mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-16 17:43:56 +08:00
aaec1a0f76
This is a reimplementation of the Generic Counter driver interface. There are no modifications to the Counter subsystem userspace interface, so existing userspace applications should continue to run seamlessly. The purpose of this patch is to internalize the sysfs interface code among the various counter drivers into a shared module. Counter drivers pass and take data natively (i.e. u8, u64, etc.) and the shared counter module handles the translation between the sysfs interface and the device drivers. This guarantees a standard userspace interface for all counter drivers, and helps generalize the Generic Counter driver ABI in order to support the Generic Counter chrdev interface (introduced in a subsequent patch) without significant changes to the existing counter drivers. Note, Counter device registration is the same as before: drivers populate a struct counter_device with components and callbacks, then pass the structure to the devm_counter_register function. However, what's different now is how the Counter subsystem code handles this registration internally. Whereas before callbacks would interact directly with sysfs data, this interaction is now abstracted and instead callbacks interact with native C data types. The counter_comp structure forms the basis for Counter extensions. The counter-sysfs.c file contains the code to parse through the counter_device structure and register the requested components and extensions. Attributes are created and populated based on type, with respective translation functions to handle the mapping between sysfs and the counter driver callbacks. The translation performed for each attribute is straightforward: the attribute type and data is parsed from the counter_attribute structure, the respective counter driver read/write callback is called, and sysfs I/O is handled before or after the driver read/write function is called. Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com> Cc: Patrick Havelange <patrick.havelange@essensium.com> Cc: Kamel Bouhara <kamel.bouhara@bootlin.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Syed Nayyar Waris <syednwaris@gmail.com> Reviewed-by: David Lechner <david@lechnology.com> Tested-by: David Lechner <david@lechnology.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Reviewed-by: Fabrice Gasnier <fabrice.gasnier@foss.st.com> # for stm32 Link: https://lore.kernel.org/r/c68b4a1ffb195c1a2f65e8dd5ad7b7c14e79c6ef.1630031207.git.vilhelm.gray@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
522 lines
13 KiB
C
522 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Intel Quadrature Encoder Peripheral driver
|
|
*
|
|
* Copyright (C) 2019-2021 Intel Corporation
|
|
*
|
|
* Author: Felipe Balbi (Intel)
|
|
* Author: Jarkko Nikula <jarkko.nikula@linux.intel.com>
|
|
* Author: Raymond Tan <raymond.tan@intel.com>
|
|
*/
|
|
#include <linux/counter.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#define INTEL_QEPCON 0x00
|
|
#define INTEL_QEPFLT 0x04
|
|
#define INTEL_QEPCOUNT 0x08
|
|
#define INTEL_QEPMAX 0x0c
|
|
#define INTEL_QEPWDT 0x10
|
|
#define INTEL_QEPCAPDIV 0x14
|
|
#define INTEL_QEPCNTR 0x18
|
|
#define INTEL_QEPCAPBUF 0x1c
|
|
#define INTEL_QEPINT_STAT 0x20
|
|
#define INTEL_QEPINT_MASK 0x24
|
|
|
|
/* QEPCON */
|
|
#define INTEL_QEPCON_EN BIT(0)
|
|
#define INTEL_QEPCON_FLT_EN BIT(1)
|
|
#define INTEL_QEPCON_EDGE_A BIT(2)
|
|
#define INTEL_QEPCON_EDGE_B BIT(3)
|
|
#define INTEL_QEPCON_EDGE_INDX BIT(4)
|
|
#define INTEL_QEPCON_SWPAB BIT(5)
