mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-22 12:33:59 +08:00
d7a4858c0f
Conflicts: drivers/net/wireless/iwlwifi/iwl-agn.c drivers/net/wireless/libertas/cfg.c
2360 lines
60 KiB
C
2360 lines
60 KiB
C
/*
|
|
* Copyright 2002-2005, Instant802 Networks, Inc.
|
|
* Copyright 2005-2006, Devicescape Software, Inc.
|
|
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
|
|
* Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Wireless regulatory infrastructure
|
|
*
|
|
* The usual implementation is for a driver to read a device EEPROM to
|
|
* determine which regulatory domain it should be operating under, then
|
|
* looking up the allowable channels in a driver-local table and finally
|
|
* registering those channels in the wiphy structure.
|
|
*
|
|
* Another set of compliance enforcement is for drivers to use their
|
|
* own compliance limits which can be stored on the EEPROM. The host
|
|
* driver or firmware may ensure these are used.
|
|
*
|
|
* In addition to all this we provide an extra layer of regulatory
|
|
* conformance. For drivers which do not have any regulatory
|
|
* information CRDA provides the complete regulatory solution.
|
|
* For others it provides a community effort on further restrictions
|
|
* to enhance compliance.
|
|
*
|
|
* Note: When number of rules --> infinity we will not be able to
|
|
* index on alpha2 any more, instead we'll probably have to
|
|
* rely on some SHA1 checksum of the regdomain for example.
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/list.h>
|
|
#include <linux/random.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/nl80211.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <net/cfg80211.h>
|
|
#include "core.h"
|
|
#include "reg.h"
|
|
#include "regdb.h"
|
|
#include "nl80211.h"
|
|
|
|
#ifdef CONFIG_CFG80211_REG_DEBUG
|
|
#define REG_DBG_PRINT(format, args...) \
|
|
printk(KERN_DEBUG pr_fmt(format), ##args)
|
|
#else
|
|
#define REG_DBG_PRINT(args...)
|
|
#endif
|
|
|
|
static struct regulatory_request core_request_world = {
|
|
.initiator = NL80211_REGDOM_SET_BY_CORE,
|
|
.alpha2[0] = '0',
|
|
.alpha2[1] = '0',
|
|
.intersect = false,
|
|
.processed = true,
|
|
.country_ie_env = ENVIRON_ANY,
|
|
};
|
|
|
|
/* Receipt of information from last regulatory request */
|
|
static struct regulatory_request *last_request = &core_request_world;
|
|
|
|
/* To trigger userspace events */
|
|
static struct platform_device *reg_pdev;
|
|
|
|
static struct device_type reg_device_type = {
|
|
.uevent = reg_device_uevent,
|
|
};
|
|
|
|
/*
|
|
* Central wireless core regulatory domains, we only need two,
|
|
* the current one and a world regulatory domain in case we have no
|
|
* information to give us an alpha2
|
|
*/
|
|
const struct ieee80211_regdomain *cfg80211_regdomain;
|
|
|
|
/*
|
|
* Protects static reg.c components:
|
|
* - cfg80211_world_regdom
|
|
* - cfg80211_regdom
|
|
* - last_request
|
|
*/
|
|
static DEFINE_MUTEX(reg_mutex);
|
|
|
|
static inline void assert_reg_lock(void)
|
|
{
|
|
lockdep_assert_held(®_mutex);
|
|
}
|
|
|
|
/* Used to queue up regulatory hints */
|
|
static LIST_HEAD(reg_requests_list);
|
|
static spinlock_t reg_requests_lock;
|
|
|
|
/* Used to queue up beacon hints for review */
|
|
static LIST_HEAD(reg_pending_beacons);
|
|
static spinlock_t reg_pending_beacons_lock;
|
|
|
|
/* Used to keep track of processed beacon hints */
|
|
static LIST_HEAD(reg_beacon_list);
|
|
|
|
struct reg_beacon {
|
|
struct list_head list;
|
|
struct ieee80211_channel chan;
|
|
};
|
|
|
|
static void reg_todo(struct work_struct *work);
|
|
static DECLARE_WORK(reg_work, reg_todo);
|
|
|
|
static void reg_timeout_work(struct work_struct *work);
|
|
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
|
|
|
|
/* We keep a static world regulatory domain in case of the absence of CRDA */
|
|
static const struct ieee80211_regdomain world_regdom = {
|
|
.n_reg_rules = 5,
|
|
.alpha2 = "00",
|
|
.reg_rules = {
|
|
/* IEEE 802.11b/g, channels 1..11 */
|
|
REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
|
|
/* IEEE 802.11b/g, channels 12..13. No HT40
|
|
* channel fits here. */
|
|
REG_RULE(2467-10, 2472+10, 20, 6, 20,
|
|
NL80211_RRF_PASSIVE_SCAN |
|
|
NL80211_RRF_NO_IBSS),
|
|
/* IEEE 802.11 channel 14 - Only JP enables
|
|
* this and for 802.11b only */
|
|
REG_RULE(2484-10, 2484+10, 20, 6, 20,
|
|
NL80211_RRF_PASSIVE_SCAN |
|
|
NL80211_RRF_NO_IBSS |
|
|
NL80211_RRF_NO_OFDM),
|
|
/* IEEE 802.11a, channel 36..48 */
|
|
REG_RULE(5180-10, 5240+10, 40, 6, 20,
|
|
NL80211_RRF_PASSIVE_SCAN |
|
|
NL80211_RRF_NO_IBSS),
|
|
|
|
/* NB: 5260 MHz - 5700 MHz requies DFS */
|
|
|
|
/* IEEE 802.11a, channel 149..165 */
|
|
REG_RULE(5745-10, 5825+10, 40, 6, 20,
|
|
NL80211_RRF_PASSIVE_SCAN |
|
|
NL80211_RRF_NO_IBSS),
|
|
}
|
|
};
|
|
|
|
static const struct ieee80211_regdomain *cfg80211_world_regdom =
|
|
&world_regdom;
|
|
|
|
static char *ieee80211_regdom = "00";
|
|
static char user_alpha2[2];
|
|
|
|
module_param(ieee80211_regdom, charp, 0444);
|
|
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
|
|
|
|
static void reset_regdomains(bool full_reset)
|
|
{
|
|
/* avoid freeing static information or freeing something twice */
|
|
if (cfg80211_regdomain == cfg80211_world_regdom)
|
|
cfg80211_regdomain = NULL;
|
|
if (cfg80211_world_regdom == &world_regdom)
|
|
cfg80211_world_regdom = NULL;
|
|
if (cfg80211_regdomain == &world_regdom)
|
|
cfg80211_regdomain = NULL;
|
|
|
|
kfree(cfg80211_regdomain);
|
|
kfree(cfg80211_world_regdom);
|
|
|
|
cfg80211_world_regdom = &world_regdom;
|
|
cfg80211_regdomain = NULL;
|
|
|
|
if (!full_reset)
|
|
return;
|
|
|
|
if (last_request != &core_request_world)
|
|
kfree(last_request);
|
|
last_request = &core_request_world;
|
|
}
|
|
|
|
/*
|
|
* Dynamic world regulatory domain requested by the wireless
|
|
* core upon initialization
|
|
*/
|
|
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
|
|
{
|
|
BUG_ON(!last_request);
|
|
|
|
reset_regdomains(false);
|
|
|
|
cfg80211_world_regdom = rd;
|
|
cfg80211_regdomain = rd;
|
|
}
|
|
|
|
bool is_world_regdom(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
if (alpha2[0] == '0' && alpha2[1] == '0')
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_alpha2_set(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
if (alpha2[0] != 0 && alpha2[1] != 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_unknown_alpha2(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
/*
|
|
* Special case where regulatory domain was built by driver
|
|
* but a specific alpha2 cannot be determined
|
|
*/
|
|
if (alpha2[0] == '9' && alpha2[1] == '9')
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_intersected_alpha2(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
/*
|
|
* Special case where regulatory domain is the
|
|
* result of an intersection between two regulatory domain
|
|
* structures
|
|
*/
|
|
if (alpha2[0] == '9' && alpha2[1] == '8')
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool is_an_alpha2(const char *alpha2)
|
|
{
|
|
if (!alpha2)
|
|
return false;
|
|
if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
|
|
{
|
|
if (!alpha2_x || !alpha2_y)
|
|
return false;
|
|
if (alpha2_x[0] == alpha2_y[0] &&
|
|
alpha2_x[1] == alpha2_y[1])
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool regdom_changes(const char *alpha2)
|
|
{
|
|
assert_cfg80211_lock();
|
|
|
|
if (!cfg80211_regdomain)
|
|
return true;
|
|
if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
|
|
* you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
|
|
* has ever been issued.
