mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-18 18:23:53 +08:00
fa1aa143ac
Add extended permissions logic to selinux. Extended permissions provides additional permissions in 256 bit increments. Extend the generic ioctl permission check to use the extended permissions for per-command filtering. Source/target/class sets including the ioctl permission may additionally include a set of commands. Example: allowxperm <source> <target>:<class> ioctl unpriv_app_socket_cmds auditallowxperm <source> <target>:<class> ioctl priv_gpu_cmds Where unpriv_app_socket_cmds and priv_gpu_cmds are macros representing commonly granted sets of ioctl commands. When ioctl commands are omitted only the permissions are checked. This feature is intended to provide finer granularity for the ioctl permission that may be too imprecise. For example, the same driver may use ioctls to provide important and benign functionality such as driver version or socket type as well as dangerous capabilities such as debugging features, read/write/execute to physical memory or access to sensitive data. Per-command filtering provides a mechanism to reduce the attack surface of the kernel, and limit applications to the subset of commands required. The format of the policy binary has been modified to include ioctl commands, and the policy version number has been incremented to POLICYDB_VERSION_XPERMS_IOCTL=30 to account for the format change. The extended permissions logic is deliberately generic to allow components to be reused e.g. netlink filters Signed-off-by: Jeff Vander Stoep <jeffv@google.com> Acked-by: Nick Kralevich <nnk@google.com> Signed-off-by: Paul Moore <pmoore@redhat.com>
666 lines
14 KiB
C
666 lines
14 KiB
C
/* Authors: Karl MacMillan <kmacmillan@tresys.com>
|
|
* Frank Mayer <mayerf@tresys.com>
|
|
*
|
|
* Copyright (C) 2003 - 2004 Tresys Technology, LLC
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, version 2.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "security.h"
|
|
#include "conditional.h"
|
|
#include "services.h"
|
|
|
|
/*
|
|
* cond_evaluate_expr evaluates a conditional expr
|
|
* in reverse polish notation. It returns true (1), false (0),
|
|
* or undefined (-1). Undefined occurs when the expression
|
|
* exceeds the stack depth of COND_EXPR_MAXDEPTH.
|
|
*/
|
|
static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
|
|
{
|
|
|
|
struct cond_expr *cur;
|
|
int s[COND_EXPR_MAXDEPTH];
|
|
int sp = -1;
|
|
|
|
for (cur = expr; cur; cur = cur->next) {
|
|
switch (cur->expr_type) {
|
|
case COND_BOOL:
|
|
if (sp == (COND_EXPR_MAXDEPTH - 1))
|
|
return -1;
|
|
sp++;
|
|
s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
|
|
break;
|
|
case COND_NOT:
|
|
if (sp < 0)
|
|
return -1;
|
|
s[sp] = !s[sp];
|
|
break;
|
|
case COND_OR:
|
|
if (sp < 1)
|
|
return -1;
|
|
sp--;
|
|
s[sp] |= s[sp + 1];
|
|
break;
|
|
case COND_AND:
|
|
if (sp < 1)
|
|
return -1;
|
|
sp--;
|
|
s[sp] &= s[sp + 1];
|
|
break;
|
|
case COND_XOR:
|
|
if (sp < 1)
|
|
return -1;
|
|
sp--;
|
|
s[sp] ^= s[sp + 1];
|
|
break;
|
|
case COND_EQ:
|
|
if (sp < 1)
|
|
return -1;
|
|
sp--;
|
|
s[sp] = (s[sp] == s[sp + 1]);
|
|
break;
|
|
case COND_NEQ:
|
|
if (sp < 1)
|
|
return -1;
|
|
sp--;
|
|
s[sp] = (s[sp] != s[sp + 1]);
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
return s[0];
|
|
}
|
|
|
|
/*
|
|
* evaluate_cond_node evaluates the conditional stored in
|
|
* a struct cond_node and if the result is different than the
|
|
* current state of the node it sets the rules in the true/false
|
|
* list appropriately. If the result of the expression is undefined
|
|
* all of the rules are disabled for safety.
