mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-22 12:14:01 +08:00
1809 lines
47 KiB
C
1809 lines
47 KiB
C
/* Generic MTRR (Memory Type Range Register) driver.
|
|
|
|
Copyright (C) 1997-2000 Richard Gooch
|
|
Copyright (c) 2002 Patrick Mochel
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with this library; if not, write to the Free
|
|
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
Richard Gooch may be reached by email at rgooch@atnf.csiro.au
|
|
The postal address is:
|
|
Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
|
|
|
|
Source: "Pentium Pro Family Developer's Manual, Volume 3:
|
|
Operating System Writer's Guide" (Intel document number 242692),
|
|
section 11.11.7
|
|
|
|
This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
|
|
on 6-7 March 2002.
|
|
Source: Intel Architecture Software Developers Manual, Volume 3:
|
|
System Programming Guide; Section 9.11. (1997 edition - PPro).
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/sort.h>
|
|
|
|
#include <asm/e820.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/kvm_para.h>
|
|
#include "mtrr.h"
|
|
|
|
u32 num_var_ranges = 0;
|
|
|
|
unsigned int mtrr_usage_table[MAX_VAR_RANGES];
|
|
static DEFINE_MUTEX(mtrr_mutex);
|
|
|
|
u64 size_or_mask, size_and_mask;
|
|
|
|
static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};
|
|
|
|
struct mtrr_ops * mtrr_if = NULL;
|
|
|
|
static void set_mtrr(unsigned int reg, unsigned long base,
|
|
unsigned long size, mtrr_type type);
|
|
|
|
void set_mtrr_ops(struct mtrr_ops * ops)
|
|
{
|
|
if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
|
|
mtrr_ops[ops->vendor] = ops;
|
|
}
|
|
|
|
/* Returns non-zero if we have the write-combining memory type */
|
|
static int have_wrcomb(void)
|
|
{
|
|
struct pci_dev *dev;
|
|
u8 rev;
|
|
|
|
if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
|
|
/* ServerWorks LE chipsets < rev 6 have problems with write-combining
|
|
Don't allow it and leave room for other chipsets to be tagged */
|
|
if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
|
|
dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
|
|
pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
|
|
if (rev <= 5) {
|
|
printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
|
|
pci_dev_put(dev);
|
|
return 0;
|
|
}
|
|
}
|
|
/* Intel 450NX errata # 23. Non ascending cacheline evictions to
|
|
write combining memory may resulting in data corruption */
|
|
if (dev->vendor == PCI_VENDOR_ID_INTEL &&
|
|
dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
|
|
printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
|
|
pci_dev_put(dev);
|
|
return 0;
|
|
}
|
|
pci_dev_put(dev);
|
|
}
|
|
return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
|
|
}
|
|
|
|
/* This function returns the number of variable MTRRs */
|
|
static void __init set_num_var_ranges(void)
|
|
{
|
|
unsigned long config = 0, dummy;
|
|
|
|
if (use_intel()) {
|
|
rdmsr(MTRRcap_MSR, config, dummy);
|
|
} else if (is_cpu(AMD))
|
|
config = 2;
|
|
else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
|
|
config = 8;
|
|
num_var_ranges = config & 0xff;
|
|
}
|
|
|
|
static void __init init_table(void)
|
|
{
|
|
int i, max;
|
|
|
|
max = num_var_ranges;
|
|
for (i = 0; i < max; i++)
|
|
mtrr_usage_table[i] = 1;
|
|
}
|
|
|
|
struct set_mtrr_data {
|
|
atomic_t count;
|
|
atomic_t gate;
|
|
unsigned long smp_base;
|
|
unsigned long smp_size;
|
|
unsigned int smp_reg;
|
|
mtrr_type smp_type;
|
|
};
|
|
|
|
static void ipi_handler(void *info)
|
|
/* [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
|
|
[RETURNS] Nothing.
|
|
*/
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
struct set_mtrr_data *data = info;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
atomic_dec(&data->count);
|
|
while(!atomic_read(&data->gate))
|
|
cpu_relax();
|
|
|
|
/* The master has cleared me to execute */
|
|
if (data->smp_reg != ~0U)
|
|
mtrr_if->set(data->smp_reg, data->smp_base,
|
|
data->smp_size, data->smp_type);
|
|
else
|
|
mtrr_if->set_all();
|
|
|
|
atomic_dec(&data->count);
|
|
while(atomic_read(&data->gate))
|
|
cpu_relax();
|
|
|
|
atomic_dec(&data->count);
|
|
local_irq_restore(flags);
|
|
#endif
|
|
}
|
|
|
|
static inline int types_compatible(mtrr_type type1, mtrr_type type2) {
|
|
return type1 == MTRR_TYPE_UNCACHABLE ||
|
|
type2 == MTRR_TYPE_UNCACHABLE ||
|
|
(type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
|
|
(type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
|
|
}
|
|
|
|
/**
|
|
* set_mtrr - update mtrrs on all processors
|
|
* @reg: mtrr in question
|
|
* @base: mtrr base
|
|
* @size: mtrr size
|
|
* @type: mtrr type
|
|
*
|
|
* This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
|
|
*
|
|
* 1. Send IPI to do the following:
|
|
* 2. Disable Interrupts
|
|
* 3. Wait for all procs to do so
|
|
* 4. Enter no-fill cache mode
|
|
* 5. Flush caches
|
|
* 6. Clear PGE bit
|
|
* 7. Flush all TLBs
|
|
* 8. Disable all range registers
|
|
* 9. Update the MTRRs
|
|
* 10. Enable all range registers
|
|
* 11. Flush all TLBs and caches again
|
|
* 12. Enter normal cache mode and reenable caching
|
|
* 13. Set PGE
|
|
* 14. Wait for buddies to catch up
|
|
* 15. Enable interrupts.
|
|
*
|
|
* What does that mean for us? Well, first we set data.count to the number
|
|
* of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
|
|
* until it hits 0 and proceed. We set the data.gate flag and reset data.count.
|
|
* Meanwhile, they are waiting for that flag to be set. Once it's set, each
|
|
* CPU goes through the transition of updating MTRRs. The CPU vendors may each do it
|
|
* differently, so we call mtrr_if->set() callback and let them take care of it.
|
|
* When they're done, they again decrement data->count and wait for data.gate to
|
|
* be reset.
|
|
* When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
|
|
* Everyone then enables interrupts and we all continue on.
|
|
*
|
|
* Note that the mechanism is the same for UP systems, too; all the SMP stuff
|
|
* becomes nops.
|
|
*/
|
|
static void set_mtrr(unsigned int reg, unsigned long base,
|
|
unsigned long size, mtrr_type type)
|
|
{
|
|
struct set_mtrr_data data;
|
|
unsigned long flags;
|
|
|
|
data.smp_reg = reg;
|
|
data.smp_base = base;
|
|
data.smp_size = size;
|
|
data.smp_type = type;
|
|
atomic_set(&data.count, num_booting_cpus() - 1);
|
|
/* make sure data.count is visible before unleashing other CPUs */
|
|
smp_wmb();
|
|
atomic_set(&data.gate,0);
|
|
|
|
/* Start the ball rolling on other CPUs */
|
|
if (smp_call_function(ipi_handler, &data, 0) != 0)
|
|
panic("mtrr: timed out waiting for other CPUs\n");
|
|
|
|
local_irq_save(flags);
|
|
|
|
while(atomic_read(&data.count))
|
|
cpu_relax();
|
|
|
|
/* ok, reset count and toggle gate */
|
|
atomic_set(&data.count, num_booting_cpus() - 1);
|
|
smp_wmb();
|
|
atomic_set(&data.gate,1);
|
|
|
|
/* do our MTRR business */
|
|
|
|
/* HACK!
|
|
* We use this same function to initialize the mtrrs on boot.
|
|
* The state of the boot cpu's mtrrs has been saved, and we want
|
|
* to replicate across all the APs.
