2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 19:53:59 +08:00
linux-next/drivers/usb/storage/shuttle_usbat.c
Daniel Drake a8798533c1 [PATCH] USB Storage: HP8200: Another device type detection fix
There appears to be one more case where the HP8200 CD writer devices are
detected as flash readers - when the USB cable is replugged after use, with
the power cable still connected.

Oddly enough, the identify device command appears to 'fall through' when the
devices are in this state, the status register reading exactly the same opcode
as the command (0xA1) that was just executed.

I think it's safe to label this behaviour as specific to HP8200 devices, I
can't get the flash devices to respond like this.

This patch should solve the last of the HP8200 issues which have cropped up
recently.

Signed-off-by: Daniel Drake <dsd@gentoo.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>

 drivers/usb/storage/shuttle_usbat.c |   12 ++++++------
 1 file changed, 6 insertions(+), 6 deletions(-)
2005-10-28 16:47:43 -07:00

1680 lines
44 KiB
C

/* Driver for SCM Microsystems USB-ATAPI cable
*
* $Id: shuttle_usbat.c,v 1.17 2002/04/22 03:39:43 mdharm Exp $
*
* Current development and maintenance by:
* (c) 2000, 2001 Robert Baruch (autophile@starband.net)
* (c) 2004, 2005 Daniel Drake <dsd@gentoo.org>
*
* Developed with the assistance of:
* (c) 2002 Alan Stern <stern@rowland.org>
*
* Flash support based on earlier work by:
* (c) 2002 Thomas Kreiling <usbdev@sm04.de>
*
* Many originally ATAPI devices were slightly modified to meet the USB
* market by using some kind of translation from ATAPI to USB on the host,
* and the peripheral would translate from USB back to ATAPI.
*
* SCM Microsystems (www.scmmicro.com) makes a device, sold to OEM's only,
* which does the USB-to-ATAPI conversion. By obtaining the data sheet on
* their device under nondisclosure agreement, I have been able to write
* this driver for Linux.
*
* The chip used in the device can also be used for EPP and ISA translation
* as well. This driver is only guaranteed to work with the ATAPI
* translation.
*
* See the Kconfig help text for a list of devices known to be supported by
* this driver.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/cdrom.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include "usb.h"
#include "transport.h"
#include "protocol.h"
#include "debug.h"
#include "shuttle_usbat.h"
#define short_pack(LSB,MSB) ( ((u16)(LSB)) | ( ((u16)(MSB))<<8 ) )
#define LSB_of(s) ((s)&0xFF)
#define MSB_of(s) ((s)>>8)
static int transferred = 0;
static int usbat_flash_transport(struct scsi_cmnd * srb, struct us_data *us);
static int usbat_hp8200e_transport(struct scsi_cmnd *srb, struct us_data *us);
/*
* Convenience function to produce an ATAPI read/write sectors command
* Use cmd=0x20 for read, cmd=0x30 for write
*/
static void usbat_pack_atapi_sector_cmd(unsigned char *buf,
unsigned char thistime,
u32 sector, unsigned char cmd)
{
buf[0] = 0;
buf[1] = thistime;
buf[2] = sector & 0xFF;
buf[3] = (sector >> 8) & 0xFF;
buf[4] = (sector >> 16) & 0xFF;
buf[5] = 0xE0 | ((sector >> 24) & 0x0F);
buf[6] = cmd;
}
/*
* Convenience function to get the device type (flash or hp8200)
*/
static int usbat_get_device_type(struct us_data *us)
{
return ((struct usbat_info*)us->extra)->devicetype;
}
/*
* Read a register from the device
*/
static int usbat_read(struct us_data *us,
unsigned char access,
unsigned char reg,
unsigned char *content)
{
return usb_stor_ctrl_transfer(us,
us->recv_ctrl_pipe,
access | USBAT_CMD_READ_REG,
0xC0,
(u16)reg,
0,
content,
1);
}
/*
* Write to a register on the device
*/
static int usbat_write(struct us_data *us,
unsigned char access,
unsigned char reg,
unsigned char content)
{
return usb_stor_ctrl_transfer(us,
us->send_ctrl_pipe,
access | USBAT_CMD_WRITE_REG,
0x40,
short_pack(reg, content),
0,
NULL,
0);
}
/*
* Convenience function to perform a bulk read
*/
static int usbat_bulk_read(struct us_data *us,
unsigned char *data,
unsigned int len)
{
if (len == 0)
return USB_STOR_XFER_GOOD;
US_DEBUGP("usbat_bulk_read: len = %d\n", len);
return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, data, len, NULL);
}
/*
* Convenience function to perform a bulk write
*/
static int usbat_bulk_write(struct us_data *us,
unsigned char *data,
unsigned int len)
{
if (len == 0)
return USB_STOR_XFER_GOOD;
US_DEBUGP("usbat_bulk_write: len = %d\n", len);
return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, data, len, NULL);
}
/*
* Some USBAT-specific commands can only be executed over a command transport
* This transport allows one (len=8) or two (len=16) vendor-specific commands
* to be executed.
*/
static int usbat_execute_command(struct us_data *us,
unsigned char *commands,
unsigned int len)
{
return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
USBAT_CMD_EXEC_CMD, 0x40, 0, 0,
commands, len);
}
/*
* Read the status register
*/
static int usbat_get_status(struct us_data *us, unsigned char *status)
{
int rc;
rc = usbat_read(us, USBAT_ATA, USBAT_ATA_STATUS, status);
US_DEBUGP("usbat_get_status: 0x%02X\n", (unsigned short) (*status));
return rc;
}
/*
* Check the device status
*/
static int usbat_check_status(struct us_data *us)
{
unsigned char *reply = us->iobuf;
int rc;
if (!us)
return USB_STOR_TRANSPORT_ERROR;
rc = usbat_get_status(us, reply);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_FAILED;
if (*reply & 0x01 && *reply != 0x51) // error/check condition (0x51 is ok)
return USB_STOR_TRANSPORT_FAILED;
if (*reply & 0x20) // device fault
return USB_STOR_TRANSPORT_FAILED;
return USB_STOR_TRANSPORT_GOOD;
}
/*
* Stores critical information in internal registers in prepartion for the execution
* of a conditional usbat_read_blocks or usbat_write_blocks call.