|
|
*/
|
|
static bool is_user_regdom_saved(void)
|
|
{
|
|
if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
|
|
return false;
|
|
|
|
/* This would indicate a mistake on the design */
|
|
if (WARN((!is_world_regdom(user_alpha2) &&
|
|
!is_an_alpha2(user_alpha2)),
|
|
"Unexpected user alpha2: %c%c\n",
|
|
user_alpha2[0],
|
|
user_alpha2[1]))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
|
|
const struct ieee80211_regdomain *src_regd)
|
|
{
|
|
struct ieee80211_regdomain *regd;
|
|
int size_of_regd = 0;
|
|
unsigned int i;
|
|
|
|
size_of_regd = sizeof(struct ieee80211_regdomain) +
|
|
((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
|
|
|
|
regd = kzalloc(size_of_regd, GFP_KERNEL);
|
|
if (!regd)
|
|
return -ENOMEM;
|
|
|
|
memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
|
|
|
|
for (i = 0; i < src_regd->n_reg_rules; i++)
|
|
memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
|
|
sizeof(struct ieee80211_reg_rule));
|
|
|
|
*dst_regd = regd;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_CFG80211_INTERNAL_REGDB
|
|
struct reg_regdb_search_request {
|
|
char alpha2[2];
|
|
struct list_head list;
|
|
};
|
|
|
|
static LIST_HEAD(reg_regdb_search_list);
|
|
static DEFINE_MUTEX(reg_regdb_search_mutex);
|
|
|
|
static void reg_regdb_search(struct work_struct *work)
|
|
{
|
|
struct reg_regdb_search_request *request;
|
|
const struct ieee80211_regdomain *curdom, *regdom;
|
|
int i, r;
|
|
|
|
mutex_lock(®_regdb_search_mutex);
|
|
while (!list_empty(®_regdb_search_list)) {
|
|
request = list_first_entry(®_regdb_search_list,
|
|
struct reg_regdb_search_request,
|
|
list);
|
|
list_del(&request->list);
|
|
|
|
for (i=0; i<reg_regdb_size; i++) {
|
|
curdom = reg_regdb[i];
|
|
|
|
if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
|
|
r = reg_copy_regd(®dom, curdom);
|
|
if (r)
|
|
break;
|
|
mutex_lock(&cfg80211_mutex);
|
|
set_regdom(regdom);
|
|
mutex_unlock(&cfg80211_mutex);
|
|
break;
|
|
}
|
|
}
|
|
|
|
kfree(request);
|
|
}
|
|
mutex_unlock(®_regdb_search_mutex);
|
|
}
|
|
|
|
static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
|
|
|
|
static void reg_regdb_query(const char *alpha2)
|
|
{
|
|
struct reg_regdb_search_request *request;
|
|
|
|
if (!alpha2)
|
|
return;
|
|
|
|
request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
|
|
if (!request)
|
|
return;
|
|
|
|
memcpy(request->alpha2, alpha2, 2);
|
|
|
|
mutex_lock(®_regdb_search_mutex);
|
|
list_add_tail(&request->list, ®_regdb_search_list);
|
|
mutex_unlock(®_regdb_search_mutex);
|
|
|
|
schedule_work(®_regdb_work);
|
|
}
|
|
#else
|
|
static inline void reg_regdb_query(const char *alpha2) {}
|
|
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */
|
|
|
|
/*
|
|
* This lets us keep regulatory code which is updated on a regulatory
|
|
* basis in userspace. Country information is filled in by
|
|
* reg_device_uevent
|
|
*/
|
|
static int call_crda(const char *alpha2)
|
|
{
|
|
if (!is_world_regdom((char *) alpha2))
|
|
pr_info("Calling CRDA for country: %c%c\n",
|
|
alpha2[0], alpha2[1]);
|
|
else
|
|
pr_info("Calling CRDA to update world regulatory domain\n");
|
|
|
|
/* query internal regulatory database (if it exists) */
|
|
reg_regdb_query(alpha2);
|
|
|
|
return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE);
|
|
}
|
|
|
|
/* Used by nl80211 before kmalloc'ing our regulatory domain */
|
|
bool reg_is_valid_request(const char *alpha2)
|
|
{
|
|
assert_cfg80211_lock();
|
|
|
|
if (!last_request)
|
|
return false;
|
|
|
|
return alpha2_equal(last_request->alpha2, alpha2);
|
|
}
|
|
|
|
/* Sanity check on a regulatory rule */
|
|
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
|
|
{
|
|
const struct ieee80211_freq_range *freq_range = &rule->freq_range;
|
|
u32 freq_diff;
|
|
|
|
if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
|
|
return false;
|
|
|
|
if (freq_range->start_freq_khz > freq_range->end_freq_khz)
|
|
return false;
|
|
|
|
freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
|
|
|
|
if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
|
|
freq_range->max_bandwidth_khz > freq_diff)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
|
|
{
|
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
|
unsigned int i;
|
|
|
|
if (!rd->n_reg_rules)
|
|
return false;
|
|
|
|
if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
|
|
return false;
|
|
|
|
for (i = 0; i < rd->n_reg_rules; i++) {
|
|
reg_rule = &rd->reg_rules[i];
|
|
if (!is_valid_reg_rule(reg_rule))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
|
|
u32 center_freq_khz,
|
|
u32 bw_khz)
|
|
{
|
|
u32 start_freq_khz, end_freq_khz;
|
|
|
|
start_freq_khz = center_freq_khz - (bw_khz/2);
|
|
end_freq_khz = center_freq_khz + (bw_khz/2);
|
|
|
|
if (start_freq_khz >= freq_range->start_freq_khz &&
|
|
end_freq_khz <= freq_range->end_freq_khz)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* freq_in_rule_band - tells us if a frequency is in a frequency band
|
|
* @freq_range: frequency rule we want to query
|
|
* @freq_khz: frequency we are inquiring about
|
|
*
|
|
* This lets us know if a specific frequency rule is or is not relevant to
|
|
* a specific frequency's band. Bands are device specific and artificial
|
|
* definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
|
|
* safe for now to assume that a frequency rule should not be part of a
|
|
* frequency's band if the start freq or end freq are off by more than 2 GHz.
|
|
* This resolution can be lowered and should be considered as we add
|
|
* regulatory rule support for other "bands".
|
|
**/
|
|
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
|
|
u32 freq_khz)
|
|
{
|
|
#define ONE_GHZ_IN_KHZ 1000000
|
|
if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
|
|
return true;
|
|
if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
|
|
return true;
|
|
return false;
|
|
#undef ONE_GHZ_IN_KHZ
|
|
}
|
|
|
|
/*
|
|
* Helper for regdom_intersect(), this does the real
|
|
* mathematical intersection fun
|
|
*/
|
|
static int reg_rules_intersect(
|
|
const struct ieee80211_reg_rule *rule1,
|
|
const struct ieee80211_reg_rule *rule2,
|
|
struct ieee80211_reg_rule *intersected_rule)
|
|
{
|
|
const struct ieee80211_freq_range *freq_range1, *freq_range2;
|
|
struct ieee80211_freq_range *freq_range;
|
|
const struct ieee80211_power_rule *power_rule1, *power_rule2;
|
|
struct ieee80211_power_rule *power_rule;
|
|
u32 freq_diff;
|
|
|
|
freq_range1 = &rule1->freq_range;
|
|
freq_range2 = &rule2->freq_range;
|
|
freq_range = &intersected_rule->freq_range;
|
|
|
|
power_rule1 = &rule1->power_rule;
|
|
power_rule2 = &rule2->power_rule;
|
|
power_rule = &intersected_rule->power_rule;
|
|
|
|
freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
|
|
freq_range2->start_freq_khz);
|
|
freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
|
|
freq_range2->end_freq_khz);
|
|
freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
|
|
freq_range2->max_bandwidth_khz);
|
|
|
|
freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
|
|
if (freq_range->max_bandwidth_khz > freq_diff)
|
|
freq_range->max_bandwidth_khz = freq_diff;
|
|
|
|
power_rule->max_eirp = min(power_rule1->max_eirp,
|
|
power_rule2->max_eirp);
|
|
power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
|
|
power_rule2->max_antenna_gain);
|
|
|
|
intersected_rule->flags = (rule1->flags | rule2->flags);
|
|
|
|
if (!is_valid_reg_rule(intersected_rule))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* regdom_intersect - do the intersection between two regulatory domains
|
|
* @rd1: first regulatory domain
|
|
* @rd2: second regulatory domain
|
|
*
|
|
* Use this function to get the intersection between two regulatory domains.
|
|
* Once completed we will mark the alpha2 for the rd as intersected, "98",
|
|
* as no one single alpha2 can represent this regulatory domain.
|
|
*
|
|
* Returns a pointer to the regulatory domain structure which will hold the
|
|
* resulting intersection of rules between rd1 and rd2. We will
|
|
* kzalloc() this structure for you.
|
|
*/
|
|
static struct ieee80211_regdomain *regdom_intersect(
|
|
const struct ieee80211_regdomain *rd1,
|
|
const struct ieee80211_regdomain *rd2)
|
|
{
|
|
int r, size_of_regd;
|
|
unsigned int x, y;
|
|
unsigned int num_rules = 0, rule_idx = 0;
|
|
const struct ieee80211_reg_rule *rule1, *rule2;
|
|
struct ieee80211_reg_rule *intersected_rule;
|
|
struct ieee80211_regdomain *rd;
|
|
/* This is just a dummy holder to help us count */
|
|
struct ieee80211_reg_rule irule;
|
|
|
|
/* Uses the stack temporarily for counter arithmetic */
|
|
intersected_rule = &irule;
|
|
|
|
memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
|
|
|
|
if (!rd1 || !rd2)
|
|
return NULL;
|
|
|
|
/*
|
|
* First we get a count of the rules we'll need, then we actually
|
|
* build them. This is to so we can malloc() and free() a
|
|
* regdomain once. The reason we use reg_rules_intersect() here
|
|
* is it will return -EINVAL if the rule computed makes no sense.
|
|
* All rules that do check out OK are valid.