|
|
* If we're doing that @reg is set to something special...
|
|
*/
|
|
if (reg != ~0U)
|
|
mtrr_if->set(reg,base,size,type);
|
|
|
|
/* wait for the others */
|
|
while(atomic_read(&data.count))
|
|
cpu_relax();
|
|
|
|
atomic_set(&data.count, num_booting_cpus() - 1);
|
|
smp_wmb();
|
|
atomic_set(&data.gate,0);
|
|
|
|
/*
|
|
* Wait here for everyone to have seen the gate change
|
|
* So we're the last ones to touch 'data'
|
|
*/
|
|
while(atomic_read(&data.count))
|
|
cpu_relax();
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* mtrr_add_page - Add a memory type region
|
|
* @base: Physical base address of region in pages (in units of 4 kB!)
|
|
* @size: Physical size of region in pages (4 kB)
|
|
* @type: Type of MTRR desired
|
|
* @increment: If this is true do usage counting on the region
|
|
*
|
|
* Memory type region registers control the caching on newer Intel and
|
|
* non Intel processors. This function allows drivers to request an
|
|
* MTRR is added. The details and hardware specifics of each processor's
|
|
* implementation are hidden from the caller, but nevertheless the
|
|
* caller should expect to need to provide a power of two size on an
|
|
* equivalent power of two boundary.
|
|
*
|
|
* If the region cannot be added either because all regions are in use
|
|
* or the CPU cannot support it a negative value is returned. On success
|
|
* the register number for this entry is returned, but should be treated
|
|
* as a cookie only.
|
|
*
|
|
* On a multiprocessor machine the changes are made to all processors.
|
|
* This is required on x86 by the Intel processors.
|
|
*
|
|
* The available types are
|
|
*
|
|
* %MTRR_TYPE_UNCACHABLE - No caching
|
|
*
|
|
* %MTRR_TYPE_WRBACK - Write data back in bursts whenever
|
|
*
|
|
* %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
|
|
*
|
|
* %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
|
|
*
|
|
* BUGS: Needs a quiet flag for the cases where drivers do not mind
|
|
* failures and do not wish system log messages to be sent.
|
|
*/
|
|
|
|
int mtrr_add_page(unsigned long base, unsigned long size,
|
|
unsigned int type, bool increment)
|
|
{
|
|
int i, replace, error;
|
|
mtrr_type ltype;
|
|
unsigned long lbase, lsize;
|
|
|
|
if (!mtrr_if)
|
|
return -ENXIO;
|
|
|
|
if ((error = mtrr_if->validate_add_page(base,size,type)))
|
|
return error;
|
|
|
|
if (type >= MTRR_NUM_TYPES) {
|
|
printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* If the type is WC, check that this processor supports it */
|
|
if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
|
|
printk(KERN_WARNING
|
|
"mtrr: your processor doesn't support write-combining\n");
|
|
return -ENOSYS;
|
|
}
|
|
|
|
if (!size) {
|
|
printk(KERN_WARNING "mtrr: zero sized request\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (base & size_or_mask || size & size_or_mask) {
|
|
printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
error = -EINVAL;
|
|
replace = -1;
|
|
|
|
/* No CPU hotplug when we change MTRR entries */
|
|
get_online_cpus();
|
|
/* Search for existing MTRR */
|
|
mutex_lock(&mtrr_mutex);
|
|
for (i = 0; i < num_var_ranges; ++i) {
|
|
mtrr_if->get(i, &lbase, &lsize, <ype);
|
|
if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase)
|
|
continue;
|
|
/* At this point we know there is some kind of overlap/enclosure */
|
|
if (base < lbase || base + size - 1 > lbase + lsize - 1) {
|
|
if (base <= lbase && base + size - 1 >= lbase + lsize - 1) {
|
|
/* New region encloses an existing region */
|
|
if (type == ltype) {
|
|
replace = replace == -1 ? i : -2;
|
|
continue;
|
|
}
|
|
else if (types_compatible(type, ltype))
|
|
continue;
|
|
}
|
|
printk(KERN_WARNING
|
|
"mtrr: 0x%lx000,0x%lx000 overlaps existing"
|
|
" 0x%lx000,0x%lx000\n", base, size, lbase,
|
|
lsize);
|
|
goto out;
|
|
}
|
|
/* New region is enclosed by an existing region */
|
|
if (ltype != type) {
|
|
if (types_compatible(type, ltype))
|
|
continue;
|
|
printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
|
|
base, size, mtrr_attrib_to_str(ltype),
|
|
mtrr_attrib_to_str(type));
|
|
goto out;
|
|
}
|
|
if (increment)
|
|
++mtrr_usage_table[i];
|
|
error = i;
|
|
goto out;
|
|
}
|
|
/* Search for an empty MTRR */
|
|
i = mtrr_if->get_free_region(base, size, replace);
|
|
if (i >= 0) {
|
|
set_mtrr(i, base, size, type);
|
|
if (likely(replace < 0)) {
|
|
mtrr_usage_table[i] = 1;
|
|
} else {
|
|
mtrr_usage_table[i] = mtrr_usage_table[replace];
|
|
if (increment)
|
|
mtrr_usage_table[i]++;
|
|
if (unlikely(replace != i)) {
|
|
set_mtrr(replace, 0, 0, 0);
|
|
mtrr_usage_table[replace] = 0;
|
|
}
|
|
}
|
|
} else
|
|
printk(KERN_INFO "mtrr: no more MTRRs available\n");
|
|
error = i;
|
|
out:
|
|
mutex_unlock(&mtrr_mutex);
|
|
put_online_cpus();
|
|
return error;
|
|
}
|
|
|
|
static int mtrr_check(unsigned long base, unsigned long size)
|
|
{
|
|
if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
|
|
printk(KERN_WARNING
|
|
"mtrr: size and base must be multiples of 4 kiB\n");
|
|
printk(KERN_DEBUG
|
|
"mtrr: size: 0x%lx base: 0x%lx\n", size, base);
|
|
dump_stack();
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mtrr_add - Add a memory type region
|
|
* @base: Physical base address of region
|
|
* @size: Physical size of region
|
|
* @type: Type of MTRR desired
|
|
* @increment: If this is true do usage counting on the region
|
|
*
|
|
* Memory type region registers control the caching on newer Intel and
|
|
* non Intel processors. This function allows drivers to request an
|
|
* MTRR is added. The details and hardware specifics of each processor's
|
|
* implementation are hidden from the caller, but nevertheless the
|
|
* caller should expect to need to provide a power of two size on an
|
|
* equivalent power of two boundary.
|
|
*
|
|
* If the region cannot be added either because all regions are in use
|
|
* or the CPU cannot support it a negative value is returned. On success
|
|
* the register number for this entry is returned, but should be treated
|
|
* as a cookie only.
|
|
*
|
|
* On a multiprocessor machine the changes are made to all processors.
|
|
* This is required on x86 by the Intel processors.
|
|
*
|
|
* The available types are
|
|
*
|
|
* %MTRR_TYPE_UNCACHABLE - No caching
|
|
*
|
|
* %MTRR_TYPE_WRBACK - Write data back in bursts whenever
|
|
*
|
|
* %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
|
|
*
|
|
* %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
|
|
*
|
|
* BUGS: Needs a quiet flag for the cases where drivers do not mind
|
|
* failures and do not wish system log messages to be sent.
|
|
*/
|
|
|
|
int
|
|
mtrr_add(unsigned long base, unsigned long size, unsigned int type,
|
|
bool increment)
|
|
{
|
|
if (mtrr_check(base, size))
|
|
return -EINVAL;
|
|
return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
|
|
increment);
|
|
}
|
|
|
|
/**
|
|
* mtrr_del_page - delete a memory type region
|
|
* @reg: Register returned by mtrr_add
|
|
* @base: Physical base address
|
|
* @size: Size of region
|
|
*
|
|
* If register is supplied then base and size are ignored. This is
|
|
* how drivers should call it.