|
|
*/
|
|
int evaluate_cond_node(struct policydb *p, struct cond_node *node)
|
|
{
|
|
int new_state;
|
|
struct cond_av_list *cur;
|
|
|
|
new_state = cond_evaluate_expr(p, node->expr);
|
|
if (new_state != node->cur_state) {
|
|
node->cur_state = new_state;
|
|
if (new_state == -1)
|
|
printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
|
|
/* turn the rules on or off */
|
|
for (cur = node->true_list; cur; cur = cur->next) {
|
|
if (new_state <= 0)
|
|
cur->node->key.specified &= ~AVTAB_ENABLED;
|
|
else
|
|
cur->node->key.specified |= AVTAB_ENABLED;
|
|
}
|
|
|
|
for (cur = node->false_list; cur; cur = cur->next) {
|
|
/* -1 or 1 */
|
|
if (new_state)
|
|
cur->node->key.specified &= ~AVTAB_ENABLED;
|
|
else
|
|
cur->node->key.specified |= AVTAB_ENABLED;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int cond_policydb_init(struct policydb *p)
|
|
{
|
|
int rc;
|
|
|
|
p->bool_val_to_struct = NULL;
|
|
p->cond_list = NULL;
|
|
|
|
rc = avtab_init(&p->te_cond_avtab);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cond_av_list_destroy(struct cond_av_list *list)
|
|
{
|
|
struct cond_av_list *cur, *next;
|
|
for (cur = list; cur; cur = next) {
|
|
next = cur->next;
|
|
/* the avtab_ptr_t node is destroy by the avtab */
|
|
kfree(cur);
|
|
}
|
|
}
|
|
|
|
static void cond_node_destroy(struct cond_node *node)
|
|
{
|
|
struct cond_expr *cur_expr, *next_expr;
|
|
|
|
for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
|
|
next_expr = cur_expr->next;
|
|
kfree(cur_expr);
|
|
}
|
|
cond_av_list_destroy(node->true_list);
|
|
cond_av_list_destroy(node->false_list);
|
|
kfree(node);
|
|
}
|
|
|
|
static void cond_list_destroy(struct cond_node *list)
|
|
{
|
|
struct cond_node *next, *cur;
|
|
|
|
if (list == NULL)
|
|
return;
|
|
|
|
for (cur = list; cur; cur = next) {
|
|
next = cur->next;
|
|
cond_node_destroy(cur);
|
|
}
|
|
}
|
|
|
|
void cond_policydb_destroy(struct policydb *p)
|
|
{
|
|
kfree(p->bool_val_to_struct);
|
|
avtab_destroy(&p->te_cond_avtab);
|
|
cond_list_destroy(p->cond_list);
|
|
}
|
|
|
|
int cond_init_bool_indexes(struct policydb *p)
|
|
{
|
|
kfree(p->bool_val_to_struct);
|
|
p->bool_val_to_struct =
|
|
kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL);
|
|
if (!p->bool_val_to_struct)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
int cond_destroy_bool(void *key, void *datum, void *p)
|
|
{
|
|
kfree(key);
|
|
kfree(datum);
|
|
return 0;
|
|
}
|
|
|
|
int cond_index_bool(void *key, void *datum, void *datap)
|
|
{
|
|
struct policydb *p;
|
|
struct cond_bool_datum *booldatum;
|
|
struct flex_array *fa;
|
|
|
|
booldatum = datum;
|
|
p = datap;
|
|
|
|
if (!booldatum->value || booldatum->value > p->p_bools.nprim)
|
|
return -EINVAL;
|
|
|
|
fa = p->sym_val_to_name[SYM_BOOLS];
|
|
if (flex_array_put_ptr(fa, booldatum->value - 1, key,
|
|
GFP_KERNEL | __GFP_ZERO))
|
|
BUG();
|
|
p->bool_val_to_struct[booldatum->value - 1] = booldatum;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bool_isvalid(struct cond_bool_datum *b)
|
|
{
|
|
if (!(b->state == 0 || b->state == 1))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
|
|
{
|
|