*/
static int usbat_set_shuttle_features(struct us_data *us,
unsigned char external_trigger,
unsigned char epp_control,
unsigned char mask_byte,
unsigned char test_pattern,
unsigned char subcountH,
unsigned char subcountL)
{
unsigned char *command = us->iobuf;
command[0] = 0x40;
command[1] = USBAT_CMD_SET_FEAT;
// The only bit relevant to ATA access is bit 6
// which defines 8 bit data access (set) or 16 bit (unset)
command[2] = epp_control;
// If FCQ is set in the qualifier (defined in R/W cmd), then bits U0, U1,
// ET1 and ET2 define an external event to be checked for on event of a
// _read_blocks or _write_blocks operation. The read/write will not take
// place unless the defined trigger signal is active.
command[3] = external_trigger;
// The resultant byte of the mask operation (see mask_byte) is compared for
// equivalence with this test pattern. If equal, the read/write will take
// place.
command[4] = test_pattern;
// This value is logically ANDed with the status register field specified
// in the read/write command.
command[5] = mask_byte;
// If ALQ is set in the qualifier, this field contains the address of the
// registers where the byte count should be read for transferring the data.
// If ALQ is not set, then this field contains the number of bytes to be
// transferred.
command[6] = subcountL;
command[7] = subcountH;
return usbat_execute_command(us, command, 8);
}
/*
* Block, waiting for an ATA device to become not busy or to report
* an error condition.
*/
static int usbat_wait_not_busy(struct us_data *us, int minutes)
{
int i;
int result;
unsigned char *status = us->iobuf;
/* Synchronizing cache on a CDR could take a heck of a long time,
* but probably not more than 10 minutes or so. On the other hand,
* doing a full blank on a CDRW at speed 1 will take about 75
* minutes!
*/
for (i=0; i<1200+minutes*60; i++) {
result = usbat_get_status(us, status);
if (result!=USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (*status & 0x01) { // check condition
result = usbat_read(us, USBAT_ATA, 0x10, status);
return USB_STOR_TRANSPORT_FAILED;
}
if (*status & 0x20) // device fault
return USB_STOR_TRANSPORT_FAILED;
if ((*status & 0x80)==0x00) { // not busy
US_DEBUGP("Waited not busy for %d steps\n", i);
return USB_STOR_TRANSPORT_GOOD;
}
if (i<500)
msleep(10); // 5 seconds
else if (i<700)
msleep(50); // 10 seconds
else if (i<1200)
msleep(100); // 50 seconds
else
msleep(1000); // X minutes
}
US_DEBUGP("Waited not busy for %d minutes, timing out.\n",
minutes);
return USB_STOR_TRANSPORT_FAILED;
}
/*
* Read block data from the data register
*/
static int usbat_read_block(struct us_data *us,
unsigned char *content,
unsigned short len)
{
int result;
unsigned char *command = us->iobuf;
if (!len)
return USB_STOR_TRANSPORT_GOOD;
command[0] = 0xC0;
command[1] = USBAT_ATA | USBAT_CMD_READ_BLOCK;
command[2] = USBAT_ATA_DATA;
command[3] = 0;
command[4] = 0;
command[5] = 0;
command[6] = LSB_of(len);
command[7] = MSB_of(len);
result = usbat_execute_command(us, command, 8);
if (result != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
result = usbat_bulk_read(us, content, len);
return (result == USB_STOR_XFER_GOOD ?
USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
}
/*
* Write block data via the data register
*/
static int usbat_write_block(struct us_data *us,
unsigned char access,
unsigned char *content,
unsigned short len,
int minutes)
{
int result;
unsigned char *command = us->iobuf;
if (!len)
return USB_STOR_TRANSPORT_GOOD;
command[0] = 0x40;
command[1] = access | USBAT_CMD_WRITE_BLOCK;
command[2] = USBAT_ATA_DATA;
command[3] = 0;
command[4] = 0;
command[5] = 0;
command[6] = LSB_of(len);
command[7] = MSB_of(len);
result = usbat_execute_command(us, command, 8);
if (result != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
result = usbat_bulk_write(us, content, len);
if (result != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
return usbat_wait_not_busy(us, minutes);
}
/*
* Process read and write requests
*/
static int usbat_hp8200e_rw_block_test(struct us_data *us,
unsigned char access,
unsigned char *registers,
unsigned char *data_out,
unsigned short num_registers,
unsigned char data_reg,
unsigned char status_reg,
unsigned char timeout,
unsigned char qualifier,
int direction,
unsigned char *content,
unsigned short len,
int use_sg,
int minutes)
{
int result;
unsigned int pipe = (direction == DMA_FROM_DEVICE) ?
us->recv_bulk_pipe : us->send_bulk_pipe;
unsigned char *command = us->iobuf;
int i, j;
int cmdlen;
unsigned char *data = us->iobuf;
unsigned char *status = us->iobuf;
BUG_ON(num_registers > US_IOBUF_SIZE/2);
for (i=0; i<20; i++) {
/*
* The first time we send the full command, which consists
* of downloading the SCSI command followed by downloading
* the data via a write-and-test. Any other time we only
* send the command to download the data -- the SCSI command
* is still 'active' in some sense in the device.
*
* We're only going to try sending the data 10 times. After
* that, we just return a failure.
*/
if (i==0) {
cmdlen = 16;
// Write to multiple registers
// Not really sure the 0x07, 0x17, 0xfc, 0xe7 is necessary here,
// but that's what came out of the trace every single time.
command[0] = 0x40;
command[1] = access | USBAT_CMD_WRITE_REGS;
command[2] = 0x07;
command[3] = 0x17;
command[4] = 0xFC;
command[5] = 0xE7;
command[6] = LSB_of(num_registers*2);
command[7] = MSB_of(num_registers*2);
} else
cmdlen = 8;
// Conditionally read or write blocks
command[cmdlen-8] = (direction==DMA_TO_DEVICE ? 0x40 : 0xC0);
command[cmdlen-7] = access |
(direction==DMA_TO_DEVICE ?
