16 15:49:11 +11:00

928 lines
22 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright Pantelis Antoniou 2006
* Copyright (C) IBM Corporation 2006
*
* Authors: Pantelis Antoniou <pantelis@embeddedalley.com>
* Hollis Blanchard <hollisb@us.ibm.com>
* Mark A. Greer <mgreer@mvista.com>
* Paul Mackerras <paulus@samba.org>
*/
#include <string.h>
#include <stddef.h>
#include "flatdevtree.h"
#include "flatdevtree_env.h"
#define _ALIGN(x, al) (((x) + (al) - 1) & ~((al) - 1))
static char *ft_root_node(struct ft_cxt *cxt)
{
return cxt->rgn[FT_STRUCT].start;
}
/* Routines for keeping node ptrs returned by ft_find_device current */
/* First entry not used b/c it would return 0 and be taken as NULL/error */
static void *ft_get_phandle(struct ft_cxt *cxt, char *node)
{
unsigned int i;
if (!node)
return NULL;
for (i = 1; i < cxt->nodes_used; i++) /* already there? */
if (cxt->node_tbl[i] == node)
return (void *)i;
if (cxt->nodes_used < cxt->node_max) {
cxt->node_tbl[cxt->nodes_used] = node;
return (void *)cxt->nodes_used++;
}
return NULL;
}
static char *ft_node_ph2node(struct ft_cxt *cxt, const void *phandle)
{
unsigned int i = (unsigned int)phandle;
if (i < cxt->nodes_used)
return cxt->node_tbl[i];
return NULL;
}
static void ft_node_update_before(struct ft_cxt *cxt, char *addr, int shift)
{
unsigned int i;
if (shift == 0)
return;
for (i = 1; i < cxt->nodes_used; i++)
if (cxt->node_tbl[i] < addr)
cxt->node_tbl[i] += shift;
}
static void ft_node_update_after(struct ft_cxt *cxt, char *addr, int shift)
{
unsigned int i;
if (shift == 0)
return;
for (i = 1; i < cxt->nodes_used; i++)
if (cxt->node_tbl[i] >= addr)
cxt->node_tbl[i] += shift;
}
/* Struct used to return info from ft_next() */
struct ft_atom {
u32 tag;
const char *name;
void *data;
u32 size;
};
/* Set ptrs to current one's info; return addr of next one */
static char *ft_next(struct ft_cxt *cxt, char *p, struct ft_atom *ret)
{
u32 sz;
if (p >= cxt->rgn[FT_STRUCT].start + cxt->rgn[FT_STRUCT].size)
return NULL;
ret->tag = be32_to_cpu(*(u32 *) p);
p += 4;
switch (ret->tag) { /* Tag */
case OF_DT_BEGIN_NODE:
ret->name = p;
ret->data = (void *)(p - 4); /* start of node */
p += _ALIGN(strlen(p) + 1, 4);
break;
case OF_DT_PROP:
ret->size = sz = be32_to_cpu(*(u32 *) p);
ret->name = cxt->str_anchor + be32_to_cpu(*(u32 *) (p + 4));
ret->data = (void *)(p + 8);
p += 8 + _ALIGN(sz, 4);
break;
case OF_DT_END_NODE:
case OF_DT_NOP:
break;
case OF_DT_END:
default:
p = NULL;
break;
}
return p;
}
#define HDR_SIZE _ALIGN(sizeof(struct boot_param_header), 8)
#define EXPAND_INCR 1024 /* alloc this much extra when expanding */
/* See if the regions are in the standard order and non-overlapping */
static int ft_ordered(struct ft_cxt *cxt)
{
char *p = (char *)cxt->bph + HDR_SIZE;
enum ft_rgn_id r;
for (r = FT_RSVMAP; r <= FT_STRINGS; ++r) {
if (p > cxt->rgn[r].start)
return 0;
p = cxt->rgn[r].start + cxt->rgn[r].size;
}