|
|
*
|
|
* Releases an MTRR region. If the usage count drops to zero the
|
|
* register is freed and the region returns to default state.
|
|
* On success the register is returned, on failure a negative error
|
|
* code.
|
|
*/
|
|
|
|
int mtrr_del_page(int reg, unsigned long base, unsigned long size)
|
|
{
|
|
int i, max;
|
|
mtrr_type ltype;
|
|
unsigned long lbase, lsize;
|
|
int error = -EINVAL;
|
|
|
|
if (!mtrr_if)
|
|
return -ENXIO;
|
|
|
|
max = num_var_ranges;
|
|
/* No CPU hotplug when we change MTRR entries */
|
|
get_online_cpus();
|
|
mutex_lock(&mtrr_mutex);
|
|
if (reg < 0) {
|
|
/* Search for existing MTRR */
|
|
for (i = 0; i < max; ++i) {
|
|
mtrr_if->get(i, &lbase, &lsize, <ype);
|
|
if (lbase == base && lsize == size) {
|
|
reg = i;
|
|
break;
|
|
}
|
|
}
|
|
if (reg < 0) {
|
|
printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
|
|
size);
|
|
goto out;
|
|
}
|
|
}
|
|
if (reg >= max) {
|
|
printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
|
|
goto out;
|
|
}
|
|
mtrr_if->get(reg, &lbase, &lsize, <ype);
|
|
if (lsize < 1) {
|
|
printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
|
|
goto out;
|
|
}
|
|
if (mtrr_usage_table[reg] < 1) {
|
|
printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
|
|
goto out;
|
|
}
|
|
if (--mtrr_usage_table[reg] < 1)
|
|
set_mtrr(reg, 0, 0, 0);
|
|
error = reg;
|
|
out:
|
|
mutex_unlock(&mtrr_mutex);
|
|
put_online_cpus();
|
|
return error;
|
|
}
|
|
/**
|
|
* mtrr_del - delete a memory type region
|
|
* @reg: Register returned by mtrr_add
|
|
* @base: Physical base address
|
|
* @size: Size of region
|
|
*
|
|
* If register is supplied then base and size are ignored. This is
|
|
* how drivers should call it.
|
|
*
|
|
* Releases an MTRR region. If the usage count drops to zero the
|
|
* register is freed and the region returns to default state.
|
|
* On success the register is returned, on failure a negative error
|
|
* code.
|
|
*/
|
|
|
|
int
|
|
mtrr_del(int reg, unsigned long base, unsigned long size)
|
|
{
|
|
if (mtrr_check(base, size))
|
|
return -EINVAL;
|
|
return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
|
|
}
|
|
|
|
EXPORT_SYMBOL(mtrr_add);
|
|
EXPORT_SYMBOL(mtrr_del);
|
|
|
|
/* HACK ALERT!
|
|
* These should be called implicitly, but we can't yet until all the initcall
|
|
* stuff is done...
|
|
*/
|
|
static void __init init_ifs(void)
|
|
{
|
|
#ifndef CONFIG_X86_64
|
|
amd_init_mtrr();
|
|
cyrix_init_mtrr();
|
|
centaur_init_mtrr();
|
|
#endif
|
|
}
|
|
|
|
/* The suspend/resume methods are only for CPU without MTRR. CPU using generic
|
|
* MTRR driver doesn't require this
|
|
*/
|
|
struct mtrr_value {
|
|
mtrr_type ltype;
|
|
unsigned long lbase;
|
|
unsigned long lsize;
|
|
};
|
|
|
|
static struct mtrr_value mtrr_state[MAX_VAR_RANGES];
|
|
|
|
static int mtrr_save(struct sys_device * sysdev, pm_message_t state)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_var_ranges; i++) {
|
|
mtrr_if->get(i,
|
|
&mtrr_state[i].lbase,
|
|
&mtrr_state[i].lsize,
|
|
&mtrr_state[i].ltype);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mtrr_restore(struct sys_device * sysdev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_var_ranges; i++) {
|
|
if (mtrr_state[i].lsize)
|
|
set_mtrr(i,
|
|
mtrr_state[i].lbase,
|
|
mtrr_state[i].lsize,
|
|
mtrr_state[i].ltype);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
static struct sysdev_driver mtrr_sysdev_driver = {
|
|
.suspend = mtrr_save,
|
|
.resume = mtrr_restore,
|
|
};
|
|
|
|
/* should be related to MTRR_VAR_RANGES nums */
|
|
#define RANGE_NUM 256
|
|
|
|
struct res_range {
|
|
unsigned long start;
|
|
unsigned long end;
|
|
};
|
|
|
|
static int __init
|
|
add_range(struct res_range *range, int nr_range, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
/* out of slots */
|
|
if (nr_range >= RANGE_NUM)
|
|
return nr_range;
|
|
|
|
range[nr_range].start = start;
|
|
range[nr_range].end = end;
|
|
|
|
nr_range++;
|
|
|
|
return nr_range;
|
|
}
|
|
|
|
static int __init
|
|
add_range_with_merge(struct res_range *range, int nr_range, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
int i;
|
|
|
|
/* try to merge it with old one */
|
|
for (i = 0; i < nr_range; i++) {
|
|
unsigned long final_start, final_end;
|
|
unsigned long common_start, common_end;
|
|
|
|
if (!range[i].end)
|
|
continue;
|
|
|
|
common_start = max(range[i].start, start);
|
|
common_end = min(range[i].end, end);
|
|
if (common_start > common_end + 1)
|
|
continue;
|
|
|
|
final_start = min(range[i].start, start);
|
|
final_end = max(range[i].end, end);
|
|
|
|
range[i].start = final_start;
|
|
range[i].end = final_end;
|
|
return nr_range;
|
|
}
|
|
|
|
/* need to add that */
|
|
return add_range(range, nr_range, start, end);
|
|
}
|
|
|
|
static void __init
|
|
subtract_range(struct res_range *range, unsigned long start, unsigned long end)
|
|
{
|
|
int i, j;
|
|
|
|
for (j = 0; j < RANGE_NUM; j++) {
|
|
if (!range[j].end)
|
|
continue;
|
|
|
|
if (start <= range[j].start && end >= range[j].end) {
|
|
range[j].start = 0;
|
|
range[j].end = 0;
|
|
continue;
|
|
}
|
|
|
|
if (start <= range[j].start && end < range[j].end &&
|
|
range[j].start < end + 1) {
|
|
range[j].start = end + 1;
|
|
continue;
|
|
}
|
|
|
|
|
|
if (start > range[j].start && end >= range[j].end &&
|
|
range[j].end > start - 1) {
|
|
range[j].end = start - 1;
|
|
continue;
|
|
}
|
|
|
|
if (start > range[j].start && end < range[j].end) {
|
|
/* find the new spare */
|
|
for (i = 0; i < RANGE_NUM; i++) {
|
|
if (range[i].end == 0)
|
|
break;
|
|
}
|
|
if (i < RANGE_NUM) {
|
|
range[i].end = range[j].end;
|
|
range[i].start = end + 1;
|
|
} else {
|
|
printk(KERN_ERR "run of slot in ranges\n");
|
|
}
|
|
range[j].end = start - 1;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __init cmp_range(const void *x1, const void *x2)
|
|
{
|
|
const struct res_range *r1 = x1;
|
|
const struct res_range *r2 = x2;
|
|
long start1, start2;
|
|
|
|
start1 = r1->start;
|
|
start2 = r2->start;
|
|
|
|
return start1 - start2;
|
|
}
|
|
|
|
struct var_mtrr_range_state {
|
|
unsigned long base_pfn;
|
|
unsigned long size_pfn;