USBAT_CMD_COND_WRITE_BLOCK : USBAT_CMD_COND_READ_BLOCK);
command[cmdlen-6] = data_reg;
command[cmdlen-5] = status_reg;
command[cmdlen-4] = timeout;
command[cmdlen-3] = qualifier;
command[cmdlen-2] = LSB_of(len);
command[cmdlen-1] = MSB_of(len);
result = usbat_execute_command(us, command, cmdlen);
if (result != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (i==0) {
for (j=0; j<num_registers; j++) {
data[j<<1] = registers[j];
data[1+(j<<1)] = data_out[j];
}
result = usbat_bulk_write(us, data, num_registers*2);
if (result != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
}
//US_DEBUGP("Transfer %s %d bytes, sg buffers %d\n",
// direction == DMA_TO_DEVICE ? "out" : "in",
// len, use_sg);
result = usb_stor_bulk_transfer_sg(us,
pipe, content, len, use_sg, NULL);
/*
* If we get a stall on the bulk download, we'll retry
* the bulk download -- but not the SCSI command because
* in some sense the SCSI command is still 'active' and
* waiting for the data. Don't ask me why this should be;
* I'm only following what the Windoze driver did.
*
* Note that a stall for the test-and-read/write command means
* that the test failed. In this case we're testing to make
* sure that the device is error-free
* (i.e. bit 0 -- CHK -- of status is 0). The most likely
* hypothesis is that the USBAT chip somehow knows what
* the device will accept, but doesn't give the device any
* data until all data is received. Thus, the device would
* still be waiting for the first byte of data if a stall
* occurs, even if the stall implies that some data was
* transferred.
*/
if (result == USB_STOR_XFER_SHORT ||
result == USB_STOR_XFER_STALLED) {
/*
* If we're reading and we stalled, then clear
* the bulk output pipe only the first time.
*/
if (direction==DMA_FROM_DEVICE && i==0) {
if (usb_stor_clear_halt(us,
us->send_bulk_pipe) < 0)
return USB_STOR_TRANSPORT_ERROR;
}
/*
* Read status: is the device angry, or just busy?
*/
result = usbat_read(us, USBAT_ATA,
direction==DMA_TO_DEVICE ?
USBAT_ATA_STATUS : USBAT_ATA_ALTSTATUS,
status);
if (result!=USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (*status & 0x01) // check condition
return USB_STOR_TRANSPORT_FAILED;
if (*status & 0x20) // device fault
return USB_STOR_TRANSPORT_FAILED;
US_DEBUGP("Redoing %s\n",
direction==DMA_TO_DEVICE ? "write" : "read");
} else if (result != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
else
return usbat_wait_not_busy(us, minutes);
}
US_DEBUGP("Bummer! %s bulk data 20 times failed.\n",
direction==DMA_TO_DEVICE ? "Writing" : "Reading");
return USB_STOR_TRANSPORT_FAILED;
}
/*
* Write to multiple registers:
* Allows us to write specific data to any registers. The data to be written
* gets packed in this sequence: reg0, data0, reg1, data1, ..., regN, dataN
* which gets sent through bulk out.
* Not designed for large transfers of data!
*/
static int usbat_multiple_write(struct us_data *us,
unsigned char *registers,
unsigned char *data_out,
unsigned short num_registers)
{
int i, result;
unsigned char *data = us->iobuf;
unsigned char *command = us->iobuf;
BUG_ON(num_registers > US_IOBUF_SIZE/2);
// Write to multiple registers, ATA access
command[0] = 0x40;
command[1] = USBAT_ATA | USBAT_CMD_WRITE_REGS;
// No relevance
command[2] = 0;
command[3] = 0;
command[4] = 0;
command[5] = 0;
// Number of bytes to be transferred (incl. addresses and data)
command[6] = LSB_of(num_registers*2);
command[7] = MSB_of(num_registers*2);
// The setup command
result = usbat_execute_command(us, command, 8);
if (result != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
// Create the reg/data, reg/data sequence
for (i=0; i<num_registers; i++) {
data[i<<1] = registers[i];
data[1+(i<<1)] = data_out[i];
}
// Send the data
result = usbat_bulk_write(us, data, num_registers*2);
if (result != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (usbat_get_device_type(us) == USBAT_DEV_HP8200)
return usbat_wait_not_busy(us, 0);
else
return USB_STOR_TRANSPORT_GOOD;
}
/*
* Conditionally read blocks from device:
* Allows us to read blocks from a specific data register, based upon the
* condition that a status register can be successfully masked with a status
* qualifier. If this condition is not initially met, the read will wait
* up until a maximum amount of time has elapsed, as specified by timeout.
* The read will start when the condition is met, otherwise the command aborts.
*
* The qualifier defined here is not the value that is masked, it defines
* conditions for the write to take place. The actual masked qualifier (and
* other related details) are defined beforehand with _set_shuttle_features().
*/
static int usbat_read_blocks(struct us_data *us,
unsigned char *buffer,
int len)
{
int result;
unsigned char *command = us->iobuf;
command[0] = 0xC0;
command[1] = USBAT_ATA | USBAT_CMD_COND_READ_BLOCK;
command[2] = USBAT_ATA_DATA;
command[3] = USBAT_ATA_STATUS;
command[4] = 0xFD; // Timeout (ms);
command[5] = USBAT_QUAL_FCQ;
command[6] = LSB_of(len);
command[7] = MSB_of(len);
// Multiple block read setup command
result = usbat_execute_command(us, command, 8);
if (result != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_FAILED;
// Read the blocks we just asked for
result = usbat_bulk_read(us, buffer, len);
if (result != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_FAILED;
return USB_STOR_TRANSPORT_GOOD;
}
/*
* Conditionally write blocks to device:
* Allows us to write blocks to a specific data register, based upon the
* condition that a status register can be successfully masked with a status
* qualifier. If this condition is not initially met, the write will wait
* up until a maximum amount of time has elapsed, as specified by timeout.