return p <= (char *)cxt->bph + cxt->max_size;
}
/* Copy the tree to a newly-allocated region and put things in order */
static int ft_reorder(struct ft_cxt *cxt, int nextra)
{
unsigned long tot;
enum ft_rgn_id r;
char *p, *pend;
int stroff;
tot = HDR_SIZE + EXPAND_INCR;
for (r = FT_RSVMAP; r <= FT_STRINGS; ++r)
tot += cxt->rgn[r].size;
if (nextra > 0)
tot += nextra;
tot = _ALIGN(tot, 8);
if (!cxt->realloc)
return 0;
p = cxt->realloc(NULL, tot);
if (!p)
return 0;
memcpy(p, cxt->bph, sizeof(struct boot_param_header));
/* offsets get fixed up later */
cxt->bph = (struct boot_param_header *)p;
cxt->max_size = tot;
pend = p + tot;
p += HDR_SIZE;
memcpy(p, cxt->rgn[FT_RSVMAP].start, cxt->rgn[FT_RSVMAP].size);
cxt->rgn[FT_RSVMAP].start = p;
p += cxt->rgn[FT_RSVMAP].size;
memcpy(p, cxt->rgn[FT_STRUCT].start, cxt->rgn[FT_STRUCT].size);
ft_node_update_after(cxt, cxt->rgn[FT_STRUCT].start,
p - cxt->rgn[FT_STRUCT].start);
cxt->p += p - cxt->rgn[FT_STRUCT].start;
cxt->rgn[FT_STRUCT].start = p;
p = pend - cxt->rgn[FT_STRINGS].size;
memcpy(p, cxt->rgn[FT_STRINGS].start, cxt->rgn[FT_STRINGS].size);
stroff = cxt->str_anchor - cxt->rgn[FT_STRINGS].start;
cxt->rgn[FT_STRINGS].start = p;
cxt->str_anchor = p + stroff;
cxt->isordered = 1;
return 1;
}
static inline char *prev_end(struct ft_cxt *cxt, enum ft_rgn_id r)
{
if (r > FT_RSVMAP)
return cxt->rgn[r - 1].start + cxt->rgn[r - 1].size;
return (char *)cxt->bph + HDR_SIZE;
}
static inline char *next_start(struct ft_cxt *cxt, enum ft_rgn_id r)
{
if (r < FT_STRINGS)
return cxt->rgn[r + 1].start;
return (char *)cxt->bph + cxt->max_size;
}
/*
* See if we can expand region rgn by nextra bytes by using up
* free space after or before the region.
*/
static int ft_shuffle(struct ft_cxt *cxt, char **pp, enum ft_rgn_id rgn,
int nextra)
{
char *p = *pp;
char *rgn_start, *rgn_end;
rgn_start = cxt->rgn[rgn].start;
rgn_end = rgn_start + cxt->rgn[rgn].size;
if (nextra <= 0 || rgn_end + nextra <= next_start(cxt, rgn)) {
/* move following stuff */
if (p < rgn_end) {
if (nextra < 0)
memmove(p, p - nextra, rgn_end - p + nextra);
else
memmove(p + nextra, p, rgn_end - p);
if (rgn == FT_STRUCT)
ft_node_update_after(cxt, p, nextra);
}
cxt->rgn[rgn].size += nextra;
if (rgn == FT_STRINGS)
/* assumes strings only added at beginning */
cxt->str_anchor += nextra;
return 1;
}
if (prev_end(cxt, rgn) <= rgn_start - nextra) {
/* move preceding stuff */
if (p > rgn_start) {
memmove(rgn_start - nextra, rgn_start, p - rgn_start);
if (rgn == FT_STRUCT)
ft_node_update_before(cxt, p, -nextra);
}
*pp -= nextra;
cxt->rgn[rgn].start -= nextra;
cxt->rgn[rgn].size += nextra;
return 1;
}
return 0;
}
static int ft_make_space(struct ft_cxt *cxt, char **pp, enum ft_rgn_id rgn,
int nextra)
{
unsigned long size, ssize, tot;
char *str, *next;
enum ft_rgn_id r;
if (!cxt->isordered) {
unsigned long rgn_off = *pp - cxt->rgn[rgn].start;
if (!ft_reorder(cxt, nextra))
return 0;