|
|
*/
|
|
|
|
for (x = 0; x < rd1->n_reg_rules; x++) {
|
|
rule1 = &rd1->reg_rules[x];
|
|
for (y = 0; y < rd2->n_reg_rules; y++) {
|
|
rule2 = &rd2->reg_rules[y];
|
|
if (!reg_rules_intersect(rule1, rule2,
|
|
intersected_rule))
|
|
num_rules++;
|
|
memset(intersected_rule, 0,
|
|
sizeof(struct ieee80211_reg_rule));
|
|
}
|
|
}
|
|
|
|
if (!num_rules)
|
|
return NULL;
|
|
|
|
size_of_regd = sizeof(struct ieee80211_regdomain) +
|
|
((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
|
|
|
|
rd = kzalloc(size_of_regd, GFP_KERNEL);
|
|
if (!rd)
|
|
return NULL;
|
|
|
|
for (x = 0; x < rd1->n_reg_rules; x++) {
|
|
rule1 = &rd1->reg_rules[x];
|
|
for (y = 0; y < rd2->n_reg_rules; y++) {
|
|
rule2 = &rd2->reg_rules[y];
|
|
/*
|
|
* This time around instead of using the stack lets
|
|
* write to the target rule directly saving ourselves
|
|
* a memcpy()
|
|
*/
|
|
intersected_rule = &rd->reg_rules[rule_idx];
|
|
r = reg_rules_intersect(rule1, rule2,
|
|
intersected_rule);
|
|
/*
|
|
* No need to memset here the intersected rule here as
|
|
* we're not using the stack anymore
|
|
*/
|
|
if (r)
|
|
continue;
|
|
rule_idx++;
|
|
}
|
|
}
|
|
|
|
if (rule_idx != num_rules) {
|
|
kfree(rd);
|
|
return NULL;
|
|
}
|
|
|
|
rd->n_reg_rules = num_rules;
|
|
rd->alpha2[0] = '9';
|
|
rd->alpha2[1] = '8';
|
|
|
|
return rd;
|
|
}
|
|
|
|
/*
|
|
* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
|
|
* want to just have the channel structure use these
|
|
*/
|
|
static u32 map_regdom_flags(u32 rd_flags)
|
|
{
|
|
u32 channel_flags = 0;
|
|
if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
|
|
channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
|
|
if (rd_flags & NL80211_RRF_NO_IBSS)
|
|
channel_flags |= IEEE80211_CHAN_NO_IBSS;
|
|
if (rd_flags & NL80211_RRF_DFS)
|
|
channel_flags |= IEEE80211_CHAN_RADAR;
|
|
return channel_flags;
|
|
}
|
|
|
|
static int freq_reg_info_regd(struct wiphy *wiphy,
|
|
u32 center_freq,
|
|
u32 desired_bw_khz,
|
|
const struct ieee80211_reg_rule **reg_rule,
|
|
const struct ieee80211_regdomain *custom_regd)
|
|
{
|
|
int i;
|
|
bool band_rule_found = false;
|
|
const struct ieee80211_regdomain *regd;
|
|
bool bw_fits = false;
|
|
|
|
if (!desired_bw_khz)
|
|
desired_bw_khz = MHZ_TO_KHZ(20);
|
|
|
|
regd = custom_regd ? custom_regd : cfg80211_regdomain;
|
|
|
|
/*
|
|
* Follow the driver's regulatory domain, if present, unless a country
|
|
* IE has been processed or a user wants to help complaince further
|
|
*/
|
|
if (!custom_regd &&
|
|
last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
|
|
last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
|
|
wiphy->regd)
|
|
regd = wiphy->regd;
|
|
|
|
if (!regd)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < regd->n_reg_rules; i++) {
|
|
const struct ieee80211_reg_rule *rr;
|
|
const struct ieee80211_freq_range *fr = NULL;
|
|
|
|
rr = ®d->reg_rules[i];
|
|
fr = &rr->freq_range;
|
|
|
|
/*
|
|
* We only need to know if one frequency rule was
|
|
* was in center_freq's band, that's enough, so lets
|
|
* not overwrite it once found
|
|
*/
|
|
if (!band_rule_found)
|
|
band_rule_found = freq_in_rule_band(fr, center_freq);
|
|
|
|
bw_fits = reg_does_bw_fit(fr,
|
|
center_freq,
|
|
desired_bw_khz);
|
|
|
|
if (band_rule_found && bw_fits) {
|
|
*reg_rule = rr;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (!band_rule_found)
|
|
return -ERANGE;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
int freq_reg_info(struct wiphy *wiphy,
|
|
u32 center_freq,
|
|
u32 desired_bw_khz,
|
|
const struct ieee80211_reg_rule **reg_rule)
|
|
{
|
|
assert_cfg80211_lock();
|
|
return freq_reg_info_regd(wiphy,
|
|
center_freq,
|
|
desired_bw_khz,
|
|
reg_rule,
|
|
NULL);
|
|
}
|
|
EXPORT_SYMBOL(freq_reg_info);
|
|
|
|
#ifdef CONFIG_CFG80211_REG_DEBUG
|
|
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
|
|
{
|
|
switch (initiator) {
|
|
case NL80211_REGDOM_SET_BY_CORE:
|
|
return "Set by core";
|
|
case NL80211_REGDOM_SET_BY_USER:
|
|
return "Set by user";
|
|
case NL80211_REGDOM_SET_BY_DRIVER:
|
|
return "Set by driver";
|
|
case NL80211_REGDOM_SET_BY_COUNTRY_IE:
|
|
return "Set by country IE";
|
|
default:
|
|
WARN_ON(1);
|
|
return "Set by bug";
|
|
}
|
|
}
|
|
|
|
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
|
|
u32 desired_bw_khz,
|
|
const struct ieee80211_reg_rule *reg_rule)
|
|
{
|
|
const struct ieee80211_power_rule *power_rule;
|
|
const struct ieee80211_freq_range *freq_range;
|
|
char max_antenna_gain[32];
|
|
|
|
power_rule = ®_rule->power_rule;
|
|
freq_range = ®_rule->freq_range;
|
|
|
|
if (!power_rule->max_antenna_gain)
|
|
snprintf(max_antenna_gain, 32, "N/A");
|
|
else
|
|
snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
|
|
|
|
REG_DBG_PRINT("Updating information on frequency %d MHz "
|
|
"for a %d MHz width channel with regulatory rule:\n",
|
|
chan->center_freq,
|
|
KHZ_TO_MHZ(desired_bw_khz));
|
|
|
|
REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
|
|
freq_range->start_freq_khz,
|
|
freq_range->end_freq_khz,
|
|
freq_range->max_bandwidth_khz,
|
|
max_antenna_gain,
|
|
power_rule->max_eirp);
|
|
}
|
|
#else
|
|
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
|
|
u32 desired_bw_khz,
|
|
const struct ieee80211_reg_rule *reg_rule)
|
|
{
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Note that right now we assume the desired channel bandwidth
|
|
* is always 20 MHz for each individual channel (HT40 uses 20 MHz
|
|
* per channel, the primary and the extension channel). To support
|
|
* smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
|
|
* new ieee80211_channel.target_bw and re run the regulatory check
|
|
* on the wiphy with the target_bw specified. Then we can simply use
|
|
* that below for the desired_bw_khz below.
|
|
*/
|
|
static void handle_channel(struct wiphy *wiphy,
|
|
enum nl80211_reg_initiator initiator,
|
|
enum ieee80211_band band,
|
|
unsigned int chan_idx)
|
|
{
|
|
int r;
|
|
u32 flags, bw_flags = 0;
|
|
u32 desired_bw_khz = MHZ_TO_KHZ(20);
|
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
|
const struct ieee80211_power_rule *power_rule = NULL;
|
|
const struct ieee80211_freq_range *freq_range = NULL;
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_channel *chan;
|
|
struct wiphy *request_wiphy = NULL;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
|
|
|
sband = wiphy->bands[band];
|
|
BUG_ON(chan_idx >= sband->n_channels);
|
|
chan = &sband->channels[chan_idx];
|
|
|
|
flags = chan->orig_flags;
|
|
|
|
r = freq_reg_info(wiphy,
|
|
MHZ_TO_KHZ(chan->center_freq),
|
|
desired_bw_khz,
|
|
®_rule);
|
|
|
|
if (r) {
|
|
/*
|
|
* We will disable all channels that do not match our
|
|
* received regulatory rule unless the hint is coming
|
|
* from a Country IE and the Country IE had no information
|
|
* about a band. The IEEE 802.11 spec allows for an AP
|
|
* to send only a subset of the regulatory rules allowed,
|
|
* so an AP in the US that only supports 2.4 GHz may only send
|
|
* a country IE with information for the 2.4 GHz band
|
|
* while 5 GHz is still supported.