|
|
mtrr_type type;
|
|
};
|
|
|
|
static struct var_mtrr_range_state __initdata range_state[RANGE_NUM];
|
|
static int __initdata debug_print;
|
|
|
|
static int __init
|
|
x86_get_mtrr_mem_range(struct res_range *range, int nr_range,
|
|
unsigned long extra_remove_base,
|
|
unsigned long extra_remove_size)
|
|
{
|
|
unsigned long i, base, size;
|
|
mtrr_type type;
|
|
|
|
for (i = 0; i < num_var_ranges; i++) {
|
|
type = range_state[i].type;
|
|
if (type != MTRR_TYPE_WRBACK)
|
|
continue;
|
|
base = range_state[i].base_pfn;
|
|
size = range_state[i].size_pfn;
|
|
nr_range = add_range_with_merge(range, nr_range, base,
|
|
base + size - 1);
|
|
}
|
|
if (debug_print) {
|
|
printk(KERN_DEBUG "After WB checking\n");
|
|
for (i = 0; i < nr_range; i++)
|
|
printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
|
|
range[i].start, range[i].end + 1);
|
|
}
|
|
|
|
/* take out UC ranges */
|
|
for (i = 0; i < num_var_ranges; i++) {
|
|
type = range_state[i].type;
|
|
if (type != MTRR_TYPE_UNCACHABLE &&
|
|
type != MTRR_TYPE_WRPROT)
|
|
continue;
|
|
size = range_state[i].size_pfn;
|
|
if (!size)
|
|
continue;
|
|
base = range_state[i].base_pfn;
|
|
subtract_range(range, base, base + size - 1);
|
|
}
|
|
if (extra_remove_size)
|
|
subtract_range(range, extra_remove_base,
|
|
extra_remove_base + extra_remove_size - 1);
|
|
|
|
/* get new range num */
|
|
nr_range = 0;
|
|
for (i = 0; i < RANGE_NUM; i++) {
|
|
if (!range[i].end)
|
|
continue;
|
|
nr_range++;
|
|
}
|
|
if (debug_print) {
|
|
printk(KERN_DEBUG "After UC checking\n");
|
|
for (i = 0; i < nr_range; i++)
|
|
printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
|
|
range[i].start, range[i].end + 1);
|
|
}
|
|
|
|
/* sort the ranges */
|
|
sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
|
|
if (debug_print) {
|
|
printk(KERN_DEBUG "After sorting\n");
|
|
for (i = 0; i < nr_range; i++)
|
|
printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
|
|
range[i].start, range[i].end + 1);
|
|
}
|
|
|
|
/* clear those is not used */
|
|
for (i = nr_range; i < RANGE_NUM; i++)
|
|
memset(&range[i], 0, sizeof(range[i]));
|
|
|
|
return nr_range;
|
|
}
|
|
|
|
static struct res_range __initdata range[RANGE_NUM];
|
|
|
|
#ifdef CONFIG_MTRR_SANITIZER
|
|
|
|
static unsigned long __init sum_ranges(struct res_range *range, int nr_range)
|
|
{
|
|
unsigned long sum;
|
|
int i;
|
|
|
|
sum = 0;
|
|
for (i = 0; i < nr_range; i++)
|
|
sum += range[i].end + 1 - range[i].start;
|
|
|
|
return sum;
|
|
}
|
|
|
|
static int enable_mtrr_cleanup __initdata =
|
|
CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;
|
|
|
|
static int __init disable_mtrr_cleanup_setup(char *str)
|
|
{
|
|
if (enable_mtrr_cleanup != -1)
|
|
enable_mtrr_cleanup = 0;
|
|
return 0;
|
|
}
|
|
early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);
|
|
|
|
static int __init enable_mtrr_cleanup_setup(char *str)
|
|
{
|
|
if (enable_mtrr_cleanup != -1)
|
|
enable_mtrr_cleanup = 1;
|
|
return 0;
|
|
}
|
|
early_param("enable_mtrr_cleanup", enable_mtrr_cleanup_setup);
|
|
|
|
static int __init mtrr_cleanup_debug_setup(char *str)
|
|
{
|
|
debug_print = 1;
|
|
return 0;
|
|
}
|
|
early_param("mtrr_cleanup_debug", mtrr_cleanup_debug_setup);
|
|
|
|
struct var_mtrr_state {
|
|
unsigned long range_startk;
|
|
unsigned long range_sizek;
|
|
unsigned long chunk_sizek;
|
|
unsigned long gran_sizek;
|
|
unsigned int reg;
|
|
};
|
|
|
|
static void __init
|
|
set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
|
|
unsigned char type, unsigned int address_bits)
|
|
{
|
|
u32 base_lo, base_hi, mask_lo, mask_hi;
|
|
u64 base, mask;
|
|
|
|
if (!sizek) {
|
|
fill_mtrr_var_range(reg, 0, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
mask = (1ULL << address_bits) - 1;
|
|
mask &= ~((((u64)sizek) << 10) - 1);
|
|
|
|
base = ((u64)basek) << 10;
|
|
|
|
base |= type;
|
|
mask |= 0x800;
|
|
|
|
base_lo = base & ((1ULL<<32) - 1);
|
|
base_hi = base >> 32;
|
|
|
|
mask_lo = mask & ((1ULL<<32) - 1);
|
|
mask_hi = mask >> 32;
|
|
|
|
fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
|
|
}
|
|
|
|
static void __init
|
|
save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
|
|
unsigned char type)
|
|
{
|
|
range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10);
|
|
range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10);
|
|
range_state[reg].type = type;
|
|
}
|
|
|
|
static void __init
|
|
set_var_mtrr_all(unsigned int address_bits)
|
|
{
|
|
unsigned long basek, sizek;
|
|
unsigned char type;
|
|
unsigned int reg;
|
|
|
|
for (reg = 0; reg < num_var_ranges; reg++) {
|
|
basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10);
|
|
sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10);
|
|
type = range_state[reg].type;
|
|
|
|
set_var_mtrr(reg, basek, sizek, type, address_bits);
|
|
}
|
|
}
|
|
|
|
static unsigned long to_size_factor(unsigned long sizek, char *factorp)
|
|
{
|
|
char factor;
|
|
unsigned long base = sizek;
|
|
|
|
if (base & ((1<<10) - 1)) {
|
|
/* not MB alignment */
|
|
factor = 'K';
|
|
} else if (base & ((1<<20) - 1)){
|
|
factor = 'M';
|
|
base >>= 10;
|
|
} else {
|
|
factor = 'G';
|
|
base >>= 20;
|
|
}
|
|
|
|
*factorp = factor;
|
|
|
|
return base;
|
|
}
|
|
|
|
static unsigned int __init
|
|
range_to_mtrr(unsigned int reg, unsigned long range_startk,
|
|
unsigned long range_sizek, unsigned char type)
|
|
{
|
|
if (!range_sizek || (reg >= num_var_ranges))
|
|
return reg;
|
|
|
|
while (range_sizek) {
|
|
unsigned long max_align, align;
|
|
unsigned long sizek;
|
|
|
|
/* Compute the maximum size I can make a range */
|
|
if (range_startk)
|
|
max_align = ffs(range_startk) - 1;
|
|
else
|
|
max_align = 32;
|
|
align = fls(range_sizek) - 1;
|
|
if (align > max_align)
|
|
align = max_align;
|
|
|
|
sizek = 1 << align;
|
|
if (debug_print) {
|
|
char start_factor = 'K', size_factor = 'K';
|
|
unsigned long start_base, size_base;
|
|
|
|
start_base = to_size_factor(range_startk, &start_factor),
|
|
size_base = to_size_factor(sizek, &size_factor),
|
|
|
|
printk(KERN_DEBUG "Setting variable MTRR %d, "
|
|
"base: %ld%cB, range: %ld%cB, type %s\n",
