2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 03:33:58 +08:00
linux-next/drivers/nvme/target/rdma.c
Sagi Grimberg 8407879c4e nvmet-rdma: fix possible bogus dereference under heavy load
Currently we always repost the recv buffer before we send a response
capsule back to the host. Since ordering is not guaranteed for send
and recv completions, it is posible that we will receive a new request
from the host before we got a send completion for the response capsule.

Today, we pre-allocate 2x rsps the length of the queue, but in reality,
under heavy load there is nothing that is really preventing the gap to
expand until we exhaust all our rsps.

To fix this, if we don't have any pre-allocated rsps left, we dynamically
allocate a rsp and make sure to free it when we are done. If under memory
pressure we fail to allocate a rsp, we silently drop the command and
wait for the host to retry.

Reported-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
[hch: dropped a superflous assignment]
Signed-off-by: Christoph Hellwig <hch@lst.de>
2018-09-05 12:18:01 -07:00

1672 lines
40 KiB
C

/*
* NVMe over Fabrics RDMA target.
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/atomic.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/nvme.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/wait.h>
#include <linux/inet.h>
#include <asm/unaligned.h>
#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <rdma/rw.h>
#include <linux/nvme-rdma.h>
#include "nvmet.h"
/*
* We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
*/
#define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
#define NVMET_RDMA_MAX_INLINE_SGE 4
#define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
struct nvmet_rdma_cmd {
struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
struct ib_cqe cqe;
struct ib_recv_wr wr;
struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
struct nvme_command *nvme_cmd;
struct nvmet_rdma_queue *queue;
};
enum {
NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1),
};
struct nvmet_rdma_rsp {
struct ib_sge send_sge;
struct ib_cqe send_cqe;
struct ib_send_wr send_wr;
struct nvmet_rdma_cmd *cmd;
struct nvmet_rdma_queue *queue;
struct ib_cqe read_cqe;
struct rdma_rw_ctx rw;
struct nvmet_req req;
bool allocated;
u8 n_rdma;
u32 flags;
u32 invalidate_rkey;
struct list_head wait_list;
struct list_head free_list;
};
enum nvmet_rdma_queue_state {
NVMET_RDMA_Q_CONNECTING,
NVMET_RDMA_Q_LIVE,
NVMET_RDMA_Q_DISCONNECTING,
};
struct nvmet_rdma_queue {
struct rdma_cm_id *cm_id;
struct nvmet_port *port;
struct ib_cq *cq;
atomic_t sq_wr_avail;
struct nvmet_rdma_device *dev;
spinlock_t state_lock;
enum nvmet_rdma_queue_state state;
struct nvmet_cq nvme_cq;
struct nvmet_sq nvme_sq;
struct nvmet_rdma_rsp *rsps;
struct list_head free_rsps;
spinlock_t rsps_lock;
struct nvmet_rdma_cmd *cmds;
struct work_struct release_work;
struct list_head rsp_wait_list;
struct list_head rsp_wr_wait_list;
spinlock_t rsp_wr_wait_lock;
int idx;
int host_qid;
int recv_queue_size;
int send_queue_size;
struct list_head queue_list;
};
struct nvmet_rdma_device {
struct ib_device *device;
struct ib_pd *pd;
struct ib_srq *srq;
struct nvmet_rdma_cmd *srq_cmds;
size_t srq_size;
struct kref ref;
struct list_head entry;
int inline_data_size;
int inline_page_count;
};
static bool nvmet_rdma_use_srq;
module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
static DEFINE_IDA(nvmet_rdma_queue_ida);
static LIST_HEAD(nvmet_rdma_queue_list);
static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);
static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
static const struct nvmet_fabrics_ops nvmet_rdma_ops;
static int num_pages(int len)
{
return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
}
/* XXX: really should move to a generic header sooner or later.. */
static inline u32 get_unaligned_le24(const u8 *p)
{
return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
}
static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
{
return nvme_is_write(rsp->req.cmd) &&
rsp->req.transfer_len &&
!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
}
static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
{
return !nvme_is_write(rsp->req.cmd) &&
rsp->req.transfer_len &&
!rsp->req.rsp->status &&
!(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
}
static inline struct nvmet_rdma_rsp *
nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
{
struct nvmet_rdma_rsp *rsp;
unsigned long flags;
spin_lock_irqsave(&queue->rsps_lock, flags);
rsp = list_first_entry_or_null(&queue->free_rsps,
struct nvmet_rdma_rsp, free_list);
if (likely(rsp))
list_del(&rsp->free_list);
spin_unlock_irqrestore(&queue->rsps_lock, flags);
if (unlikely(!rsp)) {
rsp = kmalloc(sizeof(*rsp), GFP_KERNEL);
if (unlikely(!rsp))
return NULL;
rsp->allocated = true;
}
return rsp;
}
static inline void
nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