* The read will start when the condition is met, otherwise the command aborts.
*
* The qualifier defined here is not the value that is masked, it defines
* conditions for the write to take place. The actual masked qualifier (and
* other related details) are defined beforehand with _set_shuttle_features().
*/
static int usbat_write_blocks(struct us_data *us,
unsigned char *buffer,
int len)
{
int result;
unsigned char *command = us->iobuf;
command[0] = 0x40;
command[1] = USBAT_ATA | USBAT_CMD_COND_WRITE_BLOCK;
command[2] = USBAT_ATA_DATA;
command[3] = USBAT_ATA_STATUS;
command[4] = 0xFD; // Timeout (ms)
command[5] = USBAT_QUAL_FCQ;
command[6] = LSB_of(len);
command[7] = MSB_of(len);
// Multiple block write setup command
result = usbat_execute_command(us, command, 8);
if (result != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_FAILED;
// Write the data
result = usbat_bulk_write(us, buffer, len);
if (result != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_FAILED;
return USB_STOR_TRANSPORT_GOOD;
}
/*
* Read the User IO register
*/
static int usbat_read_user_io(struct us_data *us, unsigned char *data_flags)
{
int result;
result = usb_stor_ctrl_transfer(us,
us->recv_ctrl_pipe,
USBAT_CMD_UIO,
0xC0,
0,
0,
data_flags,
USBAT_UIO_READ);
US_DEBUGP("usbat_read_user_io: UIO register reads %02X\n", (unsigned short) (*data_flags));
return result;
}
/*
* Write to the User IO register
*/
static int usbat_write_user_io(struct us_data *us,
unsigned char enable_flags,
unsigned char data_flags)
{
return usb_stor_ctrl_transfer(us,
us->send_ctrl_pipe,
USBAT_CMD_UIO,
0x40,
short_pack(enable_flags, data_flags),
0,
NULL,
USBAT_UIO_WRITE);
}
/*
* Reset the device
* Often needed on media change.
*/
static int usbat_device_reset(struct us_data *us)
{
int rc;
// Reset peripheral, enable peripheral control signals
// (bring reset signal up)
rc = usbat_write_user_io(us,
USBAT_UIO_DRVRST | USBAT_UIO_OE1 | USBAT_UIO_OE0,
USBAT_UIO_EPAD | USBAT_UIO_1);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
// Enable peripheral control signals
// (bring reset signal down)
rc = usbat_write_user_io(us,
USBAT_UIO_OE1 | USBAT_UIO_OE0,
USBAT_UIO_EPAD | USBAT_UIO_1);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
return USB_STOR_TRANSPORT_GOOD;
}
/*
* Enable card detect
*/
static int usbat_device_enable_cdt(struct us_data *us)
{
int rc;
// Enable peripheral control signals and card detect
rc = usbat_write_user_io(us,
USBAT_UIO_ACKD | USBAT_UIO_OE1 | USBAT_UIO_OE0,
USBAT_UIO_EPAD | USBAT_UIO_1);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
return USB_STOR_TRANSPORT_GOOD;
}
/*
* Determine if media is present.
*/
static int usbat_flash_check_media_present(unsigned char *uio)
{
if (*uio & USBAT_UIO_UI0) {
US_DEBUGP("usbat_flash_check_media_present: no media detected\n");
return USBAT_FLASH_MEDIA_NONE;
}
return USBAT_FLASH_MEDIA_CF;
}
/*
* Determine if media has changed since last operation
*/
static int usbat_flash_check_media_changed(unsigned char *uio)
{
if (*uio & USBAT_UIO_0) {
US_DEBUGP("usbat_flash_check_media_changed: media change detected\n");
return USBAT_FLASH_MEDIA_CHANGED;
}
return USBAT_FLASH_MEDIA_SAME;
}
/*
* Check for media change / no media and handle the situation appropriately
*/
static int usbat_flash_check_media(struct us_data *us,
struct usbat_info *info)
{
int rc;
unsigned char *uio = us->iobuf;
rc = usbat_read_user_io(us, uio);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
// Check for media existence
rc = usbat_flash_check_media_present(uio);
if (rc == USBAT_FLASH_MEDIA_NONE) {
info->sense_key = 0x02;
info->sense_asc = 0x3A;
info->sense_ascq = 0x00;
return USB_STOR_TRANSPORT_FAILED;
}
// Check for media change
rc = usbat_flash_check_media_changed(uio);
if (rc == USBAT_FLASH_MEDIA_CHANGED) {
// Reset and re-enable card detect
rc = usbat_device_reset(us);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
rc = usbat_device_enable_cdt(us);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
msleep(50);
rc = usbat_read_user_io(us, uio);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
info->sense_key = UNIT_ATTENTION;
info->sense_asc = 0x28;
info->sense_ascq = 0x00;
return USB_STOR_TRANSPORT_FAILED;
}
return USB_STOR_TRANSPORT_GOOD;
}
/*
* Determine whether we are controlling a flash-based reader/writer,
* or a HP8200-based CD drive.
* Sets transport functions as appropriate.
*/
static int usbat_identify_device(struct us_data *us,
struct usbat_info *info)
{
int rc;
unsigned char status;
if (!us || !info)
return USB_STOR_TRANSPORT_ERROR;
rc = usbat_device_reset(us);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
msleep(25);
/*
* In attempt to distinguish between HP CDRW's and Flash readers, we now
* execute the IDENTIFY PACKET DEVICE command. On ATA devices (i.e. flash
* readers), this command should fail with error. On ATAPI devices (i.e.
* CDROM drives), it should succeed.