|
|
*/
|
|
if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
|
|
r == -ERANGE)
|
|
return;
|
|
|
|
REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
|
|
chan->flags = IEEE80211_CHAN_DISABLED;
|
|
return;
|
|
}
|
|
|
|
chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
|
|
|
|
power_rule = ®_rule->power_rule;
|
|
freq_range = ®_rule->freq_range;
|
|
|
|
if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
|
|
bw_flags = IEEE80211_CHAN_NO_HT40;
|
|
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
|
|
request_wiphy && request_wiphy == wiphy &&
|
|
request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
|
|
/*
|
|
* This guarantees the driver's requested regulatory domain
|
|
* will always be used as a base for further regulatory
|
|
* settings
|
|
*/
|
|
chan->flags = chan->orig_flags =
|
|
map_regdom_flags(reg_rule->flags) | bw_flags;
|
|
chan->max_antenna_gain = chan->orig_mag =
|
|
(int) MBI_TO_DBI(power_rule->max_antenna_gain);
|
|
chan->max_power = chan->orig_mpwr =
|
|
(int) MBM_TO_DBM(power_rule->max_eirp);
|
|
return;
|
|
}
|
|
|
|
chan->beacon_found = false;
|
|
chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
|
|
chan->max_antenna_gain = min(chan->orig_mag,
|
|
(int) MBI_TO_DBI(power_rule->max_antenna_gain));
|
|
if (chan->orig_mpwr)
|
|
chan->max_power = min(chan->orig_mpwr,
|
|
(int) MBM_TO_DBM(power_rule->max_eirp));
|
|
else
|
|
chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
|
|
}
|
|
|
|
static void handle_band(struct wiphy *wiphy,
|
|
enum ieee80211_band band,
|
|
enum nl80211_reg_initiator initiator)
|
|
{
|
|
unsigned int i;
|
|
struct ieee80211_supported_band *sband;
|
|
|
|
BUG_ON(!wiphy->bands[band]);
|
|
sband = wiphy->bands[band];
|
|
|
|
for (i = 0; i < sband->n_channels; i++)
|
|
handle_channel(wiphy, initiator, band, i);
|
|
}
|
|
|
|
static bool ignore_reg_update(struct wiphy *wiphy,
|
|
enum nl80211_reg_initiator initiator)
|
|
{
|
|
if (!last_request) {
|
|
REG_DBG_PRINT("Ignoring regulatory request %s since "
|
|
"last_request is not set\n",
|
|
reg_initiator_name(initiator));
|
|
return true;
|
|
}
|
|
|
|
if (initiator == NL80211_REGDOM_SET_BY_CORE &&
|
|
wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
|
|
REG_DBG_PRINT("Ignoring regulatory request %s "
|
|
"since the driver uses its own custom "
|
|
"regulatory domain\n",
|
|
reg_initiator_name(initiator));
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* wiphy->regd will be set once the device has its own
|
|
* desired regulatory domain set
|
|
*/
|
|
if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
|
|
initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
|
|
!is_world_regdom(last_request->alpha2)) {
|
|
REG_DBG_PRINT("Ignoring regulatory request %s "
|
|
"since the driver requires its own regulatory "
|
|
"domain to be set first\n",
|
|
reg_initiator_name(initiator));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void handle_reg_beacon(struct wiphy *wiphy,
|
|
unsigned int chan_idx,
|
|
struct reg_beacon *reg_beacon)
|
|
{
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_channel *chan;
|
|
bool channel_changed = false;
|
|
struct ieee80211_channel chan_before;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
sband = wiphy->bands[reg_beacon->chan.band];
|
|
chan = &sband->channels[chan_idx];
|
|
|
|
if (likely(chan->center_freq != reg_beacon->chan.center_freq))
|
|
return;
|
|
|
|
if (chan->beacon_found)
|
|
return;
|
|
|
|
chan->beacon_found = true;
|
|
|
|
if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
|
|
return;
|
|
|
|
chan_before.center_freq = chan->center_freq;
|
|
chan_before.flags = chan->flags;
|
|
|
|
if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
|
|
chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
|
|
channel_changed = true;
|
|
}
|
|
|
|
if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
|
|
chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
|
|
channel_changed = true;
|
|
}
|
|
|
|
if (channel_changed)
|
|
nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
|
|
}
|
|
|
|
/*
|
|
* Called when a scan on a wiphy finds a beacon on
|
|
* new channel
|
|
*/
|
|
static void wiphy_update_new_beacon(struct wiphy *wiphy,
|
|
struct reg_beacon *reg_beacon)
|
|
{
|
|
unsigned int i;
|
|
struct ieee80211_supported_band *sband;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
if (!wiphy->bands[reg_beacon->chan.band])
|
|
return;
|
|
|
|
sband = wiphy->bands[reg_beacon->chan.band];
|
|
|
|
for (i = 0; i < sband->n_channels; i++)
|
|
handle_reg_beacon(wiphy, i, reg_beacon);
|
|
}
|
|
|
|
/*
|
|
* Called upon reg changes or a new wiphy is added
|
|
*/
|
|
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
|
|
{
|
|
unsigned int i;
|
|
struct ieee80211_supported_band *sband;
|
|
struct reg_beacon *reg_beacon;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
if (list_empty(®_beacon_list))
|
|
return;
|
|
|
|
list_for_each_entry(reg_beacon, ®_beacon_list, list) {
|
|
if (!wiphy->bands[reg_beacon->chan.band])
|
|
continue;
|
|
sband = wiphy->bands[reg_beacon->chan.band];
|
|
for (i = 0; i < sband->n_channels; i++)
|
|
handle_reg_beacon(wiphy, i, reg_beacon);
|
|
}
|
|
}
|
|
|
|
static bool reg_is_world_roaming(struct wiphy *wiphy)
|
|
{
|
|
if (is_world_regdom(cfg80211_regdomain->alpha2) ||
|
|
(wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
|
|
return true;
|
|
if (last_request &&
|
|
last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
|
|
wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Reap the advantages of previously found beacons */
|
|
static void reg_process_beacons(struct wiphy *wiphy)
|
|
{
|
|
/*
|
|
* Means we are just firing up cfg80211, so no beacons would
|
|
* have been processed yet.
|
|
*/
|
|
if (!last_request)
|
|
return;
|
|
if (!reg_is_world_roaming(wiphy))
|
|
return;
|
|
wiphy_update_beacon_reg(wiphy);
|
|
}
|
|
|
|
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
|
|
{
|
|
if (!chan)
|
|
return true;
|
|
if (chan->flags & IEEE80211_CHAN_DISABLED)
|
|
return true;
|
|
/* This would happen when regulatory rules disallow HT40 completely */
|
|
if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static void reg_process_ht_flags_channel(struct wiphy *wiphy,
|
|
enum ieee80211_band band,
|
|
unsigned int chan_idx)
|
|
{
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_channel *channel;
|
|
struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
|
|
unsigned int i;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
sband = wiphy->bands[band];
|
|
BUG_ON(chan_idx >= sband->n_channels);
|
|
channel = &sband->channels[chan_idx];
|
|
|
|
if (is_ht40_not_allowed(channel)) {
|
|
channel->flags |= IEEE80211_CHAN_NO_HT40;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We need to ensure the extension channels exist to
|
|
* be able to use HT40- or HT40+, this finds them (or not)
|
|
*/
|
|
for (i = 0; i < sband->n_channels; i++) {
|
|
struct ieee80211_channel *c = &sband->channels[i];
|
|
if (c->center_freq == (channel->center_freq - 20))
|
|
channel_before = c;
|
|
if (c->center_freq == (channel->center_freq + 20))
|
|
channel_after = c;
|
|
}
|
|
|
|
/*
|
|
* Please note that this assumes target bandwidth is 20 MHz,
|
|
* if that ever changes we also need to change the below logic
|
|
* to include that as well.
|
|
*/
|
|
if (is_ht40_not_allowed(channel_before))
|
|
channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
|
|
else
|
|
channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
|
|
|
|
if (is_ht40_not_allowed(channel_after))
|
|
channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
|
|
else
|
|
channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
|
|
}
|
|
|
|
static void reg_process_ht_flags_band(struct wiphy *wiphy,
|
|
enum ieee80211_band band)
|
|
{
|
|
unsigned int i;
|
|
struct ieee80211_supported_band *sband;
|
|
|
|
BUG_ON(!wiphy->bands[band]);
|
|
sband = wiphy->bands[band];
|
|
|
|
for (i = 0; i < sband->n_channels; i++)
|
|
reg_process_ht_flags_channel(wiphy, band, i);
|
|
}
|
|
|
|
static void reg_process_ht_flags(struct wiphy *wiphy)
|
|
{
|
|
enum ieee80211_band band;
|
|
|
|
if (!wiphy)
|
|
return;
|
|
|
|
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
|
|
if (wiphy->bands[band])
|
|
reg_process_ht_flags_band(wiphy, band);
|
|
}
|
|
|
|
}
|
|
|
|
static void wiphy_update_regulatory(struct wiphy *wiphy,
|
|
enum nl80211_reg_initiator initiator)
|
|
{
|
|
enum ieee80211_band band;
|
|
|
|
assert_reg_lock();
|
|
|
|
if (ignore_reg_update(wiphy, initiator))
|
|
return;
|
|
|
|
last_request->dfs_region = cfg80211_regdomain->dfs_region;
|
|
|
|
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
|
|
if (wiphy->bands[band])
|
|
handle_band(wiphy, band, initiator);
|
|
}
|
|
|
|
reg_process_beacons(wiphy);
|
|
reg_process_ht_flags(wiphy);
|
|
if (wiphy->reg_notifier)
|
|
wiphy->reg_notifier(wiphy, last_request);
|
|
}
|
|
|
|
void regulatory_update(struct wiphy *wiphy,
|
|
enum nl80211_reg_initiator setby)
|
|
{
|
|
mutex_lock(®_mutex);
|
|
wiphy_update_regulatory(wiphy, setby);
|
|
mutex_unlock(®_mutex);
|
|
}
|
|
|
|
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
|
|
{
|
|
struct cfg80211_registered_device *rdev;
|
|
|
|
list_for_each_entry(rdev, &cfg80211_rdev_list, list)
|
|
wiphy_update_regulatory(&rdev->wiphy, initiator);
|
|
}
|
|
|
|
static void handle_channel_custom(struct wiphy *wiphy,
|
|
enum ieee80211_band band,
|
|
unsigned int chan_idx,
|
|
const struct ieee80211_regdomain *regd)
|
|
{
|
|
int r;
|
|
u32 desired_bw_khz = MHZ_TO_KHZ(20);
|
|
u32 bw_flags = 0;
|
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
|
const struct ieee80211_power_rule *power_rule = NULL;
|
|
const struct ieee80211_freq_range *freq_range = NULL;
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_channel *chan;
|
|
|
|
assert_reg_lock();
|
|
|
|
sband = wiphy->bands[band];
|
|
BUG_ON(chan_idx >= sband->n_channels);
|
|
chan = &sband->channels[chan_idx];
|
|
|
|
r = freq_reg_info_regd(wiphy,
|
|
MHZ_TO_KHZ(chan->center_freq),
|
|
desired_bw_khz,
|
|
®_rule,
|
|
regd);
|
|
|
|
if (r) {
|
|
REG_DBG_PRINT("Disabling freq %d MHz as custom "
|
|
"regd has no rule that fits a %d MHz "
|
|
"wide channel\n",
|
|
chan->center_freq,
|
|
KHZ_TO_MHZ(desired_bw_khz));
|
|
chan->flags = IEEE80211_CHAN_DISABLED;
|
|
return;
|
|
}
|
|
|
|
chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
|
|
|
|
power_rule = ®_rule->power_rule;
|
|
freq_range = ®_rule->freq_range;
|
|
|
|
if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
|
|
bw_flags = IEEE80211_CHAN_NO_HT40;
|
|
|
|
chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
|
|
chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
|
|
chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
|
|
}
|
|
|
|
static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
|
|
const struct ieee80211_regdomain *regd)
|
|
{
|
|
unsigned int i;
|
|
struct ieee80211_supported_band *sband;
|
|
|
|
BUG_ON(!wiphy->bands[band]);
|
|
sband = wiphy->bands[band];
|
|
|
|
for (i = 0; i < sband->n_channels; i++)
|
|
handle_channel_custom(wiphy, band, i, regd);
|
|
}
|
|
|
|
/* Used by drivers prior to wiphy registration */
|
|
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
|
|
const struct ieee80211_regdomain *regd)
|
|
{
|
|
enum ieee80211_band band;
|
|
unsigned int bands_set = 0;
|
|
|
|
mutex_lock(®_mutex);
|
|
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
|
|
if (!wiphy->bands[band])
|
|
continue;
|
|
handle_band_custom(wiphy, band, regd);
|
|
bands_set++;
|
|
}
|
|
mutex_unlock(®_mutex);
|
|
|
|
/*
|
|
* no point in calling this if it won't have any effect
|
|
* on your device's supportd bands.