{
unsigned long flags;
if (rsp->allocated) {
kfree(rsp);
return;
}
spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
}
static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
struct nvmet_rdma_cmd *c)
{
struct scatterlist *sg;
struct ib_sge *sge;
int i;
if (!ndev->inline_data_size)
return;
sg = c->inline_sg;
sge = &c->sge[1];
for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
if (sge->length)
ib_dma_unmap_page(ndev->device, sge->addr,
sge->length, DMA_FROM_DEVICE);
if (sg_page(sg))
__free_page(sg_page(sg));
}
}
static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
struct nvmet_rdma_cmd *c)
{
struct scatterlist *sg;
struct ib_sge *sge;
struct page *pg;
int len;
int i;
if (!ndev->inline_data_size)
return 0;
sg = c->inline_sg;
sg_init_table(sg, ndev->inline_page_count);
sge = &c->sge[1];
len = ndev->inline_data_size;
for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
pg = alloc_page(GFP_KERNEL);
if (!pg)
goto out_err;
sg_assign_page(sg, pg);
sge->addr = ib_dma_map_page(ndev->device,
pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
if (ib_dma_mapping_error(ndev->device, sge->addr))
goto out_err;
sge->length = min_t(int, len, PAGE_SIZE);
sge->lkey = ndev->pd->local_dma_lkey;
len -= sge->length;
}
return 0;
out_err:
for (; i >= 0; i--, sg--, sge--) {
if (sge->length)
ib_dma_unmap_page(ndev->device, sge->addr,
sge->length, DMA_FROM_DEVICE);
if (sg_page(sg))
__free_page(sg_page(sg));
}
return -ENOMEM;
}
static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
struct nvmet_rdma_cmd *c, bool admin)
{
/* NVMe command / RDMA RECV */
c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
if (!c->nvme_cmd)
goto out;
c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
goto out_free_cmd;
c->sge[0].length = sizeof(*c->nvme_cmd);
c->sge[0].lkey = ndev->pd->local_dma_lkey;
if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
goto out_unmap_cmd;
c->cqe.done = nvmet_rdma_recv_done;
c->wr.wr_cqe = &c->cqe;
c->wr.sg_list = c->sge;
c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
return 0;
out_unmap_cmd:
ib_dma_unmap_single(ndev->device, c->sge[0].addr,
sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
out_free_cmd:
kfree(c->nvme_cmd);
out:
return -ENOMEM;
}
static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
struct nvmet_rdma_cmd *c, bool admin)
{
if (!admin)
nvmet_rdma_free_inline_pages(ndev, c);
ib_dma_unmap_single(ndev->device, c->sge[0].addr,
sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
kfree(c->nvme_cmd);
}
static struct nvmet_rdma_cmd *
nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
int nr_cmds, bool admin)
{
struct nvmet_rdma_cmd *cmds;
int ret = -EINVAL, i;
cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
if (!cmds)
goto out;
for (i = 0; i < nr_cmds; i++) {
ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
if (ret)
goto out_free;
}
return cmds;
out_free:
while (--i >= 0)
nvmet_rdma_free_cmd(ndev, cmds + i, admin);
kfree(cmds);
out:
return ERR_PTR(ret);
}
static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
{
int i;
for (i = 0; i < nr_cmds; i++)
nvmet_rdma_free_cmd(ndev, cmds + i, admin);
kfree(cmds);
}
static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
struct nvmet_rdma_rsp *r)
{
/* NVMe CQE / RDMA SEND */
r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
if (!r->req.rsp)
goto out;
r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
sizeof(*r->req.rsp), DMA_TO_DEVICE);
if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
goto out_free_rsp;
r->send_sge.length = sizeof(*r->req.rsp);
r->send_sge.lkey = ndev->pd->local_dma_lkey;
r->send_cqe.done = nvmet_rdma_send_done;
r->send_wr.wr_cqe = &r->send_cqe;
r->send_wr.sg_list = &r->send_sge;
r->send_wr.num_sge = 1;
r->send_wr.send_flags = IB_SEND_SIGNALED;
/* Data In / RDMA READ */
r->read_cqe.done = nvmet_rdma_read_data_done;
return 0;
out_free_rsp:
kfree(r->req.rsp);
out:
return -ENOMEM;
}
static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
struct nvmet_rdma_rsp *r)
{
ib_dma_unmap_single(ndev->device, r->send_sge.addr,
sizeof(*r->req.rsp), DMA_TO_DEVICE);
kfree(r->req.rsp);
}
static int
nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
{
struct nvmet_rdma_device *ndev = queue->dev;
int nr_rsps = queue->recv_queue_size * 2;
int ret = -EINVAL, i;
queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
GFP_KERNEL);
if (!queue->rsps)
goto out;
for (i = 0; i < nr_rsps; i++) {
struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
ret = nvmet_rdma_alloc_rsp(ndev, rsp);
if (ret)
goto out_free;
list_add_tail(&rsp->free_list, &queue->free_rsps);
}
return 0;
out_free:
while (--i >= 0) {
struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
list_del(&rsp->free_list);
nvmet_rdma_free_rsp(ndev, rsp);
}
kfree(queue->rsps);
out:
return ret;
}
static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