*/
rc = usbat_write(us, USBAT_ATA, USBAT_ATA_CMD, 0xA1);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
rc = usbat_get_status(us, &status);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
// Check for error bit, or if the command 'fell through'
if (status == 0xA1 || !(status & 0x01)) {
// Device is HP 8200
US_DEBUGP("usbat_identify_device: Detected HP8200 CDRW\n");
info->devicetype = USBAT_DEV_HP8200;
} else {
// Device is a CompactFlash reader/writer
US_DEBUGP("usbat_identify_device: Detected Flash reader/writer\n");
info->devicetype = USBAT_DEV_FLASH;
}
return USB_STOR_TRANSPORT_GOOD;
}
/*
* Set the transport function based on the device type
*/
static int usbat_set_transport(struct us_data *us,
struct usbat_info *info)
{
int rc;
if (!info->devicetype) {
rc = usbat_identify_device(us, info);
if (rc != USB_STOR_TRANSPORT_GOOD) {
US_DEBUGP("usbat_set_transport: Could not identify device\n");
return 1;
}
}
if (usbat_get_device_type(us) == USBAT_DEV_HP8200)
us->transport = usbat_hp8200e_transport;
else if (usbat_get_device_type(us) == USBAT_DEV_FLASH)
us->transport = usbat_flash_transport;
return 0;
}
/*
* Read the media capacity
*/
static int usbat_flash_get_sector_count(struct us_data *us,
struct usbat_info *info)
{
unsigned char registers[3] = {
USBAT_ATA_SECCNT,
USBAT_ATA_DEVICE,
USBAT_ATA_CMD,
};
unsigned char command[3] = { 0x01, 0xA0, 0xEC };
unsigned char *reply;
unsigned char status;
int rc;
if (!us || !info)
return USB_STOR_TRANSPORT_ERROR;
reply = kmalloc(512, GFP_NOIO);
if (!reply)
return USB_STOR_TRANSPORT_ERROR;
// ATAPI command : IDENTIFY DEVICE
rc = usbat_multiple_write(us, registers, command, 3);
if (rc != USB_STOR_XFER_GOOD) {
US_DEBUGP("usbat_flash_get_sector_count: Gah! identify_device failed\n");
rc = USB_STOR_TRANSPORT_ERROR;
goto leave;
}
// Read device status
if (usbat_get_status(us, &status) != USB_STOR_XFER_GOOD) {
rc = USB_STOR_TRANSPORT_ERROR;
goto leave;
}
msleep(100);
// Read the device identification data
rc = usbat_read_block(us, reply, 512);
if (rc != USB_STOR_TRANSPORT_GOOD)
goto leave;
info->sectors = ((u32)(reply[117]) << 24) |
((u32)(reply[116]) << 16) |
((u32)(reply[115]) << 8) |
((u32)(reply[114]) );
rc = USB_STOR_TRANSPORT_GOOD;
leave:
kfree(reply);
return rc;
}
/*
* Read data from device
*/
static int usbat_flash_read_data(struct us_data *us,
struct usbat_info *info,
u32 sector,
u32 sectors)
{
unsigned char registers[7] = {
USBAT_ATA_FEATURES,
USBAT_ATA_SECCNT,
USBAT_ATA_SECNUM,
USBAT_ATA_LBA_ME,
USBAT_ATA_LBA_HI,
USBAT_ATA_DEVICE,
USBAT_ATA_STATUS,
};
unsigned char command[7];
unsigned char *buffer;
unsigned char thistime;
unsigned int totallen, alloclen;
int len, result;
unsigned int sg_idx = 0, sg_offset = 0;
result = usbat_flash_check_media(us, info);
if (result != USB_STOR_TRANSPORT_GOOD)
return result;
// we're working in LBA mode. according to the ATA spec,
// we can support up to 28-bit addressing. I don't know if Jumpshot
// supports beyond 24-bit addressing. It's kind of hard to test
// since it requires > 8GB CF card.
if (sector > 0x0FFFFFFF)
return USB_STOR_TRANSPORT_ERROR;
totallen = sectors * info->ssize;
// Since we don't read more than 64 KB at a time, we have to create
// a bounce buffer and move the data a piece at a time between the
// bounce buffer and the actual transfer buffer.
alloclen = min(totallen, 65536u);
buffer = kmalloc(alloclen, GFP_NOIO);
if (buffer == NULL)
return USB_STOR_TRANSPORT_ERROR;
do {
// loop, never allocate or transfer more than 64k at once
// (min(128k, 255*info->ssize) is the real limit)
len = min(totallen, alloclen);
thistime = (len / info->ssize) & 0xff;
// ATAPI command 0x20 (READ SECTORS)
usbat_pack_atapi_sector_cmd(command, thistime, sector, 0x20);
// Write/execute ATAPI read command
result = usbat_multiple_write(us, registers, command, 7);
if (result != USB_STOR_TRANSPORT_GOOD)
goto leave;
// Read the data we just requested
result = usbat_read_blocks(us, buffer, len);
if (result != USB_STOR_TRANSPORT_GOOD)
goto leave;
US_DEBUGP("usbat_flash_read_data: %d bytes\n", len);
// Store the data in the transfer buffer
usb_stor_access_xfer_buf(buffer, len, us->srb,
&sg_idx, &sg_offset, TO_XFER_BUF);
sector += thistime;
totallen -= len;
} while (totallen > 0);
kfree(buffer);
return USB_STOR_TRANSPORT_GOOD;
leave:
kfree(buffer);
return USB_STOR_TRANSPORT_ERROR;
}
/*
* Write data to device
*/
static int usbat_flash_write_data(struct us_data *us,
struct usbat_info *info,
u32 sector,
u32 sectors)
{
unsigned char registers[7] = {
USBAT_ATA_FEATURES,
USBAT_ATA_SECCNT,
USBAT_ATA_SECNUM,
USBAT_ATA_LBA_ME,
USBAT_ATA_LBA_HI,
USBAT_ATA_DEVICE,
USBAT_ATA_STATUS,
};
unsigned char command[7];
unsigned char *buffer;
unsigned char thistime;
unsigned int totallen, alloclen;
int len, result;
unsigned int sg_idx = 0, sg_offset = 0;
result = usbat_flash_check_media(us, info);
if (result != USB_STOR_TRANSPORT_GOOD)
return result;
// we're working in LBA mode. according to the ATA spec,
// we can support up to 28-bit addressing. I don't know if Jumpshot
// supports beyond 24-bit addressing. It's kind of hard to test
// since it requires > 8GB CF card.