|
|
*/
|
|
WARN_ON(!bands_set);
|
|
}
|
|
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
|
|
|
|
/*
|
|
* Return value which can be used by ignore_request() to indicate
|
|
* it has been determined we should intersect two regulatory domains
|
|
*/
|
|
#define REG_INTERSECT 1
|
|
|
|
/* This has the logic which determines when a new request
|
|
* should be ignored. */
|
|
static int ignore_request(struct wiphy *wiphy,
|
|
struct regulatory_request *pending_request)
|
|
{
|
|
struct wiphy *last_wiphy = NULL;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
/* All initial requests are respected */
|
|
if (!last_request)
|
|
return 0;
|
|
|
|
switch (pending_request->initiator) {
|
|
case NL80211_REGDOM_SET_BY_CORE:
|
|
return 0;
|
|
case NL80211_REGDOM_SET_BY_COUNTRY_IE:
|
|
|
|
last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
|
|
|
if (unlikely(!is_an_alpha2(pending_request->alpha2)))
|
|
return -EINVAL;
|
|
if (last_request->initiator ==
|
|
NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
|
if (last_wiphy != wiphy) {
|
|
/*
|
|
* Two cards with two APs claiming different
|
|
* Country IE alpha2s. We could
|
|
* intersect them, but that seems unlikely
|
|
* to be correct. Reject second one for now.
|
|
*/
|
|
if (regdom_changes(pending_request->alpha2))
|
|
return -EOPNOTSUPP;
|
|
return -EALREADY;
|
|
}
|
|
/*
|
|
* Two consecutive Country IE hints on the same wiphy.
|
|
* This should be picked up early by the driver/stack
|
|
*/
|
|
if (WARN_ON(regdom_changes(pending_request->alpha2)))
|
|
return 0;
|
|
return -EALREADY;
|
|
}
|
|
return 0;
|
|
case NL80211_REGDOM_SET_BY_DRIVER:
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
|
|
if (regdom_changes(pending_request->alpha2))
|
|
return 0;
|
|
return -EALREADY;
|
|
}
|
|
|
|
/*
|
|
* This would happen if you unplug and plug your card
|
|
* back in or if you add a new device for which the previously
|
|
* loaded card also agrees on the regulatory domain.
|
|
*/
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
|
|
!regdom_changes(pending_request->alpha2))
|
|
return -EALREADY;
|
|
|
|
return REG_INTERSECT;
|
|
case NL80211_REGDOM_SET_BY_USER:
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
|
|
return REG_INTERSECT;
|
|
/*
|
|
* If the user knows better the user should set the regdom
|
|
* to their country before the IE is picked up
|
|
*/
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
|
|
last_request->intersect)
|
|
return -EOPNOTSUPP;
|
|
/*
|
|
* Process user requests only after previous user/driver/core
|
|
* requests have been processed
|
|
*/
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
|
|
last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
|
|
last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
|
|
if (regdom_changes(last_request->alpha2))
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (!regdom_changes(pending_request->alpha2))
|
|
return -EALREADY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void reg_set_request_processed(void)
|
|
{
|
|
bool need_more_processing = false;
|
|
|
|
last_request->processed = true;
|
|
|
|
spin_lock(®_requests_lock);
|
|
if (!list_empty(®_requests_list))
|
|
need_more_processing = true;
|
|
spin_unlock(®_requests_lock);
|
|
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
|
|
cancel_delayed_work_sync(®_timeout);
|
|
|
|
if (need_more_processing)
|
|
schedule_work(®_work);
|
|
}
|
|
|
|
/**
|
|
* __regulatory_hint - hint to the wireless core a regulatory domain
|
|
* @wiphy: if the hint comes from country information from an AP, this
|
|
* is required to be set to the wiphy that received the information
|
|
* @pending_request: the regulatory request currently being processed
|
|
*
|
|
* The Wireless subsystem can use this function to hint to the wireless core
|
|
* what it believes should be the current regulatory domain.
|
|
*
|
|
* Returns zero if all went fine, %-EALREADY if a regulatory domain had
|
|
* already been set or other standard error codes.
|
|
*
|
|
* Caller must hold &cfg80211_mutex and ®_mutex
|
|
*/
|
|
static int __regulatory_hint(struct wiphy *wiphy,
|
|
struct regulatory_request *pending_request)
|
|
{
|
|
bool intersect = false;
|
|
int r = 0;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
r = ignore_request(wiphy, pending_request);
|
|
|
|
if (r == REG_INTERSECT) {
|
|
if (pending_request->initiator ==
|
|
NL80211_REGDOM_SET_BY_DRIVER) {
|
|
r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
|
|
if (r) {
|
|
kfree(pending_request);
|
|
return r;
|
|
}
|
|
}
|
|
intersect = true;
|
|
} else if (r) {
|
|
/*
|
|
* If the regulatory domain being requested by the
|
|
* driver has already been set just copy it to the
|
|
* wiphy
|
|
*/
|
|
if (r == -EALREADY &&
|
|
pending_request->initiator ==
|
|
NL80211_REGDOM_SET_BY_DRIVER) {
|
|
r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
|
|
if (r) {
|
|
kfree(pending_request);
|
|
return r;
|
|
}
|
|
r = -EALREADY;
|
|
goto new_request;
|
|
}
|
|
kfree(pending_request);
|
|
return r;
|
|
}
|
|
|
|
new_request:
|
|
if (last_request != &core_request_world)
|
|
kfree(last_request);
|
|
|
|
last_request = pending_request;
|
|
last_request->intersect = intersect;
|
|
|
|
pending_request = NULL;
|
|
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
|
|
user_alpha2[0] = last_request->alpha2[0];
|
|
user_alpha2[1] = last_request->alpha2[1];
|
|
}
|
|
|
|
/* When r == REG_INTERSECT we do need to call CRDA */
|
|
if (r < 0) {
|
|
/*
|
|
* Since CRDA will not be called in this case as we already
|
|
* have applied the requested regulatory domain before we just
|
|
* inform userspace we have processed the request
|
|
*/
|
|
if (r == -EALREADY) {
|
|
nl80211_send_reg_change_event(last_request);
|
|
reg_set_request_processed();
|
|
}
|
|
return r;
|
|
}
|
|
|
|
return call_crda(last_request->alpha2);
|
|
}
|
|
|
|
/* This processes *all* regulatory hints */
|
|
static void reg_process_hint(struct regulatory_request *reg_request)
|
|
{
|
|
int r = 0;
|
|
struct wiphy *wiphy = NULL;
|
|
enum nl80211_reg_initiator initiator = reg_request->initiator;
|
|
|
|
BUG_ON(!reg_request->alpha2);
|
|
|
|
if (wiphy_idx_valid(reg_request->wiphy_idx))
|
|
wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
|
|
|
|
if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
|
|
!wiphy) {
|
|
kfree(reg_request);
|
|
return;
|
|
}
|
|
|
|
r = __regulatory_hint(wiphy, reg_request);
|
|
/* This is required so that the orig_* parameters are saved */
|
|
if (r == -EALREADY && wiphy &&
|
|
wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
|
|
wiphy_update_regulatory(wiphy, initiator);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We only time out user hints, given that they should be the only
|
|
* source of bogus requests.