|
|
reg, start_base, start_factor,
|
|
size_base, size_factor,
|
|
(type == MTRR_TYPE_UNCACHABLE)?"UC":
|
|
((type == MTRR_TYPE_WRBACK)?"WB":"Other")
|
|
);
|
|
}
|
|
save_var_mtrr(reg++, range_startk, sizek, type);
|
|
range_startk += sizek;
|
|
range_sizek -= sizek;
|
|
if (reg >= num_var_ranges)
|
|
break;
|
|
}
|
|
return reg;
|
|
}
|
|
|
|
static unsigned __init
|
|
range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek,
|
|
unsigned long sizek)
|
|
{
|
|
unsigned long hole_basek, hole_sizek;
|
|
unsigned long second_basek, second_sizek;
|
|
unsigned long range0_basek, range0_sizek;
|
|
unsigned long range_basek, range_sizek;
|
|
unsigned long chunk_sizek;
|
|
unsigned long gran_sizek;
|
|
|
|
hole_basek = 0;
|
|
hole_sizek = 0;
|
|
second_basek = 0;
|
|
second_sizek = 0;
|
|
chunk_sizek = state->chunk_sizek;
|
|
gran_sizek = state->gran_sizek;
|
|
|
|
/* align with gran size, prevent small block used up MTRRs */
|
|
range_basek = ALIGN(state->range_startk, gran_sizek);
|
|
if ((range_basek > basek) && basek)
|
|
return second_sizek;
|
|
state->range_sizek -= (range_basek - state->range_startk);
|
|
range_sizek = ALIGN(state->range_sizek, gran_sizek);
|
|
|
|
while (range_sizek > state->range_sizek) {
|
|
range_sizek -= gran_sizek;
|
|
if (!range_sizek)
|
|
return 0;
|
|
}
|
|
state->range_sizek = range_sizek;
|
|
|
|
/* try to append some small hole */
|
|
range0_basek = state->range_startk;
|
|
range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
|
|
|
|
/* no increase */
|
|
if (range0_sizek == state->range_sizek) {
|
|
if (debug_print)
|
|
printk(KERN_DEBUG "rangeX: %016lx - %016lx\n",
|
|
range0_basek<<10,
|
|
(range0_basek + state->range_sizek)<<10);
|
|
state->reg = range_to_mtrr(state->reg, range0_basek,
|
|
state->range_sizek, MTRR_TYPE_WRBACK);
|
|
return 0;
|
|
}
|
|
|
|
/* only cut back, when it is not the last */
|
|
if (sizek) {
|
|
while (range0_basek + range0_sizek > (basek + sizek)) {
|
|
if (range0_sizek >= chunk_sizek)
|
|
range0_sizek -= chunk_sizek;
|
|
else
|
|
range0_sizek = 0;
|
|
|
|
if (!range0_sizek)
|
|
break;
|
|
}
|
|
}
|
|
|
|
second_try:
|
|
range_basek = range0_basek + range0_sizek;
|
|
|
|
/* one hole in the middle */
|
|
if (range_basek > basek && range_basek <= (basek + sizek))
|
|
second_sizek = range_basek - basek;
|
|
|
|
if (range0_sizek > state->range_sizek) {
|
|
|
|
/* one hole in middle or at end */
|
|
hole_sizek = range0_sizek - state->range_sizek - second_sizek;
|
|
|
|
/* hole size should be less than half of range0 size */
|
|
if (hole_sizek >= (range0_sizek >> 1) &&
|
|
range0_sizek >= chunk_sizek) {
|
|
range0_sizek -= chunk_sizek;
|
|
second_sizek = 0;
|
|
hole_sizek = 0;
|
|
|
|
goto second_try;
|
|
}
|
|
}
|
|
|
|
if (range0_sizek) {
|
|
if (debug_print)
|
|
printk(KERN_DEBUG "range0: %016lx - %016lx\n",
|
|
range0_basek<<10,
|
|
(range0_basek + range0_sizek)<<10);
|
|
state->reg = range_to_mtrr(state->reg, range0_basek,
|
|
range0_sizek, MTRR_TYPE_WRBACK);
|
|
}
|
|
|
|
if (range0_sizek < state->range_sizek) {
|
|
/* need to handle left over */
|
|
range_sizek = state->range_sizek - range0_sizek;
|
|
|
|
if (debug_print)
|
|
printk(KERN_DEBUG "range: %016lx - %016lx\n",
|
|
range_basek<<10,
|
|
(range_basek + range_sizek)<<10);
|
|
state->reg = range_to_mtrr(state->reg, range_basek,
|
|
range_sizek, MTRR_TYPE_WRBACK);
|
|
}
|
|
|
|
if (hole_sizek) {
|
|
hole_basek = range_basek - hole_sizek - second_sizek;
|
|
if (debug_print)
|
|
printk(KERN_DEBUG "hole: %016lx - %016lx\n",
|
|
hole_basek<<10,
|
|
(hole_basek + hole_sizek)<<10);
|
|
state->reg = range_to_mtrr(state->reg, hole_basek,
|
|
hole_sizek, MTRR_TYPE_UNCACHABLE);
|
|
}
|
|
|
|
return second_sizek;
|
|
}
|
|
|
|
static void __init
|
|
set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
|
|
unsigned long size_pfn)
|
|
{
|
|
unsigned long basek, sizek;
|
|
unsigned long second_sizek = 0;
|
|
|
|
if (state->reg >= num_var_ranges)
|
|
return;
|
|
|
|
basek = base_pfn << (PAGE_SHIFT - 10);
|
|
sizek = size_pfn << (PAGE_SHIFT - 10);
|
|
|
|
/* See if I can merge with the last range */
|
|
if ((basek <= 1024) ||
|
|
(state->range_startk + state->range_sizek == basek)) {
|
|
unsigned long endk = basek + sizek;
|
|
state->range_sizek = endk - state->range_startk;
|
|
return;
|
|
}
|
|
/* Write the range mtrrs */
|
|
if (state->range_sizek != 0)
|
|
second_sizek = range_to_mtrr_with_hole(state, basek, sizek);
|
|
|
|
/* Allocate an msr */
|
|
state->range_startk = basek + second_sizek;
|
|
state->range_sizek = sizek - second_sizek;
|
|
}
|
|
|
|
/* mininum size of mtrr block that can take hole */
|
|
static u64 mtrr_chunk_size __initdata = (256ULL<<20);
|
|
|
|
static int __init parse_mtrr_chunk_size_opt(char *p)
|
|
{
|
|
if (!p)
|
|
return -EINVAL;
|
|
mtrr_chunk_size = memparse(p, &p);
|
|
return 0;
|
|
}
|
|
early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);
|
|
|
|
/* granity of mtrr of block */
|
|
static u64 mtrr_gran_size __initdata;
|
|
|
|
static int __init parse_mtrr_gran_size_opt(char *p)
|
|
{
|
|
if (!p)
|
|
return -EINVAL;
|
|
mtrr_gran_size = memparse(p, &p);
|
|
return 0;
|
|
}
|
|
early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);
|
|
|
|
static int nr_mtrr_spare_reg __initdata =
|
|
CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT;
|
|
|
|
static int __init parse_mtrr_spare_reg(char *arg)
|
|
{
|
|
if (arg)
|
|
nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0);
|
|
return 0;
|
|
}
|
|
|
|
early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg);
|
|
|
|
static int __init
|
|
x86_setup_var_mtrrs(struct res_range *range, int nr_range,
|
|
u64 chunk_size, u64 gran_size)
|
|
{
|
|
struct var_mtrr_state var_state;
|
|
int i;
|
|
int num_reg;
|
|
|
|
var_state.range_startk = 0;
|
|
var_state.range_sizek = 0;
|
|
var_state.reg = 0;
|
|
var_state.chunk_sizek = chunk_size >> 10;
|
|
var_state.gran_sizek = gran_size >> 10;
|
|
|
|
memset(range_state, 0, sizeof(range_state));
|
|
|
|
/* Write the range etc */
|
|
for (i = 0; i < nr_range; i++)
|
|
set_var_mtrr_range(&var_state, range[i].start,
|
|
range[i].end - range[i].start + 1);
|
|