if (sector > 0x0FFFFFFF)
return USB_STOR_TRANSPORT_ERROR;
totallen = sectors * info->ssize;
// Since we don't write more than 64 KB at a time, we have to create
// a bounce buffer and move the data a piece at a time between the
// bounce buffer and the actual transfer buffer.
alloclen = min(totallen, 65536u);
buffer = kmalloc(alloclen, GFP_NOIO);
if (buffer == NULL)
return USB_STOR_TRANSPORT_ERROR;
do {
// loop, never allocate or transfer more than 64k at once
// (min(128k, 255*info->ssize) is the real limit)
len = min(totallen, alloclen);
thistime = (len / info->ssize) & 0xff;
// Get the data from the transfer buffer
usb_stor_access_xfer_buf(buffer, len, us->srb,
&sg_idx, &sg_offset, FROM_XFER_BUF);
// ATAPI command 0x30 (WRITE SECTORS)
usbat_pack_atapi_sector_cmd(command, thistime, sector, 0x30);
// Write/execute ATAPI write command
result = usbat_multiple_write(us, registers, command, 7);
if (result != USB_STOR_TRANSPORT_GOOD)
goto leave;
// Write the data
result = usbat_write_blocks(us, buffer, len);
if (result != USB_STOR_TRANSPORT_GOOD)
goto leave;
sector += thistime;
totallen -= len;
} while (totallen > 0);
kfree(buffer);
return result;
leave:
kfree(buffer);
return USB_STOR_TRANSPORT_ERROR;
}
/*
* Squeeze a potentially huge (> 65535 byte) read10 command into
* a little ( <= 65535 byte) ATAPI pipe
*/
static int usbat_hp8200e_handle_read10(struct us_data *us,
unsigned char *registers,
unsigned char *data,
struct scsi_cmnd *srb)
{
int result = USB_STOR_TRANSPORT_GOOD;
unsigned char *buffer;
unsigned int len;
unsigned int sector;
unsigned int sg_segment = 0;
unsigned int sg_offset = 0;
US_DEBUGP("handle_read10: transfersize %d\n",
srb->transfersize);
if (srb->request_bufflen < 0x10000) {
result = usbat_hp8200e_rw_block_test(us, USBAT_ATA,
registers, data, 19,
USBAT_ATA_DATA, USBAT_ATA_STATUS, 0xFD,
(USBAT_QUAL_FCQ | USBAT_QUAL_ALQ),
DMA_FROM_DEVICE,
srb->request_buffer,
srb->request_bufflen, srb->use_sg, 1);
return result;
}
/*
* Since we're requesting more data than we can handle in
* a single read command (max is 64k-1), we will perform
* multiple reads, but each read must be in multiples of
* a sector. Luckily the sector size is in srb->transfersize
* (see linux/drivers/scsi/sr.c).
*/
if (data[7+0] == GPCMD_READ_CD) {
len = short_pack(data[7+9], data[7+8]);
len <<= 16;
len |= data[7+7];
US_DEBUGP("handle_read10: GPCMD_READ_CD: len %d\n", len);
srb->transfersize = srb->request_bufflen/len;
}
if (!srb->transfersize) {
srb->transfersize = 2048; /* A guess */
US_DEBUGP("handle_read10: transfersize 0, forcing %d\n",
srb->transfersize);
}
// Since we only read in one block at a time, we have to create
// a bounce buffer and move the data a piece at a time between the
// bounce buffer and the actual transfer buffer.
len = (65535/srb->transfersize) * srb->transfersize;
US_DEBUGP("Max read is %d bytes\n", len);
len = min(len, srb->request_bufflen);
buffer = kmalloc(len, GFP_NOIO);
if (buffer == NULL) // bloody hell!
return USB_STOR_TRANSPORT_FAILED;
sector = short_pack(data[7+3], data[7+2]);
sector <<= 16;
sector |= short_pack(data[7+5], data[7+4]);
transferred = 0;
sg_segment = 0; // for keeping track of where we are in
sg_offset = 0; // the scatter/gather list
while (transferred != srb->request_bufflen) {
if (len > srb->request_bufflen - transferred)
len = srb->request_bufflen - transferred;
data[3] = len&0xFF; // (cylL) = expected length (L)
data[4] = (len>>8)&0xFF; // (cylH) = expected length (H)
// Fix up the SCSI command sector and num sectors
data[7+2] = MSB_of(sector>>16); // SCSI command sector
data[7+3] = LSB_of(sector>>16);
data[7+4] = MSB_of(sector&0xFFFF);
data[7+5] = LSB_of(sector&0xFFFF);
if (data[7+0] == GPCMD_READ_CD)
data[7+6] = 0;
data[7+7] = MSB_of(len / srb->transfersize); // SCSI command
data[7+8] = LSB_of(len / srb->transfersize); // num sectors
result = usbat_hp8200e_rw_block_test(us, USBAT_ATA,
registers, data, 19,
USBAT_ATA_DATA, USBAT_ATA_STATUS, 0xFD,
(USBAT_QUAL_FCQ | USBAT_QUAL_ALQ),
DMA_FROM_DEVICE,
buffer,
len, 0, 1);
if (result != USB_STOR_TRANSPORT_GOOD)
break;
// Store the data in the transfer buffer
usb_stor_access_xfer_buf(buffer, len, srb,
&sg_segment, &sg_offset, TO_XFER_BUF);
// Update the amount transferred and the sector number
transferred += len;
sector += len / srb->transfersize;
} // while transferred != srb->request_bufflen
kfree(buffer);
return result;
}
static int usbat_select_and_test_registers(struct us_data *us)
{
int selector;
unsigned char *status = us->iobuf;
// try device = master, then device = slave.