|
|
#define INTEL_QEPCON_OP_MODE BIT(6)
|
|
#define INTEL_QEPCON_PH_ERR BIT(7)
|
|
#define INTEL_QEPCON_COUNT_RST_MODE BIT(8)
|
|
#define INTEL_QEPCON_INDX_GATING_MASK GENMASK(10, 9)
|
|
#define INTEL_QEPCON_INDX_GATING(n) (((n) & 3) << 9)
|
|
#define INTEL_QEPCON_INDX_PAL_PBL INTEL_QEPCON_INDX_GATING(0)
|
|
#define INTEL_QEPCON_INDX_PAL_PBH INTEL_QEPCON_INDX_GATING(1)
|
|
#define INTEL_QEPCON_INDX_PAH_PBL INTEL_QEPCON_INDX_GATING(2)
|
|
#define INTEL_QEPCON_INDX_PAH_PBH INTEL_QEPCON_INDX_GATING(3)
|
|
#define INTEL_QEPCON_CAP_MODE BIT(11)
|
|
#define INTEL_QEPCON_FIFO_THRE_MASK GENMASK(14, 12)
|
|
#define INTEL_QEPCON_FIFO_THRE(n) ((((n) - 1) & 7) << 12)
|
|
#define INTEL_QEPCON_FIFO_EMPTY BIT(15)
|
|
|
|
/* QEPFLT */
|
|
#define INTEL_QEPFLT_MAX_COUNT(n) ((n) & 0x1fffff)
|
|
|
|
/* QEPINT */
|
|
#define INTEL_QEPINT_FIFOCRIT BIT(5)
|
|
#define INTEL_QEPINT_FIFOENTRY BIT(4)
|
|
#define INTEL_QEPINT_QEPDIR BIT(3)
|
|
#define INTEL_QEPINT_QEPRST_UP BIT(2)
|
|
#define INTEL_QEPINT_QEPRST_DOWN BIT(1)
|
|
#define INTEL_QEPINT_WDT BIT(0)
|
|
|
|
#define INTEL_QEPINT_MASK_ALL GENMASK(5, 0)
|
|
|
|
#define INTEL_QEP_CLK_PERIOD_NS 10
|
|
|
|
struct intel_qep {
|
|
struct counter_device counter;
|
|
struct mutex lock;
|
|
struct device *dev;
|
|
void __iomem *regs;
|
|
bool enabled;
|
|
/* Context save registers */
|
|
u32 qepcon;
|
|
u32 qepflt;
|
|
u32 qepmax;
|
|
};
|
|
|
|
static inline u32 intel_qep_readl(struct intel_qep *qep, u32 offset)
|
|
{
|
|
return readl(qep->regs + offset);
|
|
}
|
|
|
|
static inline void intel_qep_writel(struct intel_qep *qep,
|
|
u32 offset, u32 value)
|
|
{
|
|
writel(value, qep->regs + offset);
|
|
}
|
|
|
|
static void intel_qep_init(struct intel_qep *qep)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = intel_qep_readl(qep, INTEL_QEPCON);
|
|
reg &= ~INTEL_QEPCON_EN;
|
|
intel_qep_writel(qep, INTEL_QEPCON, reg);
|
|
qep->enabled = false;
|
|
/*
|
|
* Make sure peripheral is disabled by flushing the write with
|
|
* a dummy read
|
|
*/
|
|
reg = intel_qep_readl(qep, INTEL_QEPCON);
|
|
|
|
reg &= ~(INTEL_QEPCON_OP_MODE | INTEL_QEPCON_FLT_EN);
|
|
reg |= INTEL_QEPCON_EDGE_A | INTEL_QEPCON_EDGE_B |
|
|
INTEL_QEPCON_EDGE_INDX | INTEL_QEPCON_COUNT_RST_MODE;
|
|
intel_qep_writel(qep, INTEL_QEPCON, reg);
|
|
intel_qep_writel(qep, INTEL_QEPINT_MASK, INTEL_QEPINT_MASK_ALL);
|
|
}
|
|
|
|
static int intel_qep_count_read(struct counter_device *counter,
|
|
struct counter_count *count, u64 *val)
|
|
{
|
|
struct intel_qep *const qep = counter->priv;
|
|
|
|
pm_runtime_get_sync(qep->dev);
|
|
*val = intel_qep_readl(qep, INTEL_QEPCOUNT);
|
|
pm_runtime_put(qep->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const enum counter_function intel_qep_count_functions[] = {
|
|
COUNTER_FUNCTION_QUADRATURE_X4,
|
|
};
|
|
|
|
static int intel_qep_function_read(struct counter_device *counter,
|
|
struct counter_count *count,
|
|
enum counter_function *function)
|
|
{
|
|
*function = COUNTER_FUNCTION_QUADRATURE_X4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const enum counter_synapse_action intel_qep_synapse_actions[] = {
|
|
COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
|
|
};
|
|
|
|
static int intel_qep_action_read(struct counter_device *counter,
|
|
struct counter_count *count,
|
|
struct counter_synapse *synapse,
|
|
enum counter_synapse_action *action)
|
|
{
|
|
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
|
|
return 0;
|
|
}
|
|
|
|
static const struct counter_ops intel_qep_counter_ops = {
|
|
.count_read = intel_qep_count_read,
|
|