|
|
/* Write the last range */
|
|
if (var_state.range_sizek != 0)
|
|
range_to_mtrr_with_hole(&var_state, 0, 0);
|
|
|
|
num_reg = var_state.reg;
|
|
/* Clear out the extra MTRR's */
|
|
while (var_state.reg < num_var_ranges) {
|
|
save_var_mtrr(var_state.reg, 0, 0, 0);
|
|
var_state.reg++;
|
|
}
|
|
|
|
return num_reg;
|
|
}
|
|
|
|
struct mtrr_cleanup_result {
|
|
unsigned long gran_sizek;
|
|
unsigned long chunk_sizek;
|
|
unsigned long lose_cover_sizek;
|
|
unsigned int num_reg;
|
|
int bad;
|
|
};
|
|
|
|
/*
|
|
* gran_size: 64K, 128K, 256K, 512K, 1M, 2M, ..., 2G
|
|
* chunk size: gran_size, ..., 2G
|
|
* so we need (1+16)*8
|
|
*/
|
|
#define NUM_RESULT 136
|
|
#define PSHIFT (PAGE_SHIFT - 10)
|
|
|
|
static struct mtrr_cleanup_result __initdata result[NUM_RESULT];
|
|
static struct res_range __initdata range_new[RANGE_NUM];
|
|
static unsigned long __initdata min_loss_pfn[RANGE_NUM];
|
|
|
|
static int __init mtrr_cleanup(unsigned address_bits)
|
|
{
|
|
unsigned long extra_remove_base, extra_remove_size;
|
|
unsigned long base, size, def, dummy;
|
|
mtrr_type type;
|
|
int nr_range, nr_range_new;
|
|
u64 chunk_size, gran_size;
|
|
unsigned long range_sums, range_sums_new;
|
|
int index_good;
|
|
int num_reg_good;
|
|
int i;
|
|
|
|
/* extra one for all 0 */
|
|
int num[MTRR_NUM_TYPES + 1];
|
|
|
|
if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
|
|
return 0;
|
|
rdmsr(MTRRdefType_MSR, def, dummy);
|
|
def &= 0xff;
|
|
if (def != MTRR_TYPE_UNCACHABLE)
|
|
return 0;
|
|
|
|
/* get it and store it aside */
|
|
memset(range_state, 0, sizeof(range_state));
|
|
for (i = 0; i < num_var_ranges; i++) {
|
|
mtrr_if->get(i, &base, &size, &type);
|
|
range_state[i].base_pfn = base;
|
|
range_state[i].size_pfn = size;
|
|
range_state[i].type = type;
|
|
}
|
|
|
|
/* check entries number */
|
|
memset(num, 0, sizeof(num));
|
|
for (i = 0; i < num_var_ranges; i++) {
|
|
type = range_state[i].type;
|
|
size = range_state[i].size_pfn;
|
|
if (type >= MTRR_NUM_TYPES)
|
|
continue;
|
|
if (!size)
|
|
type = MTRR_NUM_TYPES;
|
|
if (type == MTRR_TYPE_WRPROT)
|
|
type = MTRR_TYPE_UNCACHABLE;
|
|
num[type]++;
|
|
}
|
|
|
|
/* check if we got UC entries */
|
|
if (!num[MTRR_TYPE_UNCACHABLE])
|
|
return 0;
|
|
|
|
/* check if we only had WB and UC */
|
|
if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
|
|
num_var_ranges - num[MTRR_NUM_TYPES])
|
|
return 0;
|
|
|
|
/* print original var MTRRs at first, for debugging: */
|
|
printk(KERN_DEBUG "original variable MTRRs\n");
|
|
for (i = 0; i < num_var_ranges; i++) {
|
|
char start_factor = 'K', size_factor = 'K';
|
|
unsigned long start_base, size_base;
|
|
|
|
size_base = range_state[i].size_pfn << (PAGE_SHIFT - 10);
|
|
if (!size_base)
|
|
continue;
|
|
|
|
size_base = to_size_factor(size_base, &size_factor),
|
|
start_base = range_state[i].base_pfn << (PAGE_SHIFT - 10);
|
|
start_base = to_size_factor(start_base, &start_factor),
|
|
type = range_state[i].type;
|
|
|
|
printk(KERN_DEBUG "reg %d, base: %ld%cB, range: %ld%cB, type %s\n",
|
|
i, start_base, start_factor,
|
|
size_base, size_factor,
|
|
(type == MTRR_TYPE_UNCACHABLE) ? "UC" :
|
|
((type == MTRR_TYPE_WRPROT) ? "WP" :
|
|
((type == MTRR_TYPE_WRBACK) ? "WB" : "Other"))
|
|
);
|
|
}
|
|
|
|
memset(range, 0, sizeof(range));
|
|
extra_remove_size = 0;
|
|
extra_remove_base = 1 << (32 - PAGE_SHIFT);
|
|
if (mtrr_tom2)
|
|
extra_remove_size =
|
|
(mtrr_tom2 >> PAGE_SHIFT) - extra_remove_base;
|
|
nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base,
|
|
extra_remove_size);
|
|
/*
|
|
* [0, 1M) should always be coverred by var mtrr with WB
|
|
* and fixed mtrrs should take effective before var mtrr for it
|
|
*/
|
|
nr_range = add_range_with_merge(range, nr_range, 0,
|
|
(1ULL<<(20 - PAGE_SHIFT)) - 1);
|
|
/* sort the ranges */
|
|
sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
|
|
|
|
range_sums = sum_ranges(range, nr_range);
|
|
printk(KERN_INFO "total RAM coverred: %ldM\n",
|
|
range_sums >> (20 - PAGE_SHIFT));
|
|
|
|
if (mtrr_chunk_size && mtrr_gran_size) {
|
|
int num_reg;
|
|
char gran_factor, chunk_factor, lose_factor;
|
|
unsigned long gran_base, chunk_base, lose_base;
|
|
|
|
debug_print++;
|
|
/* convert ranges to var ranges state */
|
|
num_reg = x86_setup_var_mtrrs(range, nr_range, mtrr_chunk_size,
|
|
mtrr_gran_size);
|
|
|
|
/* we got new setting in range_state, check it */
|
|
memset(range_new, 0, sizeof(range_new));
|
|
nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
|
|
extra_remove_base,
|
|
extra_remove_size);
|
|
range_sums_new = sum_ranges(range_new, nr_range_new);
|
|
|
|
i = 0;
|
|
result[i].chunk_sizek = mtrr_chunk_size >> 10;
|
|
result[i].gran_sizek = mtrr_gran_size >> 10;
|
|
result[i].num_reg = num_reg;
|
|
if (range_sums < range_sums_new) {
|
|
result[i].lose_cover_sizek =
|
|
(range_sums_new - range_sums) << PSHIFT;
|
|
result[i].bad = 1;
|
|
} else
|
|
result[i].lose_cover_sizek =
|
|
(range_sums - range_sums_new) << PSHIFT;
|
|
|
|
gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
|
|
chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
|
|
lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
|
|
printk(KERN_INFO "%sgran_size: %ld%c \tchunk_size: %ld%c \t",
|
|
result[i].bad?"*BAD*":" ",
|
|
gran_base, gran_factor, chunk_base, chunk_factor);
|
|
printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ld%c\n",
|
|
result[i].num_reg, result[i].bad?"-":"",
|
|
lose_base, lose_factor);
|
|
if (!result[i].bad) {
|
|
set_var_mtrr_all(address_bits);
|
|
return 1;
|
|
}
|
|
printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, "
|
|
"will find optimal one\n");
|
|
debug_print--;
|
|
memset(result, 0, sizeof(result[0]));
|
|
}
|
|
|
|
i = 0;
|
|
memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn));
|
|
memset(result, 0, sizeof(result));
|
|
for (gran_size = (1ULL<<16); gran_size < (1ULL<<32); gran_size <<= 1) {
|
|
char gran_factor;
|
|
unsigned long gran_base;
|
|
|
|
if (debug_print)
|
|
gran_base = to_size_factor(gran_size >> 10, &gran_factor);
|
|
|
|
for (chunk_size = gran_size; chunk_size < (1ULL<<32);
|
|
chunk_size <<= 1) {
|
|