for (selector = 0xA0; selector <= 0xB0; selector += 0x10) {
if (usbat_write(us, USBAT_ATA, USBAT_ATA_DEVICE, selector) !=
USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (usbat_read(us, USBAT_ATA, USBAT_ATA_STATUS, status) !=
USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (usbat_read(us, USBAT_ATA, USBAT_ATA_DEVICE, status) !=
USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (usbat_read(us, USBAT_ATA, USBAT_ATA_LBA_ME, status) !=
USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (usbat_read(us, USBAT_ATA, USBAT_ATA_LBA_HI, status) !=
USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (usbat_write(us, USBAT_ATA, USBAT_ATA_LBA_ME, 0x55) !=
USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (usbat_write(us, USBAT_ATA, USBAT_ATA_LBA_HI, 0xAA) !=
USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (usbat_read(us, USBAT_ATA, USBAT_ATA_LBA_ME, status) !=
USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (usbat_read(us, USBAT_ATA, USBAT_ATA_LBA_ME, status) !=
USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
}
return USB_STOR_TRANSPORT_GOOD;
}
/*
* Initialize the USBAT processor and the storage device
*/
int init_usbat(struct us_data *us)
{
int rc;
struct usbat_info *info;
unsigned char subcountH = USBAT_ATA_LBA_HI;
unsigned char subcountL = USBAT_ATA_LBA_ME;
unsigned char *status = us->iobuf;
us->extra = kmalloc(sizeof(struct usbat_info), GFP_NOIO);
if (!us->extra) {
US_DEBUGP("init_usbat: Gah! Can't allocate storage for usbat info struct!\n");
return 1;
}
memset(us->extra, 0, sizeof(struct usbat_info));
info = (struct usbat_info *) (us->extra);
// Enable peripheral control signals
rc = usbat_write_user_io(us,
USBAT_UIO_OE1 | USBAT_UIO_OE0,
USBAT_UIO_EPAD | USBAT_UIO_1);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
US_DEBUGP("INIT 1\n");
msleep(2000);
rc = usbat_read_user_io(us, status);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
US_DEBUGP("INIT 2\n");
rc = usbat_read_user_io(us, status);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
rc = usbat_read_user_io(us, status);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
US_DEBUGP("INIT 3\n");
rc = usbat_select_and_test_registers(us);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
US_DEBUGP("INIT 4\n");
rc = usbat_read_user_io(us, status);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
US_DEBUGP("INIT 5\n");
// Enable peripheral control signals and card detect
rc = usbat_device_enable_cdt(us);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
US_DEBUGP("INIT 6\n");
rc = usbat_read_user_io(us, status);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
US_DEBUGP("INIT 7\n");
msleep(1400);
rc = usbat_read_user_io(us, status);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
US_DEBUGP("INIT 8\n");
rc = usbat_select_and_test_registers(us);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
US_DEBUGP("INIT 9\n");
// At this point, we need to detect which device we are using
if (usbat_set_transport(us, info))
return USB_STOR_TRANSPORT_ERROR;
US_DEBUGP("INIT 10\n");
if (usbat_get_device_type(us) == USBAT_DEV_FLASH) {
subcountH = 0x02;
subcountL = 0x00;
}
rc = usbat_set_shuttle_features(us, (USBAT_FEAT_ETEN | USBAT_FEAT_ET2 | USBAT_FEAT_ET1),
0x00, 0x88, 0x08, subcountH, subcountL);
if (rc != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
US_DEBUGP("INIT 11\n");
return USB_STOR_TRANSPORT_GOOD;
}
/*
* Transport for the HP 8200e
*/
static int usbat_hp8200e_transport(struct scsi_cmnd *srb, struct us_data *us)
{
int result;
unsigned char *status = us->iobuf;
unsigned char registers[32];
unsigned char data[32];
unsigned int len;
int i;
char string[64];
len = srb->request_bufflen;
/* Send A0 (ATA PACKET COMMAND).
Note: I guess we're never going to get any of the ATA
commands... just ATA Packet Commands.
*/
registers[0] = USBAT_ATA_FEATURES;
registers[1] = USBAT_ATA_SECCNT;
registers[2] = USBAT_ATA_SECNUM;
registers[3] = USBAT_ATA_LBA_ME;
registers[4] = USBAT_ATA_LBA_HI;
registers[5] = USBAT_ATA_DEVICE;
registers[6] = USBAT_ATA_CMD;
data[0] = 0x00;
data[1] = 0x00;
data[2] = 0x00;
data[3] = len&0xFF; // (cylL) = expected length (L)
data[4] = (len>>8)&0xFF; // (cylH) = expected length (H)
data[5] = 0xB0; // (device sel) = slave
data[6] = 0xA0; // (command) = ATA PACKET COMMAND
for (i=7; i<19; i++) {
registers[i] = 0x10;
data[i] = (i-7 >= srb->cmd_len) ? 0 : srb->cmnd[i-7];
}
result = usbat_get_status(us, status);
US_DEBUGP("Status = %02X\n", *status);
if (result != USB_STOR_XFER_GOOD)
return USB_STOR_TRANSPORT_ERROR;
if (srb->cmnd[0] == TEST_UNIT_READY)
transferred = 0;
if (srb->sc_data_direction == DMA_TO_DEVICE) {
result = usbat_hp8200e_rw_block_test(us, USBAT_ATA,
registers, data, 19,
USBAT_ATA_DATA, USBAT_ATA_STATUS, 0xFD,
(USBAT_QUAL_FCQ | USBAT_QUAL_ALQ),
DMA_TO_DEVICE,
srb->request_buffer,
len, srb->use_sg, 10);
if (result == USB_STOR_TRANSPORT_GOOD) {
transferred += len;
US_DEBUGP("Wrote %08X bytes\n", transferred);
}
return result;
} else if (srb->cmnd[0] == READ_10 ||
srb->cmnd[0] == GPCMD_READ_CD) {
return usbat_hp8200e_handle_read10(us, registers, data, srb);
}
if (len > 0xFFFF) {
US_DEBUGP("Error: len = %08X... what do I do now?\n",
len);
return USB_STOR_TRANSPORT_ERROR;
}
if ( (result = usbat_multiple_write(us,
registers, data, 7)) != USB_STOR_TRANSPORT_GOOD) {
return result;
}
// Write the 12-byte command header.
// If the command is BLANK then set the timer for 75 minutes.
// Otherwise set it for 10 minutes.