{
struct nvmet_rdma_device *ndev = queue->dev;
int i, nr_rsps = queue->recv_queue_size * 2;
for (i = 0; i < nr_rsps; i++) {
struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
list_del(&rsp->free_list);
nvmet_rdma_free_rsp(ndev, rsp);
}
kfree(queue->rsps);
}
static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
struct nvmet_rdma_cmd *cmd)
{
int ret;
ib_dma_sync_single_for_device(ndev->device,
cmd->sge[0].addr, cmd->sge[0].length,
DMA_FROM_DEVICE);
if (ndev->srq)
ret = ib_post_srq_recv(ndev->srq, &cmd->wr, NULL);
else
ret = ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, NULL);
if (unlikely(ret))
pr_err("post_recv cmd failed\n");
return ret;
}
static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
{
spin_lock(&queue->rsp_wr_wait_lock);
while (!list_empty(&queue->rsp_wr_wait_list)) {
struct nvmet_rdma_rsp *rsp;
bool ret;
rsp = list_entry(queue->rsp_wr_wait_list.next,
struct nvmet_rdma_rsp, wait_list);
list_del(&rsp->wait_list);
spin_unlock(&queue->rsp_wr_wait_lock);
ret = nvmet_rdma_execute_command(rsp);
spin_lock(&queue->rsp_wr_wait_lock);
if (!ret) {
list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
break;
}
}
spin_unlock(&queue->rsp_wr_wait_lock);
}
static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
{
struct nvmet_rdma_queue *queue = rsp->queue;
atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
if (rsp->n_rdma) {
rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
queue->cm_id->port_num, rsp->req.sg,
rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
}
if (rsp->req.sg != rsp->cmd->inline_sg)
sgl_free(rsp->req.sg);
if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
nvmet_rdma_process_wr_wait_list(queue);
nvmet_rdma_put_rsp(rsp);
}
static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
{
if (queue->nvme_sq.ctrl) {
nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
} else {
/*
* we didn't setup the controller yet in case
* of admin connect error, just disconnect and
* cleanup the queue
*/
nvmet_rdma_queue_disconnect(queue);
}
}
static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct nvmet_rdma_rsp *rsp =
container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
nvmet_rdma_release_rsp(rsp);
if (unlikely(wc->status != IB_WC_SUCCESS &&
wc->status != IB_WC_WR_FLUSH_ERR)) {
pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
nvmet_rdma_error_comp(rsp->queue);
}
}
static void nvmet_rdma_queue_response(struct nvmet_req *req)
{
struct nvmet_rdma_rsp *rsp =
container_of(req, struct nvmet_rdma_rsp, req);
struct rdma_cm_id *cm_id = rsp->queue->cm_id;
struct ib_send_wr *first_wr;
if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
} else {
rsp->send_wr.opcode = IB_WR_SEND;
}
if (nvmet_rdma_need_data_out(rsp))
first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
cm_id->port_num, NULL, &rsp->send_wr);
else
first_wr = &rsp->send_wr;
nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
ib_dma_sync_single_for_device(rsp->queue->dev->device,
rsp->send_sge.addr, rsp->send_sge.length,
DMA_TO_DEVICE);
if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
pr_err("sending cmd response failed\n");
nvmet_rdma_release_rsp(rsp);
}
}
static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct nvmet_rdma_rsp *rsp =
container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
struct nvmet_rdma_queue *queue = cq->cq_context;
WARN_ON(rsp->n_rdma <= 0);
atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
queue->cm_id->port_num, rsp->req.sg,
rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
rsp->n_rdma = 0;
if (unlikely(wc->status != IB_WC_SUCCESS)) {
nvmet_req_uninit(&rsp->req);
nvmet_rdma_release_rsp(rsp);
if (wc->status != IB_WC_WR_FLUSH_ERR) {
pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
nvmet_rdma_error_comp(queue);
}
return;
}
nvmet_req_execute(&rsp->req);
}
static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
u64 off)
{
int sg_count = num_pages(len);
struct scatterlist *sg;
int i;
sg = rsp->cmd->inline_sg;
for (i = 0; i < sg_count; i++, sg++) {
if (i < sg_count - 1)
sg_unmark_end(sg);
else
sg_mark_end(sg);
sg->offset = off;
sg->length = min_t(int, len, PAGE_SIZE - off);
len -= sg->length;
if (!i)
off = 0;
}
rsp->req.sg = rsp->cmd->inline_sg;
rsp->req.sg_cnt = sg_count;
}
static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
{
struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
u64 off = le64_to_cpu(sgl->addr);
u32 len = le32_to_cpu(sgl->length);
if (!nvme_is_write(rsp->req.cmd))
return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
if (off + len > rsp->queue->dev->inline_data_size) {
pr_err("invalid inline data offset!\n");
return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
}
/* no data command? */
if (!len)
return 0;
nvmet_rdma_use_inline_sg(rsp, len, off);
rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
rsp->req.transfer_len += len;