.function_read = intel_qep_function_read,
|
|
.action_read = intel_qep_action_read,
|
|
};
|
|
|
|
#define INTEL_QEP_SIGNAL(_id, _name) { \
|
|
.id = (_id), \
|
|
.name = (_name), \
|
|
}
|
|
|
|
static struct counter_signal intel_qep_signals[] = {
|
|
INTEL_QEP_SIGNAL(0, "Phase A"),
|
|
INTEL_QEP_SIGNAL(1, "Phase B"),
|
|
INTEL_QEP_SIGNAL(2, "Index"),
|
|
};
|
|
|
|
#define INTEL_QEP_SYNAPSE(_signal_id) { \
|
|
.actions_list = intel_qep_synapse_actions, \
|
|
.num_actions = ARRAY_SIZE(intel_qep_synapse_actions), \
|
|
.signal = &intel_qep_signals[(_signal_id)], \
|
|
}
|
|
|
|
static struct counter_synapse intel_qep_count_synapses[] = {
|
|
INTEL_QEP_SYNAPSE(0),
|
|
INTEL_QEP_SYNAPSE(1),
|
|
INTEL_QEP_SYNAPSE(2),
|
|
};
|
|
|
|
static int intel_qep_ceiling_read(struct counter_device *counter,
|
|
struct counter_count *count, u64 *ceiling)
|
|
{
|
|
struct intel_qep *qep = counter->priv;
|
|
|
|
pm_runtime_get_sync(qep->dev);
|
|
*ceiling = intel_qep_readl(qep, INTEL_QEPMAX);
|
|
pm_runtime_put(qep->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_qep_ceiling_write(struct counter_device *counter,
|
|
struct counter_count *count, u64 max)
|
|
{
|
|
struct intel_qep *qep = counter->priv;
|
|
int ret = 0;
|
|
|
|
/* Intel QEP ceiling configuration only supports 32-bit values */
|
|
if (max != (u32)max)
|
|
return -ERANGE;
|
|
|
|
mutex_lock(&qep->lock);
|
|
if (qep->enabled) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
pm_runtime_get_sync(qep->dev);
|
|
intel_qep_writel(qep, INTEL_QEPMAX, max);
|
|
pm_runtime_put(qep->dev);
|
|
|
|
out:
|
|
mutex_unlock(&qep->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int intel_qep_enable_read(struct counter_device *counter,
|
|
struct counter_count *count, u8 *enable)
|
|
{
|
|
struct intel_qep *qep = counter->priv;
|
|
|
|
*enable = qep->enabled;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_qep_enable_write(struct counter_device *counter,
|
|
struct counter_count *count, u8 val)
|
|
{
|
|
struct intel_qep *qep = counter->priv;
|
|
u32 reg;
|
|
bool changed;
|
|
|
|
mutex_lock(&qep->lock);
|
|
changed = val ^ qep->enabled;
|
|
if (!changed)
|
|
goto out;
|
|
|
|
pm_runtime_get_sync(qep->dev);
|
|
reg = intel_qep_readl(qep, INTEL_QEPCON);
|
|
if (val) {
|
|
/* Enable peripheral and keep runtime PM always on */
|
|
reg |= INTEL_QEPCON_EN;
|
|
pm_runtime_get_noresume(qep->dev);
|
|
} else {
|
|
/* Let runtime PM be idle and disable peripheral */
|
|
pm_runtime_put_noidle(qep->dev);
|
|
reg &= ~INTEL_QEPCON_EN;
|
|
}
|
|
intel_qep_writel(qep, INTEL_QEPCON, reg);
|
|
pm_runtime_put(qep->dev);
|
|
qep->enabled = val;
|
|
|
|
out:
|
|
mutex_unlock(&qep->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int intel_qep_spike_filter_ns_read(struct counter_device *counter,
|
|
struct counter_count *count,
|
|
u64 *length)
|
|
{
|
|
struct intel_qep *qep = counter->priv;
|
|
u32 reg;
|
|
|
|
pm_runtime_get_sync(qep->dev);
|
|
reg = intel_qep_readl(qep, INTEL_QEPCON);
|
|
if (!(reg & INTEL_QEPCON_FLT_EN)) {
|
|
pm_runtime_put(qep->dev);
|
|
return 0;
|
|
}
|
|
reg = INTEL_QEPFLT_MAX_COUNT(intel_qep_readl(qep, INTEL_QEPFLT));
|
|
pm_runtime_put(qep->dev);
|
|
|
|
*length = (reg + 2) * INTEL_QEP_CLK_PERIOD_NS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_qep_spike_filter_ns_write(struct counter_device *counter,
|
|
struct counter_count *count,
|
|
u64 length)
|
|
{
|
|
struct intel_qep *qep = counter->priv;
|
|
u32 reg;
|
|
bool enable;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Spike filter length is (MAX_COUNT + 2) clock periods.