*pp = cxt->rgn[rgn].start + rgn_off;
}
if (ft_shuffle(cxt, pp, rgn, nextra))
return 1;
/* See if there is space after the strings section */
ssize = cxt->rgn[FT_STRINGS].size;
if (cxt->rgn[FT_STRINGS].start + ssize
< (char *)cxt->bph + cxt->max_size) {
/* move strings up as far as possible */
str = (char *)cxt->bph + cxt->max_size - ssize;
cxt->str_anchor += str - cxt->rgn[FT_STRINGS].start;
memmove(str, cxt->rgn[FT_STRINGS].start, ssize);
cxt->rgn[FT_STRINGS].start = str;
/* enough space now? */
if (rgn >= FT_STRUCT && ft_shuffle(cxt, pp, rgn, nextra))
return 1;
}
/* how much total free space is there following this region? */
tot = 0;
for (r = rgn; r < FT_STRINGS; ++r) {
char *r_end = cxt->rgn[r].start + cxt->rgn[r].size;
tot += next_start(cxt, rgn) - r_end;
}
/* cast is to shut gcc up; we know nextra >= 0 */
if (tot < (unsigned int)nextra) {
/* have to reallocate */
char *newp, *new_start;
int shift;
if (!cxt->realloc)
return 0;
size = _ALIGN(cxt->max_size + (nextra - tot) + EXPAND_INCR, 8);
newp = cxt->realloc(cxt->bph, size);
if (!newp)
return 0;
cxt->max_size = size;
shift = newp - (char *)cxt->bph;
if (shift) { /* realloc can return same addr */
cxt->bph = (struct boot_param_header *)newp;
ft_node_update_after(cxt, cxt->rgn[FT_STRUCT].start,
shift);
for (r = FT_RSVMAP; r <= FT_STRINGS; ++r) {
new_start = cxt->rgn[r].start + shift;
cxt->rgn[r].start = new_start;
}
*pp += shift;
cxt->str_anchor += shift;
}
/* move strings up to the end */
str = newp + size - ssize;
cxt->str_anchor += str - cxt->rgn[FT_STRINGS].start;
memmove(str, cxt->rgn[FT_STRINGS].start, ssize);
cxt->rgn[FT_STRINGS].start = str;
if (ft_shuffle(cxt, pp, rgn, nextra))
return 1;
}
/* must be FT_RSVMAP and we need to move FT_STRUCT up */
if (rgn == FT_RSVMAP) {
next = cxt->rgn[FT_RSVMAP].start + cxt->rgn[FT_RSVMAP].size
+ nextra;
ssize = cxt->rgn[FT_STRUCT].size;
if (next + ssize >= cxt->rgn[FT_STRINGS].start)
return 0; /* "can't happen" */
memmove(next, cxt->rgn[FT_STRUCT].start, ssize);
ft_node_update_after(cxt, cxt->rgn[FT_STRUCT].start, nextra);
cxt->rgn[FT_STRUCT].start = next;
if (ft_shuffle(cxt, pp, rgn, nextra))
return 1;
}
return 0; /* "can't happen" */
}
static void ft_put_word(struct ft_cxt *cxt, u32 v)
{
*(u32 *) cxt->p = cpu_to_be32(v);
cxt->p += 4;
}
static void ft_put_bin(struct ft_cxt *cxt, const void *data, unsigned int sz)
{
unsigned long sza = _ALIGN(sz, 4);
/* zero out the alignment gap if necessary */
if (sz < sza)
*(u32 *) (cxt->p + sza - 4) = 0;
/* copy in the data */
memcpy(cxt->p, data, sz);
cxt->p += sza;
}
int ft_begin_node(struct ft_cxt *cxt, const char *name)
{
unsigned long nlen = strlen(name) + 1;
unsigned long len = 8 + _ALIGN(nlen, 4);
if (!ft_make_space(cxt, &cxt->p, FT_STRUCT, len))
return -1;
ft_put_word(cxt, OF_DT_BEGIN_NODE);
ft_put_bin(cxt, name, strlen(name) + 1);
return 0;
}
void ft_end_node(struct ft_cxt *cxt)
{
ft_put_word(cxt, OF_DT_END_NODE);
}