return 0;
}
static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
struct nvme_keyed_sgl_desc *sgl, bool invalidate)
{
struct rdma_cm_id *cm_id = rsp->queue->cm_id;
u64 addr = le64_to_cpu(sgl->addr);
u32 len = get_unaligned_le24(sgl->length);
u32 key = get_unaligned_le32(sgl->key);
int ret;
/* no data command? */
if (!len)
return 0;
rsp->req.sg = sgl_alloc(len, GFP_KERNEL, &rsp->req.sg_cnt);
if (!rsp->req.sg)
return NVME_SC_INTERNAL;
ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
nvmet_data_dir(&rsp->req));
if (ret < 0)
return NVME_SC_INTERNAL;
rsp->req.transfer_len += len;
rsp->n_rdma += ret;
if (invalidate) {
rsp->invalidate_rkey = key;
rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
}
return 0;
}
static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
{
struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
switch (sgl->type >> 4) {
case NVME_SGL_FMT_DATA_DESC:
switch (sgl->type & 0xf) {
case NVME_SGL_FMT_OFFSET:
return nvmet_rdma_map_sgl_inline(rsp);
default:
pr_err("invalid SGL subtype: %#x\n", sgl->type);
return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
}
case NVME_KEY_SGL_FMT_DATA_DESC:
switch (sgl->type & 0xf) {
case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
case NVME_SGL_FMT_ADDRESS:
return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
default:
pr_err("invalid SGL subtype: %#x\n", sgl->type);
return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
}
default:
pr_err("invalid SGL type: %#x\n", sgl->type);
return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
}
}
static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
{
struct nvmet_rdma_queue *queue = rsp->queue;
if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
&queue->sq_wr_avail) < 0)) {
pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
1 + rsp->n_rdma, queue->idx,
queue->nvme_sq.ctrl->cntlid);
atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
return false;
}
if (nvmet_rdma_need_data_in(rsp)) {
if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
queue->cm_id->port_num, &rsp->read_cqe, NULL))
nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
} else {
nvmet_req_execute(&rsp->req);
}
return true;
}
static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
struct nvmet_rdma_rsp *cmd)
{
u16 status;
ib_dma_sync_single_for_cpu(queue->dev->device,
cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
DMA_FROM_DEVICE);
ib_dma_sync_single_for_cpu(queue->dev->device,
cmd->send_sge.addr, cmd->send_sge.length,
DMA_TO_DEVICE);
if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
&queue->nvme_sq, &nvmet_rdma_ops))
return;
status = nvmet_rdma_map_sgl(cmd);
if (status)
goto out_err;
if (unlikely(!nvmet_rdma_execute_command(cmd))) {
spin_lock(&queue->rsp_wr_wait_lock);
list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
spin_unlock(&queue->rsp_wr_wait_lock);
}
return;
out_err:
nvmet_req_complete(&cmd->req, status);
}
static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct nvmet_rdma_cmd *cmd =
container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
struct nvmet_rdma_queue *queue = cq->cq_context;
struct nvmet_rdma_rsp *rsp;
if (unlikely(wc->status != IB_WC_SUCCESS)) {
if (wc->status != IB_WC_WR_FLUSH_ERR) {
pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
wc->wr_cqe, ib_wc_status_msg(wc->status),
wc->status);
nvmet_rdma_error_comp(queue);
}
return;
}
if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
nvmet_rdma_error_comp(queue);
return;
}
cmd->queue = queue;
rsp = nvmet_rdma_get_rsp(queue);
if (unlikely(!rsp)) {
/*
* we get here only under memory pressure,
* silently drop and have the host retry
* as we can't even fail it.
*/
nvmet_rdma_post_recv(queue->dev, cmd);
return;
}
rsp->queue = queue;
rsp->cmd = cmd;
rsp->flags = 0;
rsp->req.cmd = cmd->nvme_cmd;
rsp->req.port = queue->port;
rsp->n_rdma = 0;
if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
unsigned long flags;
spin_lock_irqsave(&queue->state_lock, flags);
if (queue->state == NVMET_RDMA_Q_CONNECTING)
list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
else
nvmet_rdma_put_rsp(rsp);
spin_unlock_irqrestore(&queue->state_lock, flags);
return;
}
nvmet_rdma_handle_command(queue, rsp);
}
static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
{
if (!ndev->srq)
return;
nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
ib_destroy_srq(ndev->srq);
}
static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
{
struct ib_srq_init_attr srq_attr = { NULL, };
struct ib_srq *srq;
size_t srq_size;
int ret, i;
srq_size = 4095; /* XXX: tune */
srq_attr.attr.max_wr = srq_size;
srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
srq_attr.attr.srq_limit = 0;
srq_attr.srq_type = IB_SRQT_BASIC;
srq = ib_create_srq(ndev->pd, &srq_attr);
if (IS_ERR(srq)) {
/*
* If SRQs aren't supported we just go ahead and use normal
* non-shared receive queues.