|
|
*/
|
|
if (r != -EALREADY &&
|
|
reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
|
|
schedule_delayed_work(®_timeout, msecs_to_jiffies(3142));
|
|
}
|
|
|
|
/*
|
|
* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
|
|
* Regulatory hints come on a first come first serve basis and we
|
|
* must process each one atomically.
|
|
*/
|
|
static void reg_process_pending_hints(void)
|
|
{
|
|
struct regulatory_request *reg_request;
|
|
|
|
mutex_lock(&cfg80211_mutex);
|
|
mutex_lock(®_mutex);
|
|
|
|
/* When last_request->processed becomes true this will be rescheduled */
|
|
if (last_request && !last_request->processed) {
|
|
REG_DBG_PRINT("Pending regulatory request, waiting "
|
|
"for it to be processed...\n");
|
|
goto out;
|
|
}
|
|
|
|
spin_lock(®_requests_lock);
|
|
|
|
if (list_empty(®_requests_list)) {
|
|
spin_unlock(®_requests_lock);
|
|
goto out;
|
|
}
|
|
|
|
reg_request = list_first_entry(®_requests_list,
|
|
struct regulatory_request,
|
|
list);
|
|
list_del_init(®_request->list);
|
|
|
|
spin_unlock(®_requests_lock);
|
|
|
|
reg_process_hint(reg_request);
|
|
|
|
out:
|
|
mutex_unlock(®_mutex);
|
|
mutex_unlock(&cfg80211_mutex);
|
|
}
|
|
|
|
/* Processes beacon hints -- this has nothing to do with country IEs */
|
|
static void reg_process_pending_beacon_hints(void)
|
|
{
|
|
struct cfg80211_registered_device *rdev;
|
|
struct reg_beacon *pending_beacon, *tmp;
|
|
|
|
/*
|
|
* No need to hold the reg_mutex here as we just touch wiphys
|
|
* and do not read or access regulatory variables.
|
|
*/
|
|
mutex_lock(&cfg80211_mutex);
|
|
|
|
/* This goes through the _pending_ beacon list */
|
|
spin_lock_bh(®_pending_beacons_lock);
|
|
|
|
if (list_empty(®_pending_beacons)) {
|
|
spin_unlock_bh(®_pending_beacons_lock);
|
|
goto out;
|
|
}
|
|
|
|
list_for_each_entry_safe(pending_beacon, tmp,
|
|
®_pending_beacons, list) {
|
|
|
|
list_del_init(&pending_beacon->list);
|
|
|
|
/* Applies the beacon hint to current wiphys */
|
|
list_for_each_entry(rdev, &cfg80211_rdev_list, list)
|
|
wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
|
|
|
|
/* Remembers the beacon hint for new wiphys or reg changes */
|
|
list_add_tail(&pending_beacon->list, ®_beacon_list);
|
|
}
|
|
|
|
spin_unlock_bh(®_pending_beacons_lock);
|
|
out:
|
|
mutex_unlock(&cfg80211_mutex);
|
|
}
|
|
|
|
static void reg_todo(struct work_struct *work)
|
|
{
|
|
reg_process_pending_hints();
|
|
reg_process_pending_beacon_hints();
|
|
}
|
|
|
|
static void queue_regulatory_request(struct regulatory_request *request)
|
|
{
|
|
if (isalpha(request->alpha2[0]))
|
|
request->alpha2[0] = toupper(request->alpha2[0]);
|
|
if (isalpha(request->alpha2[1]))
|
|
request->alpha2[1] = toupper(request->alpha2[1]);
|
|
|
|
spin_lock(®_requests_lock);
|
|
list_add_tail(&request->list, ®_requests_list);
|
|
spin_unlock(®_requests_lock);
|
|
|
|
schedule_work(®_work);
|
|
}
|
|
|
|
/*
|
|
* Core regulatory hint -- happens during cfg80211_init()
|
|
* and when we restore regulatory settings.
|
|
*/
|
|
static int regulatory_hint_core(const char *alpha2)
|
|
{
|
|
struct regulatory_request *request;
|
|
|
|
request = kzalloc(sizeof(struct regulatory_request),
|
|
GFP_KERNEL);
|
|
if (!request)
|
|
return -ENOMEM;
|
|
|
|
request->alpha2[0] = alpha2[0];
|
|
request->alpha2[1] = alpha2[1];
|
|
request->initiator = NL80211_REGDOM_SET_BY_CORE;
|
|
|
|
queue_regulatory_request(request);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* User hints */
|
|
int regulatory_hint_user(const char *alpha2)
|
|
{
|
|
struct regulatory_request *request;
|
|
|
|
BUG_ON(!alpha2);
|
|
|
|
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
|
|
if (!request)
|
|
return -ENOMEM;
|
|
|
|
request->wiphy_idx = WIPHY_IDX_STALE;
|
|
request->alpha2[0] = alpha2[0];
|
|
request->alpha2[1] = alpha2[1];
|
|
request->initiator = NL80211_REGDOM_SET_BY_USER;
|
|
|
|
queue_regulatory_request(request);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Driver hints */
|
|
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
|
|
{
|
|
struct regulatory_request *request;
|
|
|
|
BUG_ON(!alpha2);
|
|
BUG_ON(!wiphy);
|
|
|
|
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
|
|
if (!request)
|
|
return -ENOMEM;
|
|
|
|
request->wiphy_idx = get_wiphy_idx(wiphy);
|
|
|
|
/* Must have registered wiphy first */
|
|
BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
|
|
|
|
request->alpha2[0] = alpha2[0];
|
|
request->alpha2[1] = alpha2[1];
|
|
request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
|
|
|
|
queue_regulatory_request(request);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(regulatory_hint);
|
|
|
|
/*
|
|
* We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
|
|
* therefore cannot iterate over the rdev list here.
|
|
*/
|
|
void regulatory_hint_11d(struct wiphy *wiphy,
|
|
enum ieee80211_band band,
|
|
u8 *country_ie,
|
|
u8 country_ie_len)
|
|
{
|
|
char alpha2[2];
|
|
enum environment_cap env = ENVIRON_ANY;
|
|
struct regulatory_request *request;
|
|
|
|
mutex_lock(®_mutex);
|
|
|
|
if (unlikely(!last_request))
|
|
goto out;
|
|
|
|
/* IE len must be evenly divisible by 2 */
|
|
if (country_ie_len & 0x01)
|
|
goto out;
|
|
|
|
if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
|
|
goto out;
|
|
|
|
alpha2[0] = country_ie[0];
|
|
alpha2[1] = country_ie[1];
|
|
|
|
if (country_ie[2] == 'I')
|
|
env = ENVIRON_INDOOR;
|
|
else if (country_ie[2] == 'O')
|
|
env = ENVIRON_OUTDOOR;
|
|
|
|
/*
|
|
* We will run this only upon a successful connection on cfg80211.
|
|
* We leave conflict resolution to the workqueue, where can hold
|
|
* cfg80211_mutex.
|
|
*/
|
|
if (likely(last_request->initiator ==
|
|
NL80211_REGDOM_SET_BY_COUNTRY_IE &&
|
|
wiphy_idx_valid(last_request->wiphy_idx)))
|
|
goto out;
|
|
|
|
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
|
|
if (!request)
|
|
goto out;
|
|
|
|
request->wiphy_idx = get_wiphy_idx(wiphy);
|
|
request->alpha2[0] = alpha2[0];
|
|
request->alpha2[1] = alpha2[1];
|
|
request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
|
|
request->country_ie_env = env;
|
|
|
|
mutex_unlock(®_mutex);
|
|
|
|
queue_regulatory_request(request);
|
|
|
|
return;
|
|
|
|
out:
|
|
mutex_unlock(®_mutex);
|
|
}
|
|
|
|
static void restore_alpha2(char *alpha2, bool reset_user)
|
|
{
|
|
/* indicates there is no alpha2 to consider for restoration */
|
|
alpha2[0] = '9';
|
|
alpha2[1] = '7';
|
|
|
|
/* The user setting has precedence over the module parameter */
|
|
if (is_user_regdom_saved()) {
|
|
/* Unless we're asked to ignore it and reset it */
|
|
if (reset_user) {
|
|
REG_DBG_PRINT("Restoring regulatory settings "
|
|
"including user preference\n");
|
|
user_alpha2[0] = '9';
|
|
user_alpha2[1] = '7';
|
|
|
|
/*
|
|
* If we're ignoring user settings, we still need to
|
|
* check the module parameter to ensure we put things
|
|
* back as they were for a full restore.
|
|
*/
|
|
if (!is_world_regdom(ieee80211_regdom)) {
|
|
REG_DBG_PRINT("Keeping preference on "
|
|
"module parameter ieee80211_regdom: %c%c\n",
|
|
ieee80211_regdom[0],
|
|
ieee80211_regdom[1]);
|
|
alpha2[0] = ieee80211_regdom[0];
|
|
alpha2[1] = ieee80211_regdom[1];
|
|
}
|
|
} else {
|
|
REG_DBG_PRINT("Restoring regulatory settings "
|
|
"while preserving user preference for: %c%c\n",
|
|
user_alpha2[0],
|
|
user_alpha2[1]);
|
|
alpha2[0] = user_alpha2[0];
|
|
alpha2[1] = user_alpha2[1];
|
|
}
|
|
} else if (!is_world_regdom(ieee80211_regdom)) {
|
|
REG_DBG_PRINT("Keeping preference on "
|
|
"module parameter ieee80211_regdom: %c%c\n",
|
|
ieee80211_regdom[0],
|
|
ieee80211_regdom[1]);
|
|
alpha2[0] = ieee80211_regdom[0];
|
|
alpha2[1] = ieee80211_regdom[1];
|
|
} else
|
|
REG_DBG_PRINT("Restoring regulatory settings\n");
|
|
}
|
|
|
|
/*
|
|
* Restoring regulatory settings involves ingoring any
|
|
* possibly stale country IE information and user regulatory
|
|
* settings if so desired, this includes any beacon hints
|
|
* learned as we could have traveled outside to another country
|
|
* after disconnection. To restore regulatory settings we do
|
|
* exactly what we did at bootup:
|
|
*
|
|
* - send a core regulatory hint
|
|
* - send a user regulatory hint if applicable
|
|
*
|
|
* Device drivers that send a regulatory hint for a specific country
|
|
* keep their own regulatory domain on wiphy->regd so that does does
|
|
* not need to be remembered.