void ft_nop(struct ft_cxt *cxt)
{
if (ft_make_space(cxt, &cxt->p, FT_STRUCT, 4))
ft_put_word(cxt, OF_DT_NOP);
}
#define NO_STRING 0x7fffffff
static int lookup_string(struct ft_cxt *cxt, const char *name)
{
char *p, *end;
p = cxt->rgn[FT_STRINGS].start;
end = p + cxt->rgn[FT_STRINGS].size;
while (p < end) {
if (strcmp(p, (char *)name) == 0)
return p - cxt->str_anchor;
p += strlen(p) + 1;
}
return NO_STRING;
}
/* lookup string and insert if not found */
static int map_string(struct ft_cxt *cxt, const char *name)
{
int off;
char *p;
off = lookup_string(cxt, name);
if (off != NO_STRING)
return off;
p = cxt->rgn[FT_STRINGS].start;
if (!ft_make_space(cxt, &p, FT_STRINGS, strlen(name) + 1))
return NO_STRING;
strcpy(p, name);
return p - cxt->str_anchor;
}
int ft_prop(struct ft_cxt *cxt, const char *name, const void *data,
unsigned int sz)
{
int off, len;
off = map_string(cxt, name);
if (off == NO_STRING)
return -1;
len = 12 + _ALIGN(sz, 4);
if (!ft_make_space(cxt, &cxt->p, FT_STRUCT, len))
return -1;
ft_put_word(cxt, OF_DT_PROP);
ft_put_word(cxt, sz);
ft_put_word(cxt, off);
ft_put_bin(cxt, data, sz);
return 0;
}
int ft_prop_str(struct ft_cxt *cxt, const char *name, const char *str)
{
return ft_prop(cxt, name, str, strlen(str) + 1);
}
int ft_prop_int(struct ft_cxt *cxt, const char *name, unsigned int val)
{
u32 v = cpu_to_be32((u32) val);
return ft_prop(cxt, name, &v, 4);
}
/* Calculate the size of the reserved map */
static unsigned long rsvmap_size(struct ft_cxt *cxt)
{
struct ft_reserve *res;
res = (struct ft_reserve *)cxt->rgn[FT_RSVMAP].start;
while (res->start || res->len)
++res;
return (char *)(res + 1) - cxt->rgn[FT_RSVMAP].start;
}
/* Calculate the size of the struct region by stepping through it */
static unsigned long struct_size(struct ft_cxt *cxt)
{
char *p = cxt->rgn[FT_STRUCT].start;
char *next;
struct ft_atom atom;
/* make check in ft_next happy */
if (cxt->rgn[FT_STRUCT].size == 0)
cxt->rgn[FT_STRUCT].size = 0xfffffffful - (unsigned long)p;
while ((next = ft_next(cxt, p, &atom)) != NULL)
p = next;
return p + 4 - cxt->rgn[FT_STRUCT].start;
}
/* add `adj' on to all string offset values in the struct area */
static void adjust_string_offsets(struct ft_cxt *cxt, int adj)
{
char *p = cxt->rgn[FT_STRUCT].start;
char *next;
struct ft_atom atom;
int off;
while ((next = ft_next(cxt, p, &atom)) != NULL) {
if (atom.tag == OF_DT_PROP) {
off = be32_to_cpu(*(u32 *) (p + 8));
*(u32 *) (p + 8) = cpu_to_be32(off + adj);
}
p = next;
}
}
/* start construction of the flat OF tree from scratch */
void ft_begin(struct ft_cxt *cxt, void *blob, unsigned int max_size,
void *(*realloc_fn) (void *, unsigned long))
{
struct boot_param_header *bph = blob;
char *p;
struct ft_reserve *pres;
/* clear the cxt */
memset(cxt, 0, sizeof(*cxt));
cxt->bph = bph;
cxt->max_size = max_size;
cxt->realloc = realloc_fn;
cxt->isordered = 1;
/* zero everything in the header area */
memset(bph, 0, sizeof(*bph));