char *key = NULL;
|
|
struct cond_bool_datum *booldatum;
|
|
__le32 buf[3];
|
|
u32 len;
|
|
int rc;
|
|
|
|
booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
|
|
if (!booldatum)
|
|
return -ENOMEM;
|
|
|
|
rc = next_entry(buf, fp, sizeof buf);
|
|
if (rc)
|
|
goto err;
|
|
|
|
booldatum->value = le32_to_cpu(buf[0]);
|
|
booldatum->state = le32_to_cpu(buf[1]);
|
|
|
|
rc = -EINVAL;
|
|
if (!bool_isvalid(booldatum))
|
|
goto err;
|
|
|
|
len = le32_to_cpu(buf[2]);
|
|
|
|
rc = -ENOMEM;
|
|
key = kmalloc(len + 1, GFP_KERNEL);
|
|
if (!key)
|
|
goto err;
|
|
rc = next_entry(key, fp, len);
|
|
if (rc)
|
|
goto err;
|
|
key[len] = '\0';
|
|
rc = hashtab_insert(h, key, booldatum);
|
|
if (rc)
|
|
goto err;
|
|
|
|
return 0;
|
|
err:
|
|
cond_destroy_bool(key, booldatum, NULL);
|
|
return rc;
|
|
}
|
|
|
|
struct cond_insertf_data {
|
|
struct policydb *p;
|
|
struct cond_av_list *other;
|
|
struct cond_av_list *head;
|
|
struct cond_av_list *tail;
|
|
};
|
|
|
|
static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
|
|
{
|
|
struct cond_insertf_data *data = ptr;
|
|
struct policydb *p = data->p;
|
|
struct cond_av_list *other = data->other, *list, *cur;
|
|
struct avtab_node *node_ptr;
|
|
u8 found;
|
|
int rc = -EINVAL;
|
|
|
|
/*
|
|
* For type rules we have to make certain there aren't any
|
|
* conflicting rules by searching the te_avtab and the
|
|
* cond_te_avtab.
|
|
*/
|
|
if (k->specified & AVTAB_TYPE) {
|
|
if (avtab_search(&p->te_avtab, k)) {
|
|
printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
|
|
goto err;
|
|
}
|
|
/*
|
|
* If we are reading the false list other will be a pointer to
|
|
* the true list. We can have duplicate entries if there is only
|
|
* 1 other entry and it is in our true list.
|
|
*
|
|
* If we are reading the true list (other == NULL) there shouldn't
|
|
* be any other entries.
|
|
*/
|
|
if (other) {
|
|
node_ptr = avtab_search_node(&p->te_cond_avtab, k);
|
|
if (node_ptr) {
|
|
if (avtab_search_node_next(node_ptr, k->specified)) {
|
|
printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
|
|
goto err;
|
|
}
|
|
found = 0;
|
|
for (cur = other; cur; cur = cur->next) {
|
|
if (cur->node == node_ptr) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
printk(KERN_ERR "SELinux: conflicting type rules.\n");
|
|
goto err;
|
|
}
|
|
}
|
|
} else {
|
|
if (avtab_search(&p->te_cond_avtab, k)) {
|
|
printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
|
|
if (!node_ptr) {
|
|
printk(KERN_ERR "SELinux: could not insert rule.\n");
|
|
rc = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL);
|
|
if (!list) {
|
|
rc = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
list->node = node_ptr;
|
|
if (!data->head)
|
|
data->head = list;
|
|
else
|
|
data->tail->next = list;
|
|
data->tail = list;
|
|
return 0;
|
|
|
|
err:
|
|
cond_av_list_destroy(data->head);
|
|
data->head = NULL;
|
|
return rc;
|
|
}
|
|
|
|
static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
|
|
{
|
|
int i, rc;
|
|
__le32 buf[1];
|
|
u32 len;
|
|
struct cond_insertf_data data;
|
|
|
|
*ret_list = NULL;
|
|
|
|
len = 0;
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