*/
pr_info("SRQ requested but not supported.\n");
return 0;
}
ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
if (IS_ERR(ndev->srq_cmds)) {
ret = PTR_ERR(ndev->srq_cmds);
goto out_destroy_srq;
}
ndev->srq = srq;
ndev->srq_size = srq_size;
for (i = 0; i < srq_size; i++) {
ret = nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
if (ret)
goto out_free_cmds;
}
return 0;
out_free_cmds:
nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
out_destroy_srq:
ib_destroy_srq(srq);
return ret;
}
static void nvmet_rdma_free_dev(struct kref *ref)
{
struct nvmet_rdma_device *ndev =
container_of(ref, struct nvmet_rdma_device, ref);
mutex_lock(&device_list_mutex);
list_del(&ndev->entry);
mutex_unlock(&device_list_mutex);
nvmet_rdma_destroy_srq(ndev);
ib_dealloc_pd(ndev->pd);
kfree(ndev);
}
static struct nvmet_rdma_device *
nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
struct nvmet_port *port = cm_id->context;
struct nvmet_rdma_device *ndev;
int inline_page_count;
int inline_sge_count;
int ret;
mutex_lock(&device_list_mutex);
list_for_each_entry(ndev, &device_list, entry) {
if (ndev->device->node_guid == cm_id->device->node_guid &&
kref_get_unless_zero(&ndev->ref))
goto out_unlock;
}
ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
if (!ndev)
goto out_err;
inline_page_count = num_pages(port->inline_data_size);
inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
cm_id->device->attrs.max_recv_sge) - 1;
if (inline_page_count > inline_sge_count) {
pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
port->inline_data_size, cm_id->device->name,
inline_sge_count * PAGE_SIZE);
port->inline_data_size = inline_sge_count * PAGE_SIZE;
inline_page_count = inline_sge_count;
}
ndev->inline_data_size = port->inline_data_size;
ndev->inline_page_count = inline_page_count;
ndev->device = cm_id->device;
kref_init(&ndev->ref);
ndev->pd = ib_alloc_pd(ndev->device, 0);
if (IS_ERR(ndev->pd))
goto out_free_dev;
if (nvmet_rdma_use_srq) {
ret = nvmet_rdma_init_srq(ndev);
if (ret)
goto out_free_pd;
}
list_add(&ndev->entry, &device_list);
out_unlock:
mutex_unlock(&device_list_mutex);
pr_debug("added %s.\n", ndev->device->name);
return ndev;
out_free_pd:
ib_dealloc_pd(ndev->pd);
out_free_dev:
kfree(ndev);
out_err:
mutex_unlock(&device_list_mutex);
return NULL;
}
static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
{
struct ib_qp_init_attr qp_attr;
struct nvmet_rdma_device *ndev = queue->dev;
int comp_vector, nr_cqe, ret, i;
/*
* Spread the io queues across completion vectors,
* but still keep all admin queues on vector 0.
*/
comp_vector = !queue->host_qid ? 0 :
queue->idx % ndev->device->num_comp_vectors;
/*
* Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
*/
nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
queue->cq = ib_alloc_cq(ndev->device, queue,
nr_cqe + 1, comp_vector,
IB_POLL_WORKQUEUE);
if (IS_ERR(queue->cq)) {
ret = PTR_ERR(queue->cq);
pr_err("failed to create CQ cqe= %d ret= %d\n",
nr_cqe + 1, ret);
goto out;
}
memset(&qp_attr, 0, sizeof(qp_attr));
qp_attr.qp_context = queue;
qp_attr.event_handler = nvmet_rdma_qp_event;
qp_attr.send_cq = queue->cq;
qp_attr.recv_cq = queue->cq;
qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
qp_attr.qp_type = IB_QPT_RC;
/* +1 for drain */
qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
ndev->device->attrs.max_send_sge);
if (ndev->srq) {
qp_attr.srq = ndev->srq;
} else {
/* +1 for drain */
qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
}
ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
if (ret) {
pr_err("failed to create_qp ret= %d\n", ret);
goto err_destroy_cq;
}
atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
__func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
qp_attr.cap.max_send_wr, queue->cm_id);
if (!ndev->srq) {
for (i = 0; i < queue->recv_queue_size; i++) {
queue->cmds[i].queue = queue;
ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
if (ret)
goto err_destroy_qp;
}
}
out:
return ret;
err_destroy_qp:
rdma_destroy_qp(queue->cm_id);
err_destroy_cq:
ib_free_cq(queue->cq);
goto out;
}
static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
{
struct ib_qp *qp = queue->cm_id->qp;
ib_drain_qp(qp);
rdma_destroy_id(queue->cm_id);
ib_destroy_qp(qp);
ib_free_cq(queue->cq);
}
static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
{
pr_debug("freeing queue %d\n", queue->idx);