int num_reg;
|
|
|
|
if (debug_print) {
|
|
char chunk_factor;
|
|
unsigned long chunk_base;
|
|
|
|
chunk_base = to_size_factor(chunk_size>>10, &chunk_factor),
|
|
printk(KERN_INFO "\n");
|
|
printk(KERN_INFO "gran_size: %ld%c chunk_size: %ld%c \n",
|
|
gran_base, gran_factor, chunk_base, chunk_factor);
|
|
}
|
|
if (i >= NUM_RESULT)
|
|
continue;
|
|
|
|
/* convert ranges to var ranges state */
|
|
num_reg = x86_setup_var_mtrrs(range, nr_range,
|
|
chunk_size, gran_size);
|
|
|
|
/* we got new setting in range_state, check it */
|
|
memset(range_new, 0, sizeof(range_new));
|
|
nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
|
|
extra_remove_base, extra_remove_size);
|
|
range_sums_new = sum_ranges(range_new, nr_range_new);
|
|
|
|
result[i].chunk_sizek = chunk_size >> 10;
|
|
result[i].gran_sizek = gran_size >> 10;
|
|
result[i].num_reg = num_reg;
|
|
if (range_sums < range_sums_new) {
|
|
result[i].lose_cover_sizek =
|
|
(range_sums_new - range_sums) << PSHIFT;
|
|
result[i].bad = 1;
|
|
} else
|
|
result[i].lose_cover_sizek =
|
|
(range_sums - range_sums_new) << PSHIFT;
|
|
|
|
/* double check it */
|
|
if (!result[i].bad && !result[i].lose_cover_sizek) {
|
|
if (nr_range_new != nr_range ||
|
|
memcmp(range, range_new, sizeof(range)))
|
|
result[i].bad = 1;
|
|
}
|
|
|
|
if (!result[i].bad && (range_sums - range_sums_new <
|
|
min_loss_pfn[num_reg])) {
|
|
min_loss_pfn[num_reg] =
|
|
range_sums - range_sums_new;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* print out all */
|
|
for (i = 0; i < NUM_RESULT; i++) {
|
|
char gran_factor, chunk_factor, lose_factor;
|
|
unsigned long gran_base, chunk_base, lose_base;
|
|
|
|
gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
|
|
chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
|
|
lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
|
|
printk(KERN_INFO "%sgran_size: %ld%c \tchunk_size: %ld%c \t",
|
|
result[i].bad?"*BAD*":" ",
|
|
gran_base, gran_factor, chunk_base, chunk_factor);
|
|
printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ld%c\n",
|
|
result[i].num_reg, result[i].bad?"-":"",
|
|
lose_base, lose_factor);
|
|
}
|
|
|
|
/* try to find the optimal index */
|
|
if (nr_mtrr_spare_reg >= num_var_ranges)
|
|
nr_mtrr_spare_reg = num_var_ranges - 1;
|
|
num_reg_good = -1;
|
|
for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) {
|
|
if (!min_loss_pfn[i])
|
|
num_reg_good = i;
|
|
}
|
|
|
|
index_good = -1;
|
|
if (num_reg_good != -1) {
|
|
for (i = 0; i < NUM_RESULT; i++) {
|
|
if (!result[i].bad &&
|
|
result[i].num_reg == num_reg_good &&
|
|
!result[i].lose_cover_sizek) {
|
|
index_good = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (index_good != -1) {
|
|
char gran_factor, chunk_factor, lose_factor;
|
|
unsigned long gran_base, chunk_base, lose_base;
|
|
|
|
printk(KERN_INFO "Found optimal setting for mtrr clean up\n");
|
|
i = index_good;
|
|
gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
|
|
chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
|
|
lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
|
|
printk(KERN_INFO "gran_size: %ld%c \tchunk_size: %ld%c \t",
|
|
gran_base, gran_factor, chunk_base, chunk_factor);
|
|
printk(KERN_CONT "num_reg: %d \tlose RAM: %ld%c\n",
|
|
result[i].num_reg, lose_base, lose_factor);
|
|
/* convert ranges to var ranges state */
|
|
chunk_size = result[i].chunk_sizek;
|
|
chunk_size <<= 10;
|
|
gran_size = result[i].gran_sizek;
|
|
gran_size <<= 10;
|
|
debug_print++;
|
|
x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
|
|
debug_print--;
|
|
set_var_mtrr_all(address_bits);
|
|
return 1;
|
|
}
|
|
|
|
printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n");
|
|
printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n");
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static int __init mtrr_cleanup(unsigned address_bits)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int __initdata changed_by_mtrr_cleanup;
|
|
|
|
static int disable_mtrr_trim;
|
|
|
|
static int __init disable_mtrr_trim_setup(char *str)
|
|
{
|
|
disable_mtrr_trim = 1;
|
|
return 0;
|
|
}
|
|
early_param("disable_mtrr_trim", disable_mtrr_trim_setup);
|
|
|
|
/*
|
|
* Newer AMD K8s and later CPUs have a special magic MSR way to force WB
|
|
* for memory >4GB. Check for that here.
|
|
* Note this won't check if the MTRRs < 4GB where the magic bit doesn't
|
|
* apply to are wrong, but so far we don't know of any such case in the wild.
|
|
*/
|
|
#define Tom2Enabled (1U << 21)
|
|
#define Tom2ForceMemTypeWB (1U << 22)
|
|
|
|
int __init amd_special_default_mtrr(void)
|
|
{
|
|
u32 l, h;
|
|
|
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
|
|
return 0;
|
|
if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
|
|
return 0;
|
|
/* In case some hypervisor doesn't pass SYSCFG through */
|
|
if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
|
|
return 0;
|
|
/*
|
|
* Memory between 4GB and top of mem is forced WB by this magic bit.
|
|
* Reserved before K8RevF, but should be zero there.
|
|
*/
|
|
if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
|
|
(Tom2Enabled | Tom2ForceMemTypeWB))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static u64 __init real_trim_memory(unsigned long start_pfn,
|
|
unsigned long limit_pfn)
|
|
{
|
|
u64 trim_start, trim_size;
|
|
trim_start = start_pfn;
|
|
trim_start <<= PAGE_SHIFT;
|
|
trim_size = limit_pfn;
|
|
trim_size <<= PAGE_SHIFT;
|
|
trim_size -= trim_start;
|
|
|
|
return e820_update_range(trim_start, trim_size, E820_RAM,
|
|
E820_RESERVED);
|
|
}
|
|
/**
|
|
* mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
|
|
* @end_pfn: ending page frame number
|
|
*
|
|
* Some buggy BIOSes don't setup the MTRRs properly for systems with certain
|
|
* memory configurations. This routine checks that the highest MTRR matches
|
|
* the end of memory, to make sure the MTRRs having a write back type cover
|
|
* all of the memory the kernel is intending to use. If not, it'll trim any
|
|
* memory off the end by adjusting end_pfn, removing it from the kernel's
|
|
* allocation pools, warning the user with an obnoxious message.