|
|
*/
|
|
static void restore_regulatory_settings(bool reset_user)
|
|
{
|
|
char alpha2[2];
|
|
struct reg_beacon *reg_beacon, *btmp;
|
|
struct regulatory_request *reg_request, *tmp;
|
|
LIST_HEAD(tmp_reg_req_list);
|
|
|
|
mutex_lock(&cfg80211_mutex);
|
|
mutex_lock(®_mutex);
|
|
|
|
reset_regdomains(true);
|
|
restore_alpha2(alpha2, reset_user);
|
|
|
|
/*
|
|
* If there's any pending requests we simply
|
|
* stash them to a temporary pending queue and
|
|
* add then after we've restored regulatory
|
|
* settings.
|
|
*/
|
|
spin_lock(®_requests_lock);
|
|
if (!list_empty(®_requests_list)) {
|
|
list_for_each_entry_safe(reg_request, tmp,
|
|
®_requests_list, list) {
|
|
if (reg_request->initiator !=
|
|
NL80211_REGDOM_SET_BY_USER)
|
|
continue;
|
|
list_del(®_request->list);
|
|
list_add_tail(®_request->list, &tmp_reg_req_list);
|
|
}
|
|
}
|
|
spin_unlock(®_requests_lock);
|
|
|
|
/* Clear beacon hints */
|
|
spin_lock_bh(®_pending_beacons_lock);
|
|
if (!list_empty(®_pending_beacons)) {
|
|
list_for_each_entry_safe(reg_beacon, btmp,
|
|
®_pending_beacons, list) {
|
|
list_del(®_beacon->list);
|
|
kfree(reg_beacon);
|
|
}
|
|
}
|
|
spin_unlock_bh(®_pending_beacons_lock);
|
|
|
|
if (!list_empty(®_beacon_list)) {
|
|
list_for_each_entry_safe(reg_beacon, btmp,
|
|
®_beacon_list, list) {
|
|
list_del(®_beacon->list);
|
|
kfree(reg_beacon);
|
|
}
|
|
}
|
|
|
|
/* First restore to the basic regulatory settings */
|
|
cfg80211_regdomain = cfg80211_world_regdom;
|
|
|
|
mutex_unlock(®_mutex);
|
|
mutex_unlock(&cfg80211_mutex);
|
|
|
|
regulatory_hint_core(cfg80211_regdomain->alpha2);
|
|
|
|
/*
|
|
* This restores the ieee80211_regdom module parameter
|
|
* preference or the last user requested regulatory
|
|
* settings, user regulatory settings takes precedence.
|
|
*/
|
|
if (is_an_alpha2(alpha2))
|
|
regulatory_hint_user(user_alpha2);
|
|
|
|
if (list_empty(&tmp_reg_req_list))
|
|
return;
|
|
|
|
mutex_lock(&cfg80211_mutex);
|
|
mutex_lock(®_mutex);
|
|
|
|
spin_lock(®_requests_lock);
|
|
list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
|
|
REG_DBG_PRINT("Adding request for country %c%c back "
|
|
"into the queue\n",
|
|
reg_request->alpha2[0],
|
|
reg_request->alpha2[1]);
|
|
list_del(®_request->list);
|
|
list_add_tail(®_request->list, ®_requests_list);
|
|
}
|
|
spin_unlock(®_requests_lock);
|
|
|
|
mutex_unlock(®_mutex);
|
|
mutex_unlock(&cfg80211_mutex);
|
|
|
|
REG_DBG_PRINT("Kicking the queue\n");
|
|
|
|
schedule_work(®_work);
|
|
}
|
|
|
|
void regulatory_hint_disconnect(void)
|
|
{
|
|
REG_DBG_PRINT("All devices are disconnected, going to "
|
|
"restore regulatory settings\n");
|
|
restore_regulatory_settings(false);
|
|
}
|
|
|
|
static bool freq_is_chan_12_13_14(u16 freq)
|
|
{
|
|
if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
|
|
freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
|
|
freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
int regulatory_hint_found_beacon(struct wiphy *wiphy,
|
|
struct ieee80211_channel *beacon_chan,
|
|
gfp_t gfp)
|
|
{
|
|
struct reg_beacon *reg_beacon;
|
|
|
|
if (likely((beacon_chan->beacon_found ||
|
|
(beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
|
|
(beacon_chan->band == IEEE80211_BAND_2GHZ &&
|
|
!freq_is_chan_12_13_14(beacon_chan->center_freq)))))
|
|
return 0;
|
|
|
|
reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
|
|
if (!reg_beacon)
|
|
return -ENOMEM;
|
|
|
|
REG_DBG_PRINT("Found new beacon on "
|
|
"frequency: %d MHz (Ch %d) on %s\n",
|
|
beacon_chan->center_freq,
|
|
ieee80211_frequency_to_channel(beacon_chan->center_freq),
|
|
wiphy_name(wiphy));
|
|
|
|
memcpy(®_beacon->chan, beacon_chan,
|
|
sizeof(struct ieee80211_channel));
|
|
|
|
|
|
/*
|
|
* Since we can be called from BH or and non-BH context
|
|
* we must use spin_lock_bh()
|
|
*/
|
|
spin_lock_bh(®_pending_beacons_lock);
|
|
list_add_tail(®_beacon->list, ®_pending_beacons);
|
|
spin_unlock_bh(®_pending_beacons_lock);
|
|
|
|
schedule_work(®_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void print_rd_rules(const struct ieee80211_regdomain *rd)
|
|
{
|
|
unsigned int i;
|
|
const struct ieee80211_reg_rule *reg_rule = NULL;
|
|
const struct ieee80211_freq_range *freq_range = NULL;
|
|
const struct ieee80211_power_rule *power_rule = NULL;
|
|
|
|
pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
|
|
|
|
for (i = 0; i < rd->n_reg_rules; i++) {
|
|
reg_rule = &rd->reg_rules[i];
|
|
freq_range = ®_rule->freq_range;
|
|
power_rule = ®_rule->power_rule;
|
|
|
|
/*
|
|
* There may not be documentation for max antenna gain
|
|
* in certain regions
|
|
*/
|
|
if (power_rule->max_antenna_gain)
|
|
pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
|
|
freq_range->start_freq_khz,
|
|
freq_range->end_freq_khz,
|
|
freq_range->max_bandwidth_khz,
|
|
power_rule->max_antenna_gain,
|
|
power_rule->max_eirp);
|
|
else
|
|
pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
|
|
freq_range->start_freq_khz,
|
|
freq_range->end_freq_khz,
|
|
freq_range->max_bandwidth_khz,
|
|
power_rule->max_eirp);
|
|
}
|
|
}
|
|
|
|
bool reg_supported_dfs_region(u8 dfs_region)
|
|
{
|
|
switch (dfs_region) {
|
|
case NL80211_DFS_UNSET:
|
|
case NL80211_DFS_FCC:
|
|
case NL80211_DFS_ETSI:
|
|
case NL80211_DFS_JP:
|
|
return true;
|
|
default:
|
|
REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
|
|
dfs_region);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void print_dfs_region(u8 dfs_region)
|
|
{
|
|
if (!dfs_region)
|
|
return;
|
|
|
|
switch (dfs_region) {
|
|
case NL80211_DFS_FCC:
|
|
pr_info(" DFS Master region FCC");
|
|
break;
|
|
case NL80211_DFS_ETSI:
|
|
pr_info(" DFS Master region ETSI");
|
|
break;
|
|
case NL80211_DFS_JP:
|
|
pr_info(" DFS Master region JP");
|
|
break;
|
|
default:
|
|
pr_info(" DFS Master region Uknown");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void print_regdomain(const struct ieee80211_regdomain *rd)
|
|
{
|
|
|
|
if (is_intersected_alpha2(rd->alpha2)) {
|
|
|
|
if (last_request->initiator ==
|
|
NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
|
struct cfg80211_registered_device *rdev;
|
|
rdev = cfg80211_rdev_by_wiphy_idx(
|
|
last_request->wiphy_idx);
|
|
if (rdev) {
|
|
pr_info("Current regulatory domain updated by AP to: %c%c\n",
|
|
rdev->country_ie_alpha2[0],
|
|
rdev->country_ie_alpha2[1]);
|
|
} else
|
|
pr_info("Current regulatory domain intersected:\n");
|
|
} else
|
|
pr_info("Current regulatory domain intersected:\n");
|
|
} else if (is_world_regdom(rd->alpha2))
|
|
pr_info("World regulatory domain updated:\n");
|
|
else {
|
|
if (is_unknown_alpha2(rd->alpha2))
|
|
pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
|
|
else
|
|
pr_info("Regulatory domain changed to country: %c%c\n",
|
|
rd->alpha2[0], rd->alpha2[1]);
|
|
}
|
|
print_dfs_region(rd->dfs_region);
|
|
print_rd_rules(rd);
|
|
}
|
|
|
|
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
|
|
{
|
|
pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
|
|
print_rd_rules(rd);
|
|
}
|
|
|
|
/* Takes ownership of rd only if it doesn't fail */
|
|
static int __set_regdom(const struct ieee80211_regdomain *rd)
|
|
{
|
|
const struct ieee80211_regdomain *intersected_rd = NULL;
|
|
struct cfg80211_registered_device *rdev = NULL;
|
|
struct wiphy *request_wiphy;
|
|
/* Some basic sanity checks first */
|
|
|
|
if (is_world_regdom(rd->alpha2)) {
|
|
if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
|
|
return -EINVAL;
|
|
update_world_regdomain(rd);
|
|
return 0;
|
|
}
|
|
|
|
if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
|
|
!is_unknown_alpha2(rd->alpha2))
|
|
return -EINVAL;
|
|
|
|
if (!last_request)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Lets only bother proceeding on the same alpha2 if the current
|
|
* rd is non static (it means CRDA was present and was used last)
|
|
* and the pending request came in from a country IE
|
|
*/
|
|
if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
|
/*
|
|
* If someone else asked us to change the rd lets only bother
|
|
* checking if the alpha2 changes if CRDA was already called
|
|
*/
|
|
if (!regdom_changes(rd->alpha2))
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Now lets set the regulatory domain, update all driver channels
|
|
* and finally inform them of what we have done, in case they want
|
|
* to review or adjust their own settings based on their own
|
|
* internal EEPROM data
|
|
*/
|
|
|
|
if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
|
|
return -EINVAL;
|
|
|
|
if (!is_valid_rd(rd)) {
|
|
pr_err("Invalid regulatory domain detected:\n");
|
|
print_regdomain_info(rd);
|
|
return -EINVAL;
|
|
}
|
|
|
|
request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
|
if (!request_wiphy &&
|
|
(last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
|
|
last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
|
|
schedule_delayed_work(®_timeout, 0);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (!last_request->intersect) {
|
|
int r;
|
|
|
|
if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
|
|
reset_regdomains(false);
|
|
cfg80211_regdomain = rd;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For a driver hint, lets copy the regulatory domain the
|
|
* driver wanted to the wiphy to deal with conflicts
|
|
*/
|
|
|
|
/*
|
|
* Userspace could have sent two replies with only
|
|
* one kernel request.