nvmet_sq_destroy(&queue->nvme_sq);
nvmet_rdma_destroy_queue_ib(queue);
if (!queue->dev->srq) {
nvmet_rdma_free_cmds(queue->dev, queue->cmds,
queue->recv_queue_size,
!queue->host_qid);
}
nvmet_rdma_free_rsps(queue);
ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
kfree(queue);
}
static void nvmet_rdma_release_queue_work(struct work_struct *w)
{
struct nvmet_rdma_queue *queue =
container_of(w, struct nvmet_rdma_queue, release_work);
struct nvmet_rdma_device *dev = queue->dev;
nvmet_rdma_free_queue(queue);
kref_put(&dev->ref, nvmet_rdma_free_dev);
}
static int
nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
struct nvmet_rdma_queue *queue)
{
struct nvme_rdma_cm_req *req;
req = (struct nvme_rdma_cm_req *)conn->private_data;
if (!req || conn->private_data_len == 0)
return NVME_RDMA_CM_INVALID_LEN;
if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
return NVME_RDMA_CM_INVALID_RECFMT;
queue->host_qid = le16_to_cpu(req->qid);
/*
* req->hsqsize corresponds to our recv queue size plus 1
* req->hrqsize corresponds to our send queue size
*/
queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
queue->send_queue_size = le16_to_cpu(req->hrqsize);
if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
return NVME_RDMA_CM_INVALID_HSQSIZE;
/* XXX: Should we enforce some kind of max for IO queues? */
return 0;
}
static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
enum nvme_rdma_cm_status status)
{
struct nvme_rdma_cm_rej rej;
pr_debug("rejecting connect request: status %d (%s)\n",
status, nvme_rdma_cm_msg(status));
rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
rej.sts = cpu_to_le16(status);
return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
}
static struct nvmet_rdma_queue *
nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
struct rdma_cm_id *cm_id,
struct rdma_cm_event *event)
{
struct nvmet_rdma_queue *queue;
int ret;
queue = kzalloc(sizeof(*queue), GFP_KERNEL);
if (!queue) {
ret = NVME_RDMA_CM_NO_RSC;
goto out_reject;
}
ret = nvmet_sq_init(&queue->nvme_sq);
if (ret) {
ret = NVME_RDMA_CM_NO_RSC;
goto out_free_queue;
}
ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
if (ret)
goto out_destroy_sq;
/*
* Schedules the actual release because calling rdma_destroy_id from
* inside a CM callback would trigger a deadlock. (great API design..)
*/
INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
queue->dev = ndev;
queue->cm_id = cm_id;
spin_lock_init(&queue->state_lock);
queue->state = NVMET_RDMA_Q_CONNECTING;
INIT_LIST_HEAD(&queue->rsp_wait_list);
INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
spin_lock_init(&queue->rsp_wr_wait_lock);
INIT_LIST_HEAD(&queue->free_rsps);
spin_lock_init(&queue->rsps_lock);
INIT_LIST_HEAD(&queue->queue_list);
queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
if (queue->idx < 0) {
ret = NVME_RDMA_CM_NO_RSC;
goto out_destroy_sq;
}
ret = nvmet_rdma_alloc_rsps(queue);
if (ret) {
ret = NVME_RDMA_CM_NO_RSC;
goto out_ida_remove;
}
if (!ndev->srq) {
queue->cmds = nvmet_rdma_alloc_cmds(ndev,
queue->recv_queue_size,
!queue->host_qid);
if (IS_ERR(queue->cmds)) {
ret = NVME_RDMA_CM_NO_RSC;
goto out_free_responses;
}
}
ret = nvmet_rdma_create_queue_ib(queue);
if (ret) {
pr_err("%s: creating RDMA queue failed (%d).\n",
__func__, ret);
ret = NVME_RDMA_CM_NO_RSC;
goto out_free_cmds;
}
return queue;
out_free_cmds:
if (!ndev->srq) {
nvmet_rdma_free_cmds(queue->dev, queue->cmds,
queue->recv_queue_size,
!queue->host_qid);
}
out_free_responses:
nvmet_rdma_free_rsps(queue);
out_ida_remove:
ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
out_destroy_sq:
nvmet_sq_destroy(&queue->nvme_sq);
out_free_queue:
kfree(queue);
out_reject:
nvmet_rdma_cm_reject(cm_id, ret);
return NULL;
}
static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
{
struct nvmet_rdma_queue *queue = priv;
switch (event->event) {
case IB_EVENT_COMM_EST:
rdma_notify(queue->cm_id, event->event);
break;
default:
pr_err("received IB QP event: %s (%d)\n",
ib_event_msg(event->event), event->event);
break;
}
}
static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
struct nvmet_rdma_queue *queue,
struct rdma_conn_param *p)
{
struct rdma_conn_param param = { };
struct nvme_rdma_cm_rep priv = { };
int ret = -ENOMEM;
param.rnr_retry_count = 7;
param.flow_control = 1;
param.initiator_depth = min_t(u8, p->initiator_depth,
queue->dev->device->attrs.max_qp_init_rd_atom);