|
|
*/
|
|
int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
|
|
{
|
|
unsigned long i, base, size, highest_pfn = 0, def, dummy;
|
|
mtrr_type type;
|
|
int nr_range;
|
|
u64 total_trim_size;
|
|
|
|
/* extra one for all 0 */
|
|
int num[MTRR_NUM_TYPES + 1];
|
|
/*
|
|
* Make sure we only trim uncachable memory on machines that
|
|
* support the Intel MTRR architecture:
|
|
*/
|
|
if (!is_cpu(INTEL) || disable_mtrr_trim)
|
|
return 0;
|
|
rdmsr(MTRRdefType_MSR, def, dummy);
|
|
def &= 0xff;
|
|
if (def != MTRR_TYPE_UNCACHABLE)
|
|
return 0;
|
|
|
|
/* get it and store it aside */
|
|
memset(range_state, 0, sizeof(range_state));
|
|
for (i = 0; i < num_var_ranges; i++) {
|
|
mtrr_if->get(i, &base, &size, &type);
|
|
range_state[i].base_pfn = base;
|
|
range_state[i].size_pfn = size;
|
|
range_state[i].type = type;
|
|
}
|
|
|
|
/* Find highest cached pfn */
|
|
for (i = 0; i < num_var_ranges; i++) {
|
|
type = range_state[i].type;
|
|
if (type != MTRR_TYPE_WRBACK)
|
|
continue;
|
|
base = range_state[i].base_pfn;
|
|
size = range_state[i].size_pfn;
|
|
if (highest_pfn < base + size)
|
|
highest_pfn = base + size;
|
|
}
|
|
|
|
/* kvm/qemu doesn't have mtrr set right, don't trim them all */
|
|
if (!highest_pfn) {
|
|
WARN(!kvm_para_available(), KERN_WARNING
|
|
"WARNING: strange, CPU MTRRs all blank?\n");
|
|
return 0;
|
|
}
|
|
|
|
/* check entries number */
|
|
memset(num, 0, sizeof(num));
|
|
for (i = 0; i < num_var_ranges; i++) {
|
|
type = range_state[i].type;
|
|
if (type >= MTRR_NUM_TYPES)
|
|
continue;
|
|
size = range_state[i].size_pfn;
|
|
if (!size)
|
|
type = MTRR_NUM_TYPES;
|
|
num[type]++;
|
|
}
|
|
|
|
/* no entry for WB? */
|
|
if (!num[MTRR_TYPE_WRBACK])
|
|
return 0;
|
|
|
|
/* check if we only had WB and UC */
|
|
if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
|
|
num_var_ranges - num[MTRR_NUM_TYPES])
|
|
return 0;
|
|
|
|
memset(range, 0, sizeof(range));
|
|
nr_range = 0;
|
|
if (mtrr_tom2) {
|
|
range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
|
|
range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1;
|
|
if (highest_pfn < range[nr_range].end + 1)
|
|
highest_pfn = range[nr_range].end + 1;
|
|
nr_range++;
|
|
}
|
|
nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);
|
|
|
|
total_trim_size = 0;
|
|
/* check the head */
|
|
if (range[0].start)
|
|
total_trim_size += real_trim_memory(0, range[0].start);
|
|
/* check the holes */
|
|
for (i = 0; i < nr_range - 1; i++) {
|
|
if (range[i].end + 1 < range[i+1].start)
|
|
total_trim_size += real_trim_memory(range[i].end + 1,
|
|
range[i+1].start);
|
|
}
|
|
/* check the top */
|
|
i = nr_range - 1;
|
|
if (range[i].end + 1 < end_pfn)
|
|
total_trim_size += real_trim_memory(range[i].end + 1,
|
|
end_pfn);
|
|
|
|
if (total_trim_size) {
|
|
printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
|
|
" all of memory, losing %lluMB of RAM.\n",
|
|
total_trim_size >> 20);
|
|
|
|
if (!changed_by_mtrr_cleanup)
|
|
WARN_ON(1);
|
|
|
|
printk(KERN_INFO "update e820 for mtrr\n");
|
|
update_e820();
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mtrr_bp_init - initialize mtrrs on the boot CPU
|
|
*
|
|
* This needs to be called early; before any of the other CPUs are
|
|
* initialized (i.e. before smp_init()).
|
|
*
|
|
*/
|
|
void __init mtrr_bp_init(void)
|
|
{
|
|
u32 phys_addr;
|
|
init_ifs();
|
|
|
|
phys_addr = 32;
|
|
|
|
if (cpu_has_mtrr) {
|
|
mtrr_if = &generic_mtrr_ops;
|
|
size_or_mask = 0xff000000; /* 36 bits */
|
|
size_and_mask = 0x00f00000;
|
|
phys_addr = 36;
|
|
|
|
/* This is an AMD specific MSR, but we assume(hope?) that
|
|
Intel will implement it to when they extend the address
|
|
bus of the Xeon. */
|
|
if (cpuid_eax(0x80000000) >= 0x80000008) {
|
|
phys_addr = cpuid_eax(0x80000008) & 0xff;
|
|
/* CPUID workaround for Intel 0F33/0F34 CPU */
|
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
|
|
boot_cpu_data.x86 == 0xF &&
|
|
boot_cpu_data.x86_model == 0x3 &&
|
|
(boot_cpu_data.x86_mask == 0x3 ||
|
|
boot_cpu_data.x86_mask == 0x4))
|
|
phys_addr = 36;
|
|
|
|
size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
|
|
size_and_mask = ~size_or_mask & 0xfffff00000ULL;
|
|
} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
|
|
boot_cpu_data.x86 == 6) {
|
|
/* VIA C* family have Intel style MTRRs, but
|
|
don't support PAE */
|
|
size_or_mask = 0xfff00000; /* 32 bits */
|
|
size_and_mask = 0;
|
|
phys_addr = 32;
|
|
}
|
|
} else {
|
|
switch (boot_cpu_data.x86_vendor) {
|
|
case X86_VENDOR_AMD:
|
|
if (cpu_has_k6_mtrr) {
|
|
/* Pre-Athlon (K6) AMD CPU MTRRs */
|
|
mtrr_if = mtrr_ops[X86_VENDOR_AMD];
|
|
size_or_mask = 0xfff00000; /* 32 bits */
|
|
size_and_mask = 0;
|
|
}
|
|
break;
|
|
case X86_VENDOR_CENTAUR:
|
|
if (cpu_has_centaur_mcr) {
|
|
mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
|
|
size_or_mask = 0xfff00000; /* 32 bits */
|
|
size_and_mask = 0;
|
|
}
|
|
break;
|
|
case X86_VENDOR_CYRIX:
|
|
if (cpu_has_cyrix_arr) {
|
|
mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
|
|
size_or_mask = 0xfff00000; /* 32 bits */
|
|
size_and_mask = 0;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (mtrr_if) {
|
|
set_num_var_ranges();
|
|
init_table();
|
|
if (use_intel()) {
|
|
get_mtrr_state();
|
|
|
|
if (mtrr_cleanup(phys_addr)) {
|
|
changed_by_mtrr_cleanup = 1;
|
|
mtrr_if->set_all();
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
void mtrr_ap_init(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!mtrr_if || !use_intel())
|
|
return;
|
|
/*
|
|
* Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
|
|
* but this routine will be called in cpu boot time, holding the lock
|
|
* breaks it. This routine is called in two cases: 1.very earily time
|
|
* of software resume, when there absolutely isn't mtrr entry changes;
|
|
* 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
|
|
* prevent mtrr entry changes
|
|
*/
|
|
local_irq_save(flags);
|
|
|
|
mtrr_if->set_all();
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* Save current fixed-range MTRR state of the BSP
|
|
*/
|
|
void mtrr_save_state(void)
|
|
{
|
|
smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
|
|
}
|
|
|
|
static int __init mtrr_init_finialize(void)
|
|
{
|
|
if (!mtrr_if)
|
|
return 0;
|
|
if (use_intel()) {
|
|
if (!changed_by_mtrr_cleanup)
|
|
mtrr_state_warn();
|
|
} else {
|
|
/* The CPUs haven't MTRR and seem to not support SMP. They have
|
|
* specific drivers, we use a tricky method to support
|
|
* suspend/resume for them.
|
|
* TBD: is there any system with such CPU which supports
|
|
* suspend/resume? if no, we should remove the code.
|
|
*/
|
|
sysdev_driver_register(&cpu_sysdev_class,
|
|
&mtrr_sysdev_driver);
|
|
}
|
|
return 0;
|
|
}
|
|
subsys_initcall(mtrr_init_finialize);
|