|
|
* Disable filter when userspace writes 0, enable for valid
|
|
* nanoseconds values and error out otherwise.
|
|
*/
|
|
do_div(length, INTEL_QEP_CLK_PERIOD_NS);
|
|
if (length == 0) {
|
|
enable = false;
|
|
length = 0;
|
|
} else if (length >= 2) {
|
|
enable = true;
|
|
length -= 2;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (length > INTEL_QEPFLT_MAX_COUNT(length))
|
|
return -ERANGE;
|
|
|
|
mutex_lock(&qep->lock);
|
|
if (qep->enabled) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
pm_runtime_get_sync(qep->dev);
|
|
reg = intel_qep_readl(qep, INTEL_QEPCON);
|
|
if (enable)
|
|
reg |= INTEL_QEPCON_FLT_EN;
|
|
else
|
|
reg &= ~INTEL_QEPCON_FLT_EN;
|
|
intel_qep_writel(qep, INTEL_QEPFLT, length);
|
|
intel_qep_writel(qep, INTEL_QEPCON, reg);
|
|
pm_runtime_put(qep->dev);
|
|
|
|
out:
|
|
mutex_unlock(&qep->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int intel_qep_preset_enable_read(struct counter_device *counter,
|
|
struct counter_count *count,
|
|
u8 *preset_enable)
|
|
{
|
|
struct intel_qep *qep = counter->priv;
|
|
u32 reg;
|
|
|
|
pm_runtime_get_sync(qep->dev);
|
|
reg = intel_qep_readl(qep, INTEL_QEPCON);
|
|
pm_runtime_put(qep->dev);
|
|
|
|
*preset_enable = !(reg & INTEL_QEPCON_COUNT_RST_MODE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_qep_preset_enable_write(struct counter_device *counter,
|
|
struct counter_count *count, u8 val)
|
|
{
|
|
struct intel_qep *qep = counter->priv;
|
|
u32 reg;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&qep->lock);
|
|
if (qep->enabled) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
pm_runtime_get_sync(qep->dev);
|
|
reg = intel_qep_readl(qep, INTEL_QEPCON);
|
|
if (val)
|
|
reg &= ~INTEL_QEPCON_COUNT_RST_MODE;
|
|
else
|
|
reg |= INTEL_QEPCON_COUNT_RST_MODE;
|
|
|
|
intel_qep_writel(qep, INTEL_QEPCON, reg);
|
|
pm_runtime_put(qep->dev);
|
|
|
|
out:
|
|
mutex_unlock(&qep->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct counter_comp intel_qep_count_ext[] = {
|
|
COUNTER_COMP_ENABLE(intel_qep_enable_read, intel_qep_enable_write),
|
|
COUNTER_COMP_CEILING(intel_qep_ceiling_read, intel_qep_ceiling_write),
|
|
COUNTER_COMP_PRESET_ENABLE(intel_qep_preset_enable_read,
|
|
intel_qep_preset_enable_write),
|
|
COUNTER_COMP_COUNT_U64("spike_filter_ns",
|
|
intel_qep_spike_filter_ns_read,
|
|
intel_qep_spike_filter_ns_write),
|
|
};
|
|
|
|
static struct counter_count intel_qep_counter_count[] = {
|
|
{
|
|
.id = 0,
|
|
.name = "Channel 1 Count",
|
|
.functions_list = intel_qep_count_functions,
|
|
.num_functions = ARRAY_SIZE(intel_qep_count_functions),
|
|
.synapses = intel_qep_count_synapses,
|
|
.num_synapses = ARRAY_SIZE(intel_qep_count_synapses),
|
|
.ext = intel_qep_count_ext,
|
|
.num_ext = ARRAY_SIZE(intel_qep_count_ext),
|
|
},
|
|
};
|
|
|
|
static int intel_qep_probe(struct pci_dev *pci, const struct pci_device_id *id)
|
|
{
|
|
struct intel_qep *qep;
|
|
struct device *dev = &pci->dev;
|
|
void __iomem *regs;
|
|
int ret;
|
|
|
|
qep = devm_kzalloc(dev, sizeof(*qep), GFP_KERNEL);
|
|
if (!qep)
|
|
return -ENOMEM;
|
|
|
|
ret = pcim_enable_device(pci);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pci_set_master(pci);
|
|
|
|
ret = pcim_iomap_regions(pci, BIT(0), pci_name(pci));
|
|
if (ret)
|
|