// NOTE: THE 8200 DOCUMENTATION STATES THAT BLANKING A CDRW
// AT SPEED 4 IS UNRELIABLE!!!
if ( (result = usbat_write_block(us,
USBAT_ATA, srb->cmnd, 12,
srb->cmnd[0]==GPCMD_BLANK ? 75 : 10)) !=
USB_STOR_TRANSPORT_GOOD) {
return result;
}
// If there is response data to be read in
// then do it here.
if (len != 0 && (srb->sc_data_direction == DMA_FROM_DEVICE)) {
// How many bytes to read in? Check cylL register
if (usbat_read(us, USBAT_ATA, USBAT_ATA_LBA_ME, status) !=
USB_STOR_XFER_GOOD) {
return USB_STOR_TRANSPORT_ERROR;
}
if (len > 0xFF) { // need to read cylH also
len = *status;
if (usbat_read(us, USBAT_ATA, USBAT_ATA_LBA_HI, status) !=
USB_STOR_XFER_GOOD) {
return USB_STOR_TRANSPORT_ERROR;
}
len += ((unsigned int) *status)<<8;
}
else
len = *status;
result = usbat_read_block(us, srb->request_buffer, len);
/* Debug-print the first 32 bytes of the transfer */
if (!srb->use_sg) {
string[0] = 0;
for (i=0; i<len && i<32; i++) {
sprintf(string+strlen(string), "%02X ",
((unsigned char *)srb->request_buffer)[i]);
if ((i%16)==15) {
US_DEBUGP("%s\n", string);
string[0] = 0;
}
}
if (string[0]!=0)
US_DEBUGP("%s\n", string);
}
}
return result;
}
/*
* Transport for USBAT02-based CompactFlash and similar storage devices
*/
static int usbat_flash_transport(struct scsi_cmnd * srb, struct us_data *us)
{
int rc;
struct usbat_info *info = (struct usbat_info *) (us->extra);
unsigned long block, blocks;
unsigned char *ptr = us->iobuf;
static unsigned char inquiry_response[36] = {
0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
};
if (srb->cmnd[0] == INQUIRY) {
US_DEBUGP("usbat_flash_transport: INQUIRY. Returning bogus response.\n");
memcpy(ptr, inquiry_response, sizeof(inquiry_response));
fill_inquiry_response(us, ptr, 36);
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == READ_CAPACITY) {
rc = usbat_flash_check_media(us, info);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
rc = usbat_flash_get_sector_count(us, info);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
info->ssize = 0x200; // hard coded 512 byte sectors as per ATA spec
US_DEBUGP("usbat_flash_transport: READ_CAPACITY: %ld sectors, %ld bytes per sector\n",
info->sectors, info->ssize);
// build the reply
// note: must return the sector number of the last sector,
// *not* the total number of sectors
((__be32 *) ptr)[0] = cpu_to_be32(info->sectors - 1);
((__be32 *) ptr)[1] = cpu_to_be32(info->ssize);
usb_stor_set_xfer_buf(ptr, 8, srb);
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == MODE_SELECT_10) {
US_DEBUGP("usbat_flash_transport: Gah! MODE_SELECT_10.\n");
return USB_STOR_TRANSPORT_ERROR;
}
if (srb->cmnd[0] == READ_10) {
block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8]));
US_DEBUGP("usbat_flash_transport: READ_10: read block 0x%04lx count %ld\n", block, blocks);
return usbat_flash_read_data(us, info, block, blocks);
}
if (srb->cmnd[0] == READ_12) {
// I don't think we'll ever see a READ_12 but support it anyway...
block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) |
((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9]));
US_DEBUGP("usbat_flash_transport: READ_12: read block 0x%04lx count %ld\n", block, blocks);
return usbat_flash_read_data(us, info, block, blocks);
}
if (srb->cmnd[0] == WRITE_10) {
block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8]));
US_DEBUGP("usbat_flash_transport: WRITE_10: write block 0x%04lx count %ld\n", block, blocks);
return usbat_flash_write_data(us, info, block, blocks);
}
if (srb->cmnd[0] == WRITE_12) {
// I don't think we'll ever see a WRITE_12 but support it anyway...
block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) |
((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9]));
US_DEBUGP("usbat_flash_transport: WRITE_12: write block 0x%04lx count %ld\n", block, blocks);
return usbat_flash_write_data(us, info, block, blocks);
}
if (srb->cmnd[0] == TEST_UNIT_READY) {
US_DEBUGP("usbat_flash_transport: TEST_UNIT_READY.\n");
rc = usbat_flash_check_media(us, info);
if (rc != USB_STOR_TRANSPORT_GOOD)
return rc;
return usbat_check_status(us);
}
if (srb->cmnd[0] == REQUEST_SENSE) {
US_DEBUGP("usbat_flash_transport: REQUEST_SENSE.\n");
memset(ptr, 0, 18);
ptr[0] = 0xF0;
ptr[2] = info->sense_key;
ptr[7] = 11;
ptr[12] = info->sense_asc;
ptr[13] = info->sense_ascq;
usb_stor_set_xfer_buf(ptr, 18, srb);
return USB_STOR_TRANSPORT_GOOD;
}
if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
// sure. whatever. not like we can stop the user from popping
// the media out of the device (no locking doors, etc)
return USB_STOR_TRANSPORT_GOOD;
}
US_DEBUGP("usbat_flash_transport: Gah! Unknown command: %d (0x%x)\n",
srb->cmnd[0], srb->cmnd[0]);
info->sense_key = 0x05;
info->sense_asc = 0x20;
info->sense_ascq = 0x00;
return USB_STOR_TRANSPORT_FAILED;
}
/*
* Default transport function. Attempts to detect which transport function
* should be called, makes it the new default, and calls it.
*
* This function should never be called. Our usbat_init() function detects the
* device type and changes the us->transport ptr to the transport function
* relevant to the device.
* However, we'll support this impossible(?) case anyway.
*/
int usbat_transport(struct scsi_cmnd *srb, struct us_data *us)
{
struct usbat_info *info = (struct usbat_info*) (us->extra);
if (usbat_set_transport(us, info))
return USB_STOR_TRANSPORT_ERROR;
return us->transport(srb, us);
}