bph->magic = cpu_to_be32(OF_DT_HEADER);
bph->version = cpu_to_be32(0x10);
bph->last_comp_version = cpu_to_be32(0x10);
/* start pointers */
cxt->rgn[FT_RSVMAP].start = p = blob + HDR_SIZE;
cxt->rgn[FT_RSVMAP].size = sizeof(struct ft_reserve);
pres = (struct ft_reserve *)p;
cxt->rgn[FT_STRUCT].start = p += sizeof(struct ft_reserve);
cxt->rgn[FT_STRUCT].size = 4;
cxt->rgn[FT_STRINGS].start = blob + max_size;
cxt->rgn[FT_STRINGS].size = 0;
/* init rsvmap and struct */
pres->start = 0;
pres->len = 0;
*(u32 *) p = cpu_to_be32(OF_DT_END);
cxt->str_anchor = blob;
}
/* open up an existing blob to be examined or modified */
int ft_open(struct ft_cxt *cxt, void *blob, unsigned int max_size,
unsigned int max_find_device,
void *(*realloc_fn) (void *, unsigned long))
{
struct boot_param_header *bph = blob;
/* can't cope with version < 16 */
if (be32_to_cpu(bph->version) < 16)
return -1;
/* clear the cxt */
memset(cxt, 0, sizeof(*cxt));
/* alloc node_tbl to track node ptrs returned by ft_find_device */
++max_find_device;
cxt->node_tbl = realloc_fn(NULL, max_find_device * sizeof(char *));
if (!cxt->node_tbl)
return -1;
memset(cxt->node_tbl, 0, max_find_device * sizeof(char *));
cxt->node_max = max_find_device;
cxt->nodes_used = 1; /* don't use idx 0 b/c looks like NULL */
cxt->bph = bph;
cxt->max_size = max_size;
cxt->realloc = realloc_fn;
cxt->rgn[FT_RSVMAP].start = blob + be32_to_cpu(bph->off_mem_rsvmap);
cxt->rgn[FT_RSVMAP].size = rsvmap_size(cxt);
cxt->rgn[FT_STRUCT].start = blob + be32_to_cpu(bph->off_dt_struct);
cxt->rgn[FT_STRUCT].size = struct_size(cxt);
cxt->rgn[FT_STRINGS].start = blob + be32_to_cpu(bph->off_dt_strings);
cxt->rgn[FT_STRINGS].size = be32_to_cpu(bph->dt_strings_size);
/* Leave as '0' to force first ft_make_space call to do a ft_reorder
* and move dt to an area allocated by realloc.
cxt->isordered = ft_ordered(cxt);
*/
cxt->p = cxt->rgn[FT_STRUCT].start;
cxt->str_anchor = cxt->rgn[FT_STRINGS].start;
return 0;
}
/* add a reserver physical area to the rsvmap */
int ft_add_rsvmap(struct ft_cxt *cxt, u64 physaddr, u64 size)
{
char *p;
struct ft_reserve *pres;
p = cxt->rgn[FT_RSVMAP].start + cxt->rgn[FT_RSVMAP].size
- sizeof(struct ft_reserve);
if (!ft_make_space(cxt, &p, FT_RSVMAP, sizeof(struct ft_reserve)))
return -1;
pres = (struct ft_reserve *)p;
pres->start = cpu_to_be64(physaddr);
pres->len = cpu_to_be64(size);
return 0;
}
void ft_begin_tree(struct ft_cxt *cxt)
{
cxt->p = ft_root_node(cxt);
}
void ft_end_tree(struct ft_cxt *cxt)
{
struct boot_param_header *bph = cxt->bph;
char *p, *oldstr, *str, *endp;
unsigned long ssize;
int adj;
if (!cxt->isordered)
return; /* we haven't touched anything */
/* adjust string offsets */
oldstr = cxt->rgn[FT_STRINGS].start;
adj = cxt->str_anchor - oldstr;
if (adj)
adjust_string_offsets(cxt, adj);
/* make strings end on 8-byte boundary */
ssize = cxt->rgn[FT_STRINGS].size;
endp = (char *)_ALIGN((unsigned long)cxt->rgn[FT_STRUCT].start