param.private_data = &priv;
param.private_data_len = sizeof(priv);
priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
priv.crqsize = cpu_to_le16(queue->recv_queue_size);
ret = rdma_accept(cm_id, &param);
if (ret)
pr_err("rdma_accept failed (error code = %d)\n", ret);
return ret;
}
static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
struct rdma_cm_event *event)
{
struct nvmet_rdma_device *ndev;
struct nvmet_rdma_queue *queue;
int ret = -EINVAL;
ndev = nvmet_rdma_find_get_device(cm_id);
if (!ndev) {
nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
return -ECONNREFUSED;
}
queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
if (!queue) {
ret = -ENOMEM;
goto put_device;
}
queue->port = cm_id->context;
if (queue->host_qid == 0) {
/* Let inflight controller teardown complete */
flush_scheduled_work();
}
ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
if (ret) {
schedule_work(&queue->release_work);
/* Destroying rdma_cm id is not needed here */
return 0;
}
mutex_lock(&nvmet_rdma_queue_mutex);
list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
mutex_unlock(&nvmet_rdma_queue_mutex);
return 0;
put_device:
kref_put(&ndev->ref, nvmet_rdma_free_dev);
return ret;
}
static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
{
unsigned long flags;
spin_lock_irqsave(&queue->state_lock, flags);
if (queue->state != NVMET_RDMA_Q_CONNECTING) {
pr_warn("trying to establish a connected queue\n");
goto out_unlock;
}
queue->state = NVMET_RDMA_Q_LIVE;
while (!list_empty(&queue->rsp_wait_list)) {
struct nvmet_rdma_rsp *cmd;
cmd = list_first_entry(&queue->rsp_wait_list,
struct nvmet_rdma_rsp, wait_list);
list_del(&cmd->wait_list);
spin_unlock_irqrestore(&queue->state_lock, flags);
nvmet_rdma_handle_command(queue, cmd);
spin_lock_irqsave(&queue->state_lock, flags);
}
out_unlock:
spin_unlock_irqrestore(&queue->state_lock, flags);
}
static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
{
bool disconnect = false;
unsigned long flags;
pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
spin_lock_irqsave(&queue->state_lock, flags);
switch (queue->state) {
case NVMET_RDMA_Q_CONNECTING:
case NVMET_RDMA_Q_LIVE:
queue->state = NVMET_RDMA_Q_DISCONNECTING;
disconnect = true;
break;
case NVMET_RDMA_Q_DISCONNECTING:
break;
}
spin_unlock_irqrestore(&queue->state_lock, flags);
if (disconnect) {
rdma_disconnect(queue->cm_id);
schedule_work(&queue->release_work);
}
}
static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
{
bool disconnect = false;
mutex_lock(&nvmet_rdma_queue_mutex);
if (!list_empty(&queue->queue_list)) {
list_del_init(&queue->queue_list);
disconnect = true;
}
mutex_unlock(&nvmet_rdma_queue_mutex);
if (disconnect)
__nvmet_rdma_queue_disconnect(queue);
}
static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
struct nvmet_rdma_queue *queue)
{
WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
mutex_lock(&nvmet_rdma_queue_mutex);
if (!list_empty(&queue->queue_list))
list_del_init(&queue->queue_list);
mutex_unlock(&nvmet_rdma_queue_mutex);
pr_err("failed to connect queue %d\n", queue->idx);
schedule_work(&queue->release_work);
}
/**
* nvme_rdma_device_removal() - Handle RDMA device removal
* @cm_id: rdma_cm id, used for nvmet port
* @queue: nvmet rdma queue (cm id qp_context)
*
* DEVICE_REMOVAL event notifies us that the RDMA device is about
* to unplug. Note that this event can be generated on a normal
* queue cm_id and/or a device bound listener cm_id (where in this
* case queue will be null).
*
* We registered an ib_client to handle device removal for queues,
* so we only need to handle the listening port cm_ids. In this case
* we nullify the priv to prevent double cm_id destruction and destroying
* the cm_id implicitely by returning a non-zero rc to the callout.
*/
static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
struct nvmet_rdma_queue *queue)
{
struct nvmet_port *port;
if (queue) {
/*
* This is a queue cm_id. we have registered
* an ib_client to handle queues removal
* so don't interfear and just return.
*/
return 0;
}
port = cm_id->context;
/*
* This is a listener cm_id. Make sure that
* future remove_port won't invoke a double
* cm_id destroy. use atomic xchg to make sure
* we don't compete with remove_port.
*/
if (xchg(&port->priv, NULL) != cm_id)
return 0;
/*
* We need to return 1 so that the core will destroy
* it's own ID. What a great API design..