|
|
*/
|
|
if (request_wiphy->regd)
|
|
return -EALREADY;
|
|
|
|
r = reg_copy_regd(&request_wiphy->regd, rd);
|
|
if (r)
|
|
return r;
|
|
|
|
reset_regdomains(false);
|
|
cfg80211_regdomain = rd;
|
|
return 0;
|
|
}
|
|
|
|
/* Intersection requires a bit more work */
|
|
|
|
if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
|
|
|
|
intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
|
|
if (!intersected_rd)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* We can trash what CRDA provided now.
|
|
* However if a driver requested this specific regulatory
|
|
* domain we keep it for its private use
|
|
*/
|
|
if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
|
|
request_wiphy->regd = rd;
|
|
else
|
|
kfree(rd);
|
|
|
|
rd = NULL;
|
|
|
|
reset_regdomains(false);
|
|
cfg80211_regdomain = intersected_rd;
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (!intersected_rd)
|
|
return -EINVAL;
|
|
|
|
rdev = wiphy_to_dev(request_wiphy);
|
|
|
|
rdev->country_ie_alpha2[0] = rd->alpha2[0];
|
|
rdev->country_ie_alpha2[1] = rd->alpha2[1];
|
|
rdev->env = last_request->country_ie_env;
|
|
|
|
BUG_ON(intersected_rd == rd);
|
|
|
|
kfree(rd);
|
|
rd = NULL;
|
|
|
|
reset_regdomains(false);
|
|
cfg80211_regdomain = intersected_rd;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Use this call to set the current regulatory domain. Conflicts with
|
|
* multiple drivers can be ironed out later. Caller must've already
|
|
* kmalloc'd the rd structure. Caller must hold cfg80211_mutex
|
|
*/
|
|
int set_regdom(const struct ieee80211_regdomain *rd)
|
|
{
|
|
int r;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
mutex_lock(®_mutex);
|
|
|
|
/* Note that this doesn't update the wiphys, this is done below */
|
|
r = __set_regdom(rd);
|
|
if (r) {
|
|
kfree(rd);
|
|
mutex_unlock(®_mutex);
|
|
return r;
|
|
}
|
|
|
|
/* This would make this whole thing pointless */
|
|
if (!last_request->intersect)
|
|
BUG_ON(rd != cfg80211_regdomain);
|
|
|
|
/* update all wiphys now with the new established regulatory domain */
|
|
update_all_wiphy_regulatory(last_request->initiator);
|
|
|
|
print_regdomain(cfg80211_regdomain);
|
|
|
|
nl80211_send_reg_change_event(last_request);
|
|
|
|
reg_set_request_processed();
|
|
|
|
mutex_unlock(®_mutex);
|
|
|
|
return r;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG
|
|
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
|
|
{
|
|
if (last_request && !last_request->processed) {
|
|
if (add_uevent_var(env, "COUNTRY=%c%c",
|
|
last_request->alpha2[0],
|
|
last_request->alpha2[1]))
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
#endif /* CONFIG_HOTPLUG */
|
|
|
|
/* Caller must hold cfg80211_mutex */
|
|
void reg_device_remove(struct wiphy *wiphy)
|
|
{
|
|
struct wiphy *request_wiphy = NULL;
|
|
|
|
assert_cfg80211_lock();
|
|
|
|
mutex_lock(®_mutex);
|
|
|
|
kfree(wiphy->regd);
|
|
|
|
if (last_request)
|
|
request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
|
|
|
|
if (!request_wiphy || request_wiphy != wiphy)
|
|
goto out;
|
|
|
|
last_request->wiphy_idx = WIPHY_IDX_STALE;
|
|
last_request->country_ie_env = ENVIRON_ANY;
|
|
out:
|
|
mutex_unlock(®_mutex);
|
|
}
|
|
|
|
static void reg_timeout_work(struct work_struct *work)
|
|
{
|
|
REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
|
|
"restoring regulatory settings\n");
|
|
restore_regulatory_settings(true);
|
|
}
|
|
|
|
int __init regulatory_init(void)
|
|
{
|
|
int err = 0;
|
|
|
|
reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
|
|
if (IS_ERR(reg_pdev))
|
|
return PTR_ERR(reg_pdev);
|
|
|
|
reg_pdev->dev.type = ®_device_type;
|
|
|
|
spin_lock_init(®_requests_lock);
|
|
spin_lock_init(®_pending_beacons_lock);
|
|
|
|
cfg80211_regdomain = cfg80211_world_regdom;
|
|
|
|
user_alpha2[0] = '9';
|
|
user_alpha2[1] = '7';
|
|
|
|
/* We always try to get an update for the static regdomain */
|
|
err = regulatory_hint_core(cfg80211_regdomain->alpha2);
|
|
if (err) {
|
|
if (err == -ENOMEM)
|
|
return err;
|
|
/*
|
|
* N.B. kobject_uevent_env() can fail mainly for when we're out
|
|
* memory which is handled and propagated appropriately above
|
|
* but it can also fail during a netlink_broadcast() or during
|
|
* early boot for call_usermodehelper(). For now treat these
|
|
* errors as non-fatal.
|
|
*/
|
|
pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
|
|
#ifdef CONFIG_CFG80211_REG_DEBUG
|
|
/* We want to find out exactly why when debugging */
|
|
WARN_ON(err);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Finally, if the user set the module parameter treat it
|
|
* as a user hint.
|
|
*/
|
|
if (!is_world_regdom(ieee80211_regdom))
|
|
regulatory_hint_user(ieee80211_regdom);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void /* __init_or_exit */ regulatory_exit(void)
|
|
{
|
|
struct regulatory_request *reg_request, *tmp;
|
|
struct reg_beacon *reg_beacon, *btmp;
|
|
|
|
cancel_work_sync(®_work);
|
|
cancel_delayed_work_sync(®_timeout);
|
|
|
|
mutex_lock(&cfg80211_mutex);
|
|
mutex_lock(®_mutex);
|
|
|
|
reset_regdomains(true);
|
|
|
|
dev_set_uevent_suppress(®_pdev->dev, true);
|
|
|
|
platform_device_unregister(reg_pdev);
|
|
|
|
spin_lock_bh(®_pending_beacons_lock);
|
|
if (!list_empty(®_pending_beacons)) {
|
|
list_for_each_entry_safe(reg_beacon, btmp,
|
|
®_pending_beacons, list) {
|
|
list_del(®_beacon->list);
|
|
kfree(reg_beacon);
|
|
}
|
|
}
|
|
spin_unlock_bh(®_pending_beacons_lock);
|
|
|
|
if (!list_empty(®_beacon_list)) {
|
|
list_for_each_entry_safe(reg_beacon, btmp,
|
|
®_beacon_list, list) {
|
|
list_del(®_beacon->list);
|
|
kfree(reg_beacon);
|
|
}
|
|
}
|
|
|
|
spin_lock(®_requests_lock);
|
|
if (!list_empty(®_requests_list)) {
|
|
list_for_each_entry_safe(reg_request, tmp,
|
|
®_requests_list, list) {
|
|
list_del(®_request->list);
|
|
kfree(reg_request);
|
|
}
|
|
}
|
|
spin_unlock(®_requests_lock);
|
|
|
|
mutex_unlock(®_mutex);
|
|
mutex_unlock(&cfg80211_mutex);
|
|
}
|