+ cxt->rgn[FT_STRUCT].size + ssize, 8);
str = endp - ssize;
/* move strings down to end of structs */
memmove(str, oldstr, ssize);
cxt->str_anchor = str;
cxt->rgn[FT_STRINGS].start = str;
/* fill in header fields */
p = (char *)bph;
bph->totalsize = cpu_to_be32(endp - p);
bph->off_mem_rsvmap = cpu_to_be32(cxt->rgn[FT_RSVMAP].start - p);
bph->off_dt_struct = cpu_to_be32(cxt->rgn[FT_STRUCT].start - p);
bph->off_dt_strings = cpu_to_be32(cxt->rgn[FT_STRINGS].start - p);
bph->dt_strings_size = cpu_to_be32(ssize);
}
void *ft_find_device(struct ft_cxt *cxt, const char *srch_path)
{
char *node;
/* require absolute path */
if (srch_path[0] != '/')
return NULL;
node = ft_find_descendent(cxt, ft_root_node(cxt), srch_path);
return ft_get_phandle(cxt, node);
}
void *ft_find_device_rel(struct ft_cxt *cxt, const void *top,
const char *srch_path)
{
char *node;
node = ft_node_ph2node(cxt, top);
if (node == NULL)
return NULL;
node = ft_find_descendent(cxt, node, srch_path);
return ft_get_phandle(cxt, node);
}
void *ft_find_descendent(struct ft_cxt *cxt, void *top, const char *srch_path)
{
struct ft_atom atom;
char *p;
const char *cp, *q;
int cl;
int depth = -1;
int dmatch = 0;
const char *path_comp[FT_MAX_DEPTH];
cp = srch_path;
cl = 0;
p = top;
while ((p = ft_next(cxt, p, &atom)) != NULL) {
switch (atom.tag) {
case OF_DT_BEGIN_NODE:
++depth;
if (depth != dmatch)
break;
cxt->genealogy[depth] = atom.data;
cxt->genealogy[depth + 1] = NULL;
if (depth && !(strncmp(atom.name, cp, cl) == 0
&& (atom.name[cl] == '/'
|| atom.name[cl] == '\0'
|| atom.name[cl] == '@')))
break;
path_comp[dmatch] = cp;
/* it matches so far, advance to next path component */
cp += cl;
/* skip slashes */
while (*cp == '/')
++cp;
/* we're done if this is the end of the string */
if (*cp == 0)
return atom.data;
/* look for end of this component */
q = strchr(cp, '/');
if (q)
cl = q - cp;
else
cl = strlen(cp);
++dmatch;
break;
case OF_DT_END_NODE:
if (depth == 0)
return NULL;
if (dmatch > depth) {
--dmatch;
cl = cp - path_comp[dmatch] - 1;
cp = path_comp[dmatch];
while (cl > 0 && cp[cl - 1] == '/')
--cl;
}
--depth;
break;
}
}
return NULL;
}
void *__ft_get_parent(struct ft_cxt *cxt, void *node)
{
int d;
struct ft_atom atom;
char *p;
for (d = 0; cxt->genealogy[d] != NULL; ++d)
if (cxt->genealogy[d] == node)
return d > 0 ? cxt->genealogy[d - 1] : NULL;
/* have to do it the hard way... */
p = ft_root_node(cxt);
d = 0;
while ((p = ft_next(cxt, p, &atom)) != NULL) {
switch (atom.tag) {
case OF_DT_BEGIN_NODE:
cxt->genealogy[d] = atom.data;
if (node == atom.data) {
/* found it */
cxt->genealogy[d + 1] = NULL;
return d > 0 ? cxt->genealogy[d - 1] : NULL;
}
++d;
break;
case OF_DT_END_NODE:
--d;
break;
}
}
return NULL;
}
void *ft_get_parent(struct ft_cxt *cxt, const void *phandle)
{
void *node = ft_node_ph2node(cxt, phandle);
if (node == NULL)
return NULL;
node = __ft_get_parent(cxt, node);
