2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 19:54:03 +08:00
linux-next/arch/x86/include/asm/stackprotector.h
Jeremy Fitzhardinge 1ea0d14e48 x86/i386: Make sure stack-protector segment base is cache aligned
The Intel Optimization Reference Guide says:

	In Intel Atom microarchitecture, the address generation unit
	assumes that the segment base will be 0 by default. Non-zero
	segment base will cause load and store operations to experience
	a delay.
		- If the segment base isn't aligned to a cache line
		  boundary, the max throughput of memory operations is
		  reduced to one [e]very 9 cycles.
	[...]
	Assembly/Compiler Coding Rule 15. (H impact, ML generality)
	For Intel Atom processors, use segments with base set to 0
	whenever possible; avoid non-zero segment base address that is
	not aligned to cache line boundary at all cost.

We can't avoid having a non-zero base for the stack-protector
segment, but we can make it cache-aligned.

Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: <stable@kernel.org>
LKML-Reference: <4AA01893.6000507@goop.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-03 21:30:51 +02:00

123 lines
3.8 KiB
C

/*
* GCC stack protector support.
*
* Stack protector works by putting predefined pattern at the start of
* the stack frame and verifying that it hasn't been overwritten when
* returning from the function. The pattern is called stack canary
* and unfortunately gcc requires it to be at a fixed offset from %gs.
* On x86_64, the offset is 40 bytes and on x86_32 20 bytes. x86_64
* and x86_32 use segment registers differently and thus handles this
* requirement differently.
*
* On x86_64, %gs is shared by percpu area and stack canary. All
* percpu symbols are zero based and %gs points to the base of percpu
* area. The first occupant of the percpu area is always
* irq_stack_union which contains stack_canary at offset 40. Userland
* %gs is always saved and restored on kernel entry and exit using
* swapgs, so stack protector doesn't add any complexity there.
*
* On x86_32, it's slightly more complicated. As in x86_64, %gs is
* used for userland TLS. Unfortunately, some processors are much
* slower at loading segment registers with different value when
* entering and leaving the kernel, so the kernel uses %fs for percpu
* area and manages %gs lazily so that %gs is switched only when
* necessary, usually during task switch.
*
* As gcc requires the stack canary at %gs:20, %gs can't be managed
* lazily if stack protector is enabled, so the kernel saves and
* restores userland %gs on kernel entry and exit. This behavior is
* controlled by CONFIG_X86_32_LAZY_GS and accessors are defined in
* system.h to hide the details.
*/
#ifndef _ASM_STACKPROTECTOR_H
#define _ASM_STACKPROTECTOR_H 1
#ifdef CONFIG_CC_STACKPROTECTOR
#include <asm/tsc.h>
#include <asm/processor.h>
#include <asm/percpu.h>
#include <asm/system.h>
#include <asm/desc.h>
#include <linux/random.h>
/*
* 24 byte read-only segment initializer for stack canary. Linker
* can't handle the address bit shifting. Address will be set in
* head_32 for boot CPU and setup_per_cpu_areas() for others.
*/
#define GDT_STACK_CANARY_INIT \
[GDT_ENTRY_STACK_CANARY] = GDT_ENTRY_INIT(0x4090, 0, 0x18),
/*
* Initialize the stackprotector canary value.
*
* NOTE: this must only be called from functions that never return,
* and it must always be inlined.
*/
static __always_inline void boot_init_stack_canary(void)
{
u64 canary;
u64 tsc;
#ifdef CONFIG_X86_64
BUILD_BUG_ON(offsetof(union irq_stack_union, stack_canary) != 40);
#endif
/*
* We both use the random pool and the current TSC as a source
* of randomness. The TSC only matters for very early init,
* there it already has some randomness on most systems. Later
* on during the bootup the random pool has true entropy too.
*/
get_random_bytes(&canary, sizeof(canary));
tsc = __native_read_tsc();
canary += tsc + (tsc << 32UL);
current->stack_canary = canary;
#ifdef CONFIG_X86_64
percpu_write(irq_stack_union.stack_canary, canary);
#else
percpu_write(stack_canary.canary, canary);
#endif
}
static inline void setup_stack_canary_segment(int cpu)
{
#ifdef CONFIG_X86_32
unsigned long canary = (unsigned long)&per_cpu(stack_canary, cpu);
struct desc_struct *gdt_table = get_cpu_gdt_table(cpu);
struct desc_struct desc;
desc = gdt_table[GDT_ENTRY_STACK_CANARY];
set_desc_base(&desc, canary);
write_gdt_entry(gdt_table, GDT_ENTRY_STACK_CANARY, &desc, DESCTYPE_S);
#endif
}
static inline void load_stack_canary_segment(void)
{
#ifdef CONFIG_X86_32
asm("mov %0, %%gs" : : "r" (__KERNEL_STACK_CANARY) : "memory");
#endif
}
#else /* CC_STACKPROTECTOR */
#define GDT_STACK_CANARY_INIT
/* dummy boot_init_stack_canary() is defined in linux/stackprotector.h */
static inline void setup_stack_canary_segment(int cpu)
{ }
static inline void load_stack_canary_segment(void)
{
#ifdef CONFIG_X86_32
asm volatile ("mov %0, %%gs" : : "r" (0));
#endif
}
#endif /* CC_STACKPROTECTOR */
#endif /* _ASM_STACKPROTECTOR_H */