return rc;
|
|
|
|
len = le32_to_cpu(buf[0]);
|
|
if (len == 0)
|
|
return 0;
|
|
|
|
data.p = p;
|
|
data.other = other;
|
|
data.head = NULL;
|
|
data.tail = NULL;
|
|
for (i = 0; i < len; i++) {
|
|
rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
|
|
&data);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
*ret_list = data.head;
|
|
return 0;
|
|
}
|
|
|
|
static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
|
|
{
|
|
if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
|
|
printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
|
|
return 0;
|
|
}
|
|
|
|
if (expr->bool > p->p_bools.nprim) {
|
|
printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
|
|
{
|
|
__le32 buf[2];
|
|
u32 len, i;
|
|
int rc;
|
|
struct cond_expr *expr = NULL, *last = NULL;
|
|
|
|
rc = next_entry(buf, fp, sizeof(u32) * 2);
|
|
if (rc)
|
|
goto err;
|
|
|
|
node->cur_state = le32_to_cpu(buf[0]);
|
|
|
|
/* expr */
|
|
len = le32_to_cpu(buf[1]);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
rc = next_entry(buf, fp, sizeof(u32) * 2);
|
|
if (rc)
|
|
goto err;
|
|
|
|
rc = -ENOMEM;
|
|
expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL);
|
|
if (!expr)
|
|
goto err;
|
|
|
|
expr->expr_type = le32_to_cpu(buf[0]);
|
|
expr->bool = le32_to_cpu(buf[1]);
|
|
|
|
if (!expr_isvalid(p, expr)) {
|
|
rc = -EINVAL;
|
|
kfree(expr);
|
|
goto err;
|
|
}
|
|
|
|
if (i == 0)
|
|
node->expr = expr;
|
|
else
|
|
last->next = expr;
|
|
last = expr;
|
|
}
|
|
|
|
rc = cond_read_av_list(p, fp, &node->true_list, NULL);
|
|
if (rc)
|
|
goto err;
|
|
rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
|
|
if (rc)
|
|
goto err;
|
|
return 0;
|
|
err:
|
|
cond_node_destroy(node);
|
|
return rc;
|
|
}
|
|
|
|
int cond_read_list(struct policydb *p, void *fp)
|
|
{
|
|
struct cond_node *node, *last = NULL;
|
|
__le32 buf[1];
|
|
u32 i, len;
|
|
int rc;
|
|
|
|
rc = next_entry(buf, fp, sizeof buf);
|
|
if (rc)
|
|
return rc;
|
|
|
|
len = le32_to_cpu(buf[0]);
|
|
|
|
rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
|
|
if (rc)
|
|
goto err;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
rc = -ENOMEM;
|
|
node = kzalloc(sizeof(struct cond_node), GFP_KERNEL);
|
|
if (!node)
|
|
goto err;
|
|
|
|
rc = cond_read_node(p, node, fp);
|
|
if (rc)
|
|
goto err;
|
|
|
|
if (i == 0)
|
|
p->cond_list = node;
|
|
else
|
|
last->next = node;
|
|
last = node;
|
|
}
|
|
return 0;
|
|
err:
|
|
cond_list_destroy(p->cond_list);
|
|
p->cond_list = NULL;
|
|
return rc;
|
|
}
|
|
|
|
int cond_write_bool(void *vkey, void *datum, void *ptr)
|
|
{
|
|
char *key = vkey;
|
|
struct cond_bool_datum *booldatum = datum;
|
|
struct policy_data *pd = ptr;
|
|
void *fp = pd->fp;
|
|
__le32 buf[3];
|
|
u32 len;
|
|
int rc;
|
|
|
|
len = strlen(key);
|
|
buf[0] = cpu_to_le32(booldatum->value);
|
|
buf[1] = cpu_to_le32(booldatum->state);
|
|
buf[2] = cpu_to_le32(len);
|
|
rc = put_entry(buf, sizeof(u32), 3, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = put_entry(key, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* cond_write_cond_av_list doesn't write out the av_list nodes.
|
|
* Instead it writes out the key/value pairs from the avtab. This
|
|
* is necessary because there is no way to uniquely identifying rules
|
|
* in the avtab so it is not possible to associate individual rules
|
|
* in the avtab with a conditional without saving them as part of
|
|
* the conditional. This means that the avtab with the conditional
|
|
* rules will not be saved but will be rebuilt on policy load.
|
|
*/
|
|
static int cond_write_av_list(struct policydb *p,
|
|
struct cond_av_list *list, struct policy_file *fp)
|
|
{
|
|
__le32 buf[1];
|
|
struct cond_av_list *cur_list;
|
|
u32 len;
|
|
int rc;
|
|
|
|
len = 0;
|
|
for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
|
|
len++;
|
|
|
|
buf[0] = cpu_to_le32(len);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (len == 0)
|
|
return 0;
|
|
|
|
for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
|
|
rc = avtab_write_item(p, cur_list->node, fp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cond_write_node(struct policydb *p, struct cond_node *node,
|
|
struct policy_file *fp)
|
|
{
|
|
struct cond_expr *cur_expr;
|
|
__le32 buf[2];
|
|
int rc;
|
|
u32 len = 0;
|
|
|
|
buf[0] = cpu_to_le32(node->cur_state);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
|
|
len++;
|
|
|
|
buf[0] = cpu_to_le32(len);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
|
|
buf[0] = cpu_to_le32(cur_expr->expr_type);
|
|
buf[1] = cpu_to_le32(cur_expr->bool);
|
|
rc = put_entry(buf, sizeof(u32), 2, fp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
rc = cond_write_av_list(p, node->true_list, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = cond_write_av_list(p, node->false_list, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
|
|
{
|
|
struct cond_node *cur;
|
|
u32 len;
|
|
__le32 buf[1];
|
|
int rc;
|
|
|
|
len = 0;
|
|
for (cur = list; cur != NULL; cur = cur->next)
|
|
len++;
|
|
buf[0] = cpu_to_le32(len);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for (cur = list; cur != NULL; cur = cur->next) {
|
|
rc = cond_write_node(p, cur, fp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
|
|
struct extended_perms_decision *xpermd)
|
|
{
|
|
struct avtab_node *node;
|
|
|
|
if (!ctab || !key || !xpermd)
|
|
return;
|
|
|
|
for (node = avtab_search_node(ctab, key); node;
|
|
node = avtab_search_node_next(node, key->specified)) {
|
|
if (node->key.specified & AVTAB_ENABLED)
|
|
services_compute_xperms_decision(xpermd, node);
|
|
}
|
|
return;
|
|
|
|
}
|
|
/* Determine whether additional permissions are granted by the conditional
|
|
* av table, and if so, add them to the result
|
|
*/
|
|
void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
|
|
struct av_decision *avd, struct extended_perms *xperms)
|
|
{
|
|
struct avtab_node *node;
|
|
|
|
if (!ctab || !key || !avd || !xperms)
|
|
return;
|
|
|
|
for (node = avtab_search_node(ctab, key); node;
|
|
node = avtab_search_node_next(node, key->specified)) {
|
|
if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
|
|
(node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
|
|
avd->allowed |= node->datum.u.data;
|
|
if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
|
|
(node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
|
|
/* Since a '0' in an auditdeny mask represents a
|
|
* permission we do NOT want to audit (dontaudit), we use
|
|
* the '&' operand to ensure that all '0's in the mask
|
|
* are retained (much unlike the allow and auditallow cases).
|
|
*/
|
|
avd->auditdeny &= node->datum.u.data;
|
|
if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
|
|
(node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
|
|
avd->auditallow |= node->datum.u.data;
|
|
if ((node->key.specified & AVTAB_ENABLED) &&
|
|
(node->key.specified & AVTAB_XPERMS))
|
|
services_compute_xperms_drivers(xperms, node);
|
|
}
|
|
return;
|
|
}
|