return ret;
|
|
|
|
regs = pcim_iomap_table(pci)[0];
|
|
if (!regs)
|
|
return -ENOMEM;
|
|
|
|
qep->dev = dev;
|
|
qep->regs = regs;
|
|
mutex_init(&qep->lock);
|
|
|
|
intel_qep_init(qep);
|
|
pci_set_drvdata(pci, qep);
|
|
|
|
qep->counter.name = pci_name(pci);
|
|
qep->counter.parent = dev;
|
|
qep->counter.ops = &intel_qep_counter_ops;
|
|
qep->counter.counts = intel_qep_counter_count;
|
|
qep->counter.num_counts = ARRAY_SIZE(intel_qep_counter_count);
|
|
qep->counter.signals = intel_qep_signals;
|
|
qep->counter.num_signals = ARRAY_SIZE(intel_qep_signals);
|
|
qep->counter.priv = qep;
|
|
qep->enabled = false;
|
|
|
|
pm_runtime_put(dev);
|
|
pm_runtime_allow(dev);
|
|
|
|
return devm_counter_register(&pci->dev, &qep->counter);
|
|
}
|
|
|
|
static void intel_qep_remove(struct pci_dev *pci)
|
|
{
|
|
struct intel_qep *qep = pci_get_drvdata(pci);
|
|
struct device *dev = &pci->dev;
|
|
|
|
pm_runtime_forbid(dev);
|
|
if (!qep->enabled)
|
|
pm_runtime_get(dev);
|
|
|
|
intel_qep_writel(qep, INTEL_QEPCON, 0);
|
|
}
|
|
|
|
static int __maybe_unused intel_qep_suspend(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct intel_qep *qep = pci_get_drvdata(pdev);
|
|
|
|
qep->qepcon = intel_qep_readl(qep, INTEL_QEPCON);
|
|
qep->qepflt = intel_qep_readl(qep, INTEL_QEPFLT);
|
|
qep->qepmax = intel_qep_readl(qep, INTEL_QEPMAX);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused intel_qep_resume(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct intel_qep *qep = pci_get_drvdata(pdev);
|
|
|
|
/*
|
|
* Make sure peripheral is disabled when restoring registers and
|
|
* control register bits that are writable only when the peripheral
|
|
* is disabled
|
|
*/
|
|
intel_qep_writel(qep, INTEL_QEPCON, 0);
|
|
intel_qep_readl(qep, INTEL_QEPCON);
|
|
|
|
intel_qep_writel(qep, INTEL_QEPFLT, qep->qepflt);
|
|
intel_qep_writel(qep, INTEL_QEPMAX, qep->qepmax);
|
|
intel_qep_writel(qep, INTEL_QEPINT_MASK, INTEL_QEPINT_MASK_ALL);
|
|
|
|
/* Restore all other control register bits except enable status */
|
|
intel_qep_writel(qep, INTEL_QEPCON, qep->qepcon & ~INTEL_QEPCON_EN);
|
|
intel_qep_readl(qep, INTEL_QEPCON);
|
|
|
|
/* Restore enable status */
|
|
intel_qep_writel(qep, INTEL_QEPCON, qep->qepcon);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static UNIVERSAL_DEV_PM_OPS(intel_qep_pm_ops,
|
|
intel_qep_suspend, intel_qep_resume, NULL);
|
|
|
|
static const struct pci_device_id intel_qep_id_table[] = {
|
|
/* EHL */
|
|
{ PCI_VDEVICE(INTEL, 0x4bc3), },
|
|
{ PCI_VDEVICE(INTEL, 0x4b81), },
|
|
{ PCI_VDEVICE(INTEL, 0x4b82), },
|
|
{ PCI_VDEVICE(INTEL, 0x4b83), },
|
|
{ } /* Terminating Entry */
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, intel_qep_id_table);
|
|
|
|
static struct pci_driver intel_qep_driver = {
|
|
.name = "intel-qep",
|
|
.id_table = intel_qep_id_table,
|
|
.probe = intel_qep_probe,
|
|
.remove = intel_qep_remove,
|
|
.driver = {
|
|
.pm = &intel_qep_pm_ops,
|
|
}
|
|
};
|
|
|
|
module_pci_driver(intel_qep_driver);
|
|
|
|
MODULE_AUTHOR("Felipe Balbi (Intel)");
|
|
MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>");
|
|
MODULE_AUTHOR("Raymond Tan <raymond.tan@intel.com>");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Intel Quadrature Encoder Peripheral driver");
|