*/
return 1;
}
static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
struct rdma_cm_event *event)
{
struct nvmet_rdma_queue *queue = NULL;
int ret = 0;
if (cm_id->qp)
queue = cm_id->qp->qp_context;
pr_debug("%s (%d): status %d id %p\n",
rdma_event_msg(event->event), event->event,
event->status, cm_id);
switch (event->event) {
case RDMA_CM_EVENT_CONNECT_REQUEST:
ret = nvmet_rdma_queue_connect(cm_id, event);
break;
case RDMA_CM_EVENT_ESTABLISHED:
nvmet_rdma_queue_established(queue);
break;
case RDMA_CM_EVENT_ADDR_CHANGE:
case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
nvmet_rdma_queue_disconnect(queue);
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
ret = nvmet_rdma_device_removal(cm_id, queue);
break;
case RDMA_CM_EVENT_REJECTED:
pr_debug("Connection rejected: %s\n",
rdma_reject_msg(cm_id, event->status));
/* FALLTHROUGH */
case RDMA_CM_EVENT_UNREACHABLE:
case RDMA_CM_EVENT_CONNECT_ERROR:
nvmet_rdma_queue_connect_fail(cm_id, queue);
break;
default:
pr_err("received unrecognized RDMA CM event %d\n",
event->event);
break;
}
return ret;
}
static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
{
struct nvmet_rdma_queue *queue;
restart:
mutex_lock(&nvmet_rdma_queue_mutex);
list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
if (queue->nvme_sq.ctrl == ctrl) {
list_del_init(&queue->queue_list);
mutex_unlock(&nvmet_rdma_queue_mutex);
__nvmet_rdma_queue_disconnect(queue);
goto restart;
}
}
mutex_unlock(&nvmet_rdma_queue_mutex);
}
static int nvmet_rdma_add_port(struct nvmet_port *port)
{
struct rdma_cm_id *cm_id;
struct sockaddr_storage addr = { };
__kernel_sa_family_t af;
int ret;
switch (port->disc_addr.adrfam) {
case NVMF_ADDR_FAMILY_IP4:
af = AF_INET;
break;
case NVMF_ADDR_FAMILY_IP6:
af = AF_INET6;
break;
default:
pr_err("address family %d not supported\n",
port->disc_addr.adrfam);
return -EINVAL;
}
if (port->inline_data_size < 0) {
port->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
} else if (port->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
pr_warn("inline_data_size %u is too large, reducing to %u\n",
port->inline_data_size,
NVMET_RDMA_MAX_INLINE_DATA_SIZE);
port->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
}
ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr,
port->disc_addr.trsvcid, &addr);
if (ret) {
pr_err("malformed ip/port passed: %s:%s\n",
port->disc_addr.traddr, port->disc_addr.trsvcid);
return ret;
}
cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(cm_id)) {
pr_err("CM ID creation failed\n");
return PTR_ERR(cm_id);
}
/*
* Allow both IPv4 and IPv6 sockets to bind a single port
* at the same time.
*/
ret = rdma_set_afonly(cm_id, 1);
if (ret) {
pr_err("rdma_set_afonly failed (%d)\n", ret);
goto out_destroy_id;
}
ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr);
if (ret) {
pr_err("binding CM ID to %pISpcs failed (%d)\n",
(struct sockaddr *)&addr, ret);
goto out_destroy_id;
}
ret = rdma_listen(cm_id, 128);
if (ret) {
pr_err("listening to %pISpcs failed (%d)\n",
(struct sockaddr *)&addr, ret);
goto out_destroy_id;
}
pr_info("enabling port %d (%pISpcs)\n",
le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr);
port->priv = cm_id;
return 0;
out_destroy_id:
rdma_destroy_id(cm_id);
return ret;
}
static void nvmet_rdma_remove_port(struct nvmet_port *port)
{
struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
if (cm_id)
rdma_destroy_id(cm_id);
}
static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
struct nvmet_port *port, char *traddr)
{
struct rdma_cm_id *cm_id = port->priv;
if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
struct nvmet_rdma_rsp *rsp =
container_of(req, struct nvmet_rdma_rsp, req);
struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
sprintf(traddr, "%pISc", addr);
} else {
memcpy(traddr, port->disc_addr.traddr, NVMF_TRADDR_SIZE);
}
}
static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
.owner = THIS_MODULE,
.type = NVMF_TRTYPE_RDMA,
.msdbd = 1,
.has_keyed_sgls = 1,
.add_port = nvmet_rdma_add_port,
.remove_port = nvmet_rdma_remove_port,
.queue_response = nvmet_rdma_queue_response,
.delete_ctrl = nvmet_rdma_delete_ctrl,
.disc_traddr = nvmet_rdma_disc_port_addr,
};
static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
struct nvmet_rdma_queue *queue, *tmp;
struct nvmet_rdma_device *ndev;
bool found = false;
mutex_lock(&device_list_mutex);
list_for_each_entry(ndev, &device_list, entry) {
if (ndev->device == ib_device) {
found = true;
break;
}
}
mutex_unlock(&device_list_mutex);
if (!found)
return;
/*
* IB Device that is used by nvmet controllers is being removed,
* delete all queues using this device.
*/
mutex_lock(&nvmet_rdma_queue_mutex);
list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
queue_list) {
if (queue->dev->device != ib_device)
continue;
pr_info("Removing queue %d\n", queue->idx);
list_del_init(&queue->queue_list);
__nvmet_rdma_queue_disconnect(queue);
}
mutex_unlock(&nvmet_rdma_queue_mutex);
flush_scheduled_work();
}
static struct ib_client nvmet_rdma_ib_client = {
.name = "nvmet_rdma",
.remove = nvmet_rdma_remove_one
};
static int __init nvmet_rdma_init(void)
{
int ret;
ret = ib_register_client(&nvmet_rdma_ib_client);
if (ret)
return ret;
ret = nvmet_register_transport(&nvmet_rdma_ops);
if (ret)
goto err_ib_client;
return 0;
err_ib_client:
ib_unregister_client(&nvmet_rdma_ib_client);
return ret;
}
static void __exit nvmet_rdma_exit(void)
{
nvmet_unregister_transport(&nvmet_rdma_ops);
ib_unregister_client(&nvmet_rdma_ib_client);
WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
ida_destroy(&nvmet_rdma_queue_ida);
}
module_init(nvmet_rdma_init);
module_exit(nvmet_rdma_exit);
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */