2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 06:04:14 +08:00
linux-next/kernel/sched/wait.c
Linus Torvalds 23b7776290 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes are:

   - lockless wakeup support for futexes and IPC message queues
     (Davidlohr Bueso, Peter Zijlstra)

   - Replace spinlocks with atomics in thread_group_cputimer(), to
     improve scalability (Jason Low)

   - NUMA balancing improvements (Rik van Riel)

   - SCHED_DEADLINE improvements (Wanpeng Li)

   - clean up and reorganize preemption helpers (Frederic Weisbecker)

   - decouple page fault disabling machinery from the preemption
     counter, to improve debuggability and robustness (David
     Hildenbrand)

   - SCHED_DEADLINE documentation updates (Luca Abeni)

   - topology CPU masks cleanups (Bartosz Golaszewski)

   - /proc/sched_debug improvements (Srikar Dronamraju)"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (79 commits)
  sched/deadline: Remove needless parameter in dl_runtime_exceeded()
  sched: Remove superfluous resetting of the p->dl_throttled flag
  sched/deadline: Drop duplicate init_sched_dl_class() declaration
  sched/deadline: Reduce rq lock contention by eliminating locking of non-feasible target
  sched/deadline: Make init_sched_dl_class() __init
  sched/deadline: Optimize pull_dl_task()
  sched/preempt: Add static_key() to preempt_notifiers
  sched/preempt: Fix preempt notifiers documentation about hlist_del() within unsafe iteration
  sched/stop_machine: Fix deadlock between multiple stop_two_cpus()
  sched/debug: Add sum_sleep_runtime to /proc/<pid>/sched
  sched/debug: Replace vruntime with wait_sum in /proc/sched_debug
  sched/debug: Properly format runnable tasks in /proc/sched_debug
  sched/numa: Only consider less busy nodes as numa balancing destinations
  Revert 095bebf61a ("sched/numa: Do not move past the balance point if unbalanced")
  sched/fair: Prevent throttling in early pick_next_task_fair()
  preempt: Reorganize the notrace definitions a bit
  preempt: Use preempt_schedule_context() as the official tracing preemption point
  sched: Make preempt_schedule_context() function-tracing safe
  x86: Remove cpu_sibling_mask() and cpu_core_mask()
  x86: Replace cpu_**_mask() with topology_**_cpumask()
  ...
2015-06-22 15:52:04 -07:00

625 lines
18 KiB
C

/*
* Generic waiting primitives.
*
* (C) 2004 Nadia Yvette Chambers, Oracle
*/
#include <linux/init.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/wait.h>
#include <linux/hash.h>
#include <linux/kthread.h>
void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
{
spin_lock_init(&q->lock);
lockdep_set_class_and_name(&q->lock, key, name);
INIT_LIST_HEAD(&q->task_list);
}
EXPORT_SYMBOL(__init_waitqueue_head);
void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
__add_wait_queue(q, wait);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(add_wait_queue);
void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
wait->flags |= WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
__add_wait_queue_tail(q, wait);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(add_wait_queue_exclusive);
void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
spin_lock_irqsave(&q->lock, flags);
__remove_wait_queue(q, wait);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(remove_wait_queue);
/*
* The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
* wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
* number) then we wake all the non-exclusive tasks and one exclusive task.
*
* There are circumstances in which we can try to wake a task which has already
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
* zero in this (rare) case, and we handle it by continuing to scan the queue.
*/
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, int wake_flags, void *key)
{
wait_queue_t *curr, *next;
list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
unsigned flags = curr->flags;
if (curr->func(curr, mode, wake_flags, key) &&
(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
break;
}
}
/**
* __wake_up - wake up threads blocked on a waitqueue.
* @q: the waitqueue
* @mode: which threads
* @nr_exclusive: how many wake-one or wake-many threads to wake up
* @key: is directly passed to the wakeup function
*
* It may be assumed that this function implies a write memory barrier before
* changing the task state if and only if any tasks are woken up.
*/
void __wake_up(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, void *key)
{
unsigned long flags;
spin_lock_irqsave(&q->lock, flags);
__wake_up_common(q, mode, nr_exclusive, 0, key);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);
/*
* Same as __wake_up but called with the spinlock in wait_queue_head_t held.
*/
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
{
__wake_up_common(q, mode, nr, 0, NULL);
}
EXPORT_SYMBOL_GPL(__wake_up_locked);
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
__wake_up_common(q, mode, 1, 0, key);
}
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
/**
* __wake_up_sync_key - wake up threads blocked on a waitqueue.
* @q: the waitqueue
* @mode: which threads
* @nr_exclusive: how many wake-one or wake-many threads to wake up
* @key: opaque value to be passed to wakeup targets
*
* The sync wakeup differs that the waker knows that it will schedule
* away soon, so while the target thread will be woken up, it will not
* be migrated to another CPU - ie. the two threads are 'synchronized'
* with each other. This can prevent needless bouncing between CPUs.
*
* On UP it can prevent extra preemption.
*
* It may be assumed that this function implies a write memory barrier before
* changing the task state if and only if any tasks are woken up.
*/
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, void *key)
{
unsigned long flags;
int wake_flags = 1; /* XXX WF_SYNC */
if (unlikely(!q))
return;
if (unlikely(nr_exclusive != 1))
wake_flags = 0;
spin_lock_irqsave(&q->lock, flags);
__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync_key);
/*
* __wake_up_sync - see __wake_up_sync_key()
*/
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
/*
* Note: we use "set_current_state()" _after_ the wait-queue add,
* because we need a memory barrier there on SMP, so that any
* wake-function that tests for the wait-queue being active
* will be guaranteed to see waitqueue addition _or_ subsequent
* tests in this thread will see the wakeup having taken place.
*
* The spin_unlock() itself is semi-permeable and only protects
* one way (it only protects stuff inside the critical region and
* stops them from bleeding out - it would still allow subsequent
* loads to move into the critical region).
*/
void
prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
unsigned long flags;
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
if (list_empty(&wait->task_list))
__add_wait_queue(q, wait);
set_current_state(state);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(prepare_to_wait);
void
prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
unsigned long flags;
wait->flags |= WQ_FLAG_EXCLUSIVE;
spin_lock_irqsave(&q->lock, flags);
if (list_empty(&wait->task_list))
__add_wait_queue_tail(q, wait);
set_current_state(state);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(prepare_to_wait_exclusive);
long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
unsigned long flags;
if (signal_pending_state(state, current))
return -ERESTARTSYS;
wait->private = current;
wait->func = autoremove_wake_function;
spin_lock_irqsave(&q->lock, flags);
if (list_empty(&wait->task_list)) {
if (wait->flags & WQ_FLAG_EXCLUSIVE)
__add_wait_queue_tail(q, wait);
else
__add_wait_queue(q, wait);
}
set_current_state(state);
spin_unlock_irqrestore(&q->lock, flags);
return 0;
}
EXPORT_SYMBOL(prepare_to_wait_event);
/**
* finish_wait - clean up after waiting in a queue
* @q: waitqueue waited on
* @wait: wait descriptor
*
* Sets current thread back to running state and removes
* the wait descriptor from the given waitqueue if still
* queued.
*/
void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
{
unsigned long flags;
__set_current_state(TASK_RUNNING);
/*
* We can check for list emptiness outside the lock
* IFF:
* - we use the "careful" check that verifies both
* the next and prev pointers, so that there cannot
* be any half-pending updates in progress on other
* CPU's that we haven't seen yet (and that might
* still change the stack area.
* and
* - all other users take the lock (ie we can only
* have _one_ other CPU that looks at or modifies
* the list).
*/
if (!list_empty_careful(&wait->task_list)) {
spin_lock_irqsave(&q->lock, flags);
list_del_init(&wait->task_list);
spin_unlock_irqrestore(&q->lock, flags);
}
}
EXPORT_SYMBOL(finish_wait);
/**
* abort_exclusive_wait - abort exclusive waiting in a queue
* @q: waitqueue waited on
* @wait: wait descriptor
* @mode: runstate of the waiter to be woken
* @key: key to identify a wait bit queue or %NULL
*
* Sets current thread back to running state and removes
* the wait descriptor from the given waitqueue if still
* queued.
*
* Wakes up the next waiter if the caller is concurrently
* woken up through the queue.
*
* This prevents waiter starvation where an exclusive waiter
* aborts and is woken up concurrently and no one wakes up
* the next waiter.
*/
void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
unsigned int mode, void *key)
{
unsigned long flags;
__set_current_state(TASK_RUNNING);
spin_lock_irqsave(&q->lock, flags);
if (!list_empty(&wait->task_list))
list_del_init(&wait->task_list);
else if (waitqueue_active(q))
__wake_up_locked_key(q, mode, key);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(abort_exclusive_wait);
int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
int ret = default_wake_function(wait, mode, sync, key);
if (ret)
list_del_init(&wait->task_list);
return ret;
}
EXPORT_SYMBOL(autoremove_wake_function);
static inline bool is_kthread_should_stop(void)
{
return (current->flags & PF_KTHREAD) && kthread_should_stop();
}
/*
* DEFINE_WAIT_FUNC(wait, woken_wake_func);
*
* add_wait_queue(&wq, &wait);
* for (;;) {
* if (condition)
* break;
*
* p->state = mode; condition = true;
* smp_mb(); // A smp_wmb(); // C
* if (!wait->flags & WQ_FLAG_WOKEN) wait->flags |= WQ_FLAG_WOKEN;
* schedule() try_to_wake_up();
* p->state = TASK_RUNNING; ~~~~~~~~~~~~~~~~~~
* wait->flags &= ~WQ_FLAG_WOKEN; condition = true;
* smp_mb() // B smp_wmb(); // C
* wait->flags |= WQ_FLAG_WOKEN;
* }
* remove_wait_queue(&wq, &wait);
*
*/
long wait_woken(wait_queue_t *wait, unsigned mode, long timeout)
{
set_current_state(mode); /* A */
/*
* The above implies an smp_mb(), which matches with the smp_wmb() from
* woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
* also observe all state before the wakeup.
*/
if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
timeout = schedule_timeout(timeout);
__set_current_state(TASK_RUNNING);
/*
* The below implies an smp_mb(), it too pairs with the smp_wmb() from
* woken_wake_function() such that we must either observe the wait
* condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
* an event.
*/
smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */
return timeout;
}
EXPORT_SYMBOL(wait_woken);
int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
/*
* Although this function is called under waitqueue lock, LOCK
* doesn't imply write barrier and the users expects write
* barrier semantics on wakeup functions. The following
* smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
* and is paired with smp_store_mb() in wait_woken().
*/
smp_wmb(); /* C */
wait->flags |= WQ_FLAG_WOKEN;
return default_wake_function(wait, mode, sync, key);
}
EXPORT_SYMBOL(woken_wake_function);
int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
{
struct wait_bit_key *key = arg;
struct wait_bit_queue *wait_bit
= container_of(wait, struct wait_bit_queue, wait);
if (wait_bit->key.flags != key->flags ||
wait_bit->key.bit_nr != key->bit_nr ||
test_bit(key->bit_nr, key->flags))
return 0;
else
return autoremove_wake_function(wait, mode, sync, key);
}
EXPORT_SYMBOL(wake_bit_function);
/*
* To allow interruptible waiting and asynchronous (i.e. nonblocking)
* waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
* permitted return codes. Nonzero return codes halt waiting and return.
*/
int __sched
__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
wait_bit_action_f *action, unsigned mode)
{
int ret = 0;
do {
prepare_to_wait(wq, &q->wait, mode);
if (test_bit(q->key.bit_nr, q->key.flags))
ret = (*action)(&q->key);
} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
finish_wait(wq, &q->wait);
return ret;
}
EXPORT_SYMBOL(__wait_on_bit);
int __sched out_of_line_wait_on_bit(void *word, int bit,
wait_bit_action_f *action, unsigned mode)
{
wait_queue_head_t *wq = bit_waitqueue(word, bit);
DEFINE_WAIT_BIT(wait, word, bit);
return __wait_on_bit(wq, &wait, action, mode);
}
EXPORT_SYMBOL(out_of_line_wait_on_bit);
int __sched out_of_line_wait_on_bit_timeout(
void *word, int bit, wait_bit_action_f *action,
unsigned mode, unsigned long timeout)
{
wait_queue_head_t *wq = bit_waitqueue(word, bit);
DEFINE_WAIT_BIT(wait, word, bit);
wait.key.timeout = jiffies + timeout;
return __wait_on_bit(wq, &wait, action, mode);
}
EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
int __sched
__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
wait_bit_action_f *action, unsigned mode)
{
do {
int ret;
prepare_to_wait_exclusive(wq, &q->wait, mode);
if (!test_bit(q->key.bit_nr, q->key.flags))
continue;
ret = action(&q->key);
if (!ret)
continue;
abort_exclusive_wait(wq, &q->wait, mode, &q->key);
return ret;
} while (test_and_set_bit(q->key.bit_nr, q->key.flags));
finish_wait(wq, &q->wait);
return 0;
}
EXPORT_SYMBOL(__wait_on_bit_lock);
int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
wait_bit_action_f *action, unsigned mode)
{
wait_queue_head_t *wq = bit_waitqueue(word, bit);
DEFINE_WAIT_BIT(wait, word, bit);
return __wait_on_bit_lock(wq, &wait, action, mode);
}
EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
{
struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
if (waitqueue_active(wq))
__wake_up(wq, TASK_NORMAL, 1, &key);
}
EXPORT_SYMBOL(__wake_up_bit);
/**
* wake_up_bit - wake up a waiter on a bit
* @word: the word being waited on, a kernel virtual address
* @bit: the bit of the word being waited on
*
* There is a standard hashed waitqueue table for generic use. This
* is the part of the hashtable's accessor API that wakes up waiters
* on a bit. For instance, if one were to have waiters on a bitflag,
* one would call wake_up_bit() after clearing the bit.
*
* In order for this to function properly, as it uses waitqueue_active()
* internally, some kind of memory barrier must be done prior to calling
* this. Typically, this will be smp_mb__after_atomic(), but in some
* cases where bitflags are manipulated non-atomically under a lock, one
* may need to use a less regular barrier, such fs/inode.c's smp_mb(),
* because spin_unlock() does not guarantee a memory barrier.
*/
void wake_up_bit(void *word, int bit)
{
__wake_up_bit(bit_waitqueue(word, bit), word, bit);
}
EXPORT_SYMBOL(wake_up_bit);
wait_queue_head_t *bit_waitqueue(void *word, int bit)
{
const int shift = BITS_PER_LONG == 32 ? 5 : 6;
const struct zone *zone = page_zone(virt_to_page(word));
unsigned long val = (unsigned long)word << shift | bit;
return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
}
EXPORT_SYMBOL(bit_waitqueue);
/*
* Manipulate the atomic_t address to produce a better bit waitqueue table hash
* index (we're keying off bit -1, but that would produce a horrible hash
* value).
*/
static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
{
if (BITS_PER_LONG == 64) {
unsigned long q = (unsigned long)p;
return bit_waitqueue((void *)(q & ~1), q & 1);
}
return bit_waitqueue(p, 0);
}
static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
void *arg)
{
struct wait_bit_key *key = arg;
struct wait_bit_queue *wait_bit
= container_of(wait, struct wait_bit_queue, wait);
atomic_t *val = key->flags;
if (wait_bit->key.flags != key->flags ||
wait_bit->key.bit_nr != key->bit_nr ||
atomic_read(val) != 0)
return 0;
return autoremove_wake_function(wait, mode, sync, key);
}
/*
* To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
* the actions of __wait_on_atomic_t() are permitted return codes. Nonzero
* return codes halt waiting and return.
*/
static __sched
int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
int (*action)(atomic_t *), unsigned mode)
{
atomic_t *val;
int ret = 0;
do {
prepare_to_wait(wq, &q->wait, mode);
val = q->key.flags;
if (atomic_read(val) == 0)
break;
ret = (*action)(val);
} while (!ret && atomic_read(val) != 0);
finish_wait(wq, &q->wait);
return ret;
}
#define DEFINE_WAIT_ATOMIC_T(name, p) \
struct wait_bit_queue name = { \
.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \
.wait = { \
.private = current, \
.func = wake_atomic_t_function, \
.task_list = \
LIST_HEAD_INIT((name).wait.task_list), \
}, \
}
__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
unsigned mode)
{
wait_queue_head_t *wq = atomic_t_waitqueue(p);
DEFINE_WAIT_ATOMIC_T(wait, p);
return __wait_on_atomic_t(wq, &wait, action, mode);
}
EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
/**
* wake_up_atomic_t - Wake up a waiter on a atomic_t
* @p: The atomic_t being waited on, a kernel virtual address
*
* Wake up anyone waiting for the atomic_t to go to zero.
*
* Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
* check is done by the waiter's wake function, not the by the waker itself).
*/
void wake_up_atomic_t(atomic_t *p)
{
__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
}
EXPORT_SYMBOL(wake_up_atomic_t);
__sched int bit_wait(struct wait_bit_key *word)
{
if (signal_pending_state(current->state, current))
return 1;
schedule();
return 0;
}
EXPORT_SYMBOL(bit_wait);
__sched int bit_wait_io(struct wait_bit_key *word)
{
if (signal_pending_state(current->state, current))
return 1;
io_schedule();
return 0;
}
EXPORT_SYMBOL(bit_wait_io);
__sched int bit_wait_timeout(struct wait_bit_key *word)
{
unsigned long now = READ_ONCE(jiffies);
if (signal_pending_state(current->state, current))
return 1;
if (time_after_eq(now, word->timeout))
return -EAGAIN;
schedule_timeout(word->timeout - now);
return 0;
}
EXPORT_SYMBOL_GPL(bit_wait_timeout);
__sched int bit_wait_io_timeout(struct wait_bit_key *word)
{
unsigned long now = READ_ONCE(jiffies);
if (signal_pending_state(current->state, current))
return 1;
if (time_after_eq(now, word->timeout))
return -EAGAIN;
io_schedule_timeout(word->timeout - now);
return 0;
}
EXPORT_SYMBOL_GPL(bit_wait_io_timeout);