return ft_get_phandle(cxt, node);
}
static const void *__ft_get_prop(struct ft_cxt *cxt, void *node,
const char *propname, unsigned int *len)
{
struct ft_atom atom;
int depth = 0;
while ((node = ft_next(cxt, node, &atom)) != NULL) {
switch (atom.tag) {
case OF_DT_BEGIN_NODE:
++depth;
break;
case OF_DT_PROP:
if (depth != 1 || strcmp(atom.name, propname))
break;
if (len)
*len = atom.size;
return atom.data;
case OF_DT_END_NODE:
if (--depth <= 0)
return NULL;
}
}
return NULL;
}
int ft_get_prop(struct ft_cxt *cxt, const void *phandle, const char *propname,
void *buf, const unsigned int buflen)
{
const void *data;
unsigned int size;
void *node = ft_node_ph2node(cxt, phandle);
if (!node)
return -1;
data = __ft_get_prop(cxt, node, propname, &size);
if (data) {
unsigned int clipped_size = min(size, buflen);
memcpy(buf, data, clipped_size);
return size;
}
return -1;
}
int ft_set_prop(struct ft_cxt *cxt, const void *phandle, const char *propname,
const void *buf, const unsigned int buflen)
{
struct ft_atom atom;
void *node;
char *p, *next;
int nextra, depth;
node = ft_node_ph2node(cxt, phandle);
if (node == NULL)
return -1;
depth = 0;
p = node;
while ((next = ft_next(cxt, p, &atom)) != NULL) {
switch (atom.tag) {
case OF_DT_BEGIN_NODE:
++depth;
break;
case OF_DT_END_NODE:
if (--depth > 0)
break;
/* haven't found the property, insert here */
cxt->p = p;
return ft_prop(cxt, propname, buf, buflen);
case OF_DT_PROP:
if ((depth != 1) || strcmp(atom.name, propname))
break;
/* found an existing property, overwrite it */
nextra = _ALIGN(buflen, 4) - _ALIGN(atom.size, 4);
cxt->p = atom.data;
if (nextra && !ft_make_space(cxt, &cxt->p, FT_STRUCT,
nextra))
return -1;
*(u32 *) (cxt->p - 8) = cpu_to_be32(buflen);
ft_put_bin(cxt, buf, buflen);
return 0;
}
p = next;
}
return -1;
}
int ft_del_prop(struct ft_cxt *cxt, const void *phandle, const char *propname)
{
struct ft_atom atom;
void *node;
char *p, *next;
int size;
node = ft_node_ph2node(cxt, phandle);
if (node == NULL)
return -1;
p = node;
while ((next = ft_next(cxt, p, &atom)) != NULL) {
switch (atom.tag) {
case OF_DT_BEGIN_NODE:
case OF_DT_END_NODE:
return -1;
case OF_DT_PROP:
if (strcmp(atom.name, propname))
break;
/* found the property, remove it */
size = 12 + -_ALIGN(atom.size, 4);
cxt->p = p;
if (!ft_make_space(cxt, &cxt->p, FT_STRUCT, -size))
return -1;
return 0;
}
p = next;
}
return -1;
}
void *ft_create_node(struct ft_cxt *cxt, const void *parent, const char *path)
{
struct ft_atom atom;
char *p, *next;
int depth = 0;
p = ft_root_node(cxt);
while ((next = ft_next(cxt, p, &atom)) != NULL) {
switch (atom.tag) {
case OF_DT_BEGIN_NODE:
++depth;
if (depth == 1 && strcmp(atom.name, path) == 0)
/* duplicate node path, return error */
return NULL;
break;
case OF_DT_END_NODE:
--depth;
if (depth > 0)
break;
/* end of node, insert here */
cxt->p = p;
ft_begin_node(cxt, path);
ft_end_node(cxt);
return p;
}
p = next;
}
return NULL;
}