2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 15:44:01 +08:00
linux-next/drivers/dma/st_fdma.c
Wei Yongjun e687cd19f1 dmaengine: st_fdma: Fix the error return code in st_fdma_probe()
In case of error, the function st_slim_rproc_alloc() returns ERR_PTR()
and never returns NULL. The NULL test in the return value check should
be replaced with IS_ERR().

Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Acked-by: Peter Griffin <peter.griffin@linaro.org>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2016-10-19 22:29:33 +05:30

890 lines
22 KiB
C

/*
* DMA driver for STMicroelectronics STi FDMA controller
*
* Copyright (C) 2014 STMicroelectronics
*
* Author: Ludovic Barre <Ludovic.barre@st.com>
* Peter Griffin <peter.griffin@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/remoteproc.h>
#include "st_fdma.h"
static inline struct st_fdma_chan *to_st_fdma_chan(struct dma_chan *c)
{
return container_of(c, struct st_fdma_chan, vchan.chan);
}
static struct st_fdma_desc *to_st_fdma_desc(struct virt_dma_desc *vd)
{
return container_of(vd, struct st_fdma_desc, vdesc);
}
static int st_fdma_dreq_get(struct st_fdma_chan *fchan)
{
struct st_fdma_dev *fdev = fchan->fdev;
u32 req_line_cfg = fchan->cfg.req_line;
u32 dreq_line;
int try = 0;
/*
* dreq_mask is shared for n channels of fdma, so all accesses must be
* atomic. if the dreq_mask is changed between ffz and set_bit,
* we retry
*/
do {
if (fdev->dreq_mask == ~0L) {
dev_err(fdev->dev, "No req lines available\n");
return -EINVAL;
}
if (try || req_line_cfg >= ST_FDMA_NR_DREQS) {
dev_err(fdev->dev, "Invalid or used req line\n");
return -EINVAL;
} else {
dreq_line = req_line_cfg;
}
try++;
} while (test_and_set_bit(dreq_line, &fdev->dreq_mask));
dev_dbg(fdev->dev, "get dreq_line:%d mask:%#lx\n",
dreq_line, fdev->dreq_mask);
return dreq_line;
}
static void st_fdma_dreq_put(struct st_fdma_chan *fchan)
{
struct st_fdma_dev *fdev = fchan->fdev;
dev_dbg(fdev->dev, "put dreq_line:%#x\n", fchan->dreq_line);
clear_bit(fchan->dreq_line, &fdev->dreq_mask);
}
static void st_fdma_xfer_desc(struct st_fdma_chan *fchan)
{
struct virt_dma_desc *vdesc;
unsigned long nbytes, ch_cmd, cmd;
vdesc = vchan_next_desc(&fchan->vchan);
if (!vdesc)
return;
fchan->fdesc = to_st_fdma_desc(vdesc);
nbytes = fchan->fdesc->node[0].desc->nbytes;
cmd = FDMA_CMD_START(fchan->vchan.chan.chan_id);
ch_cmd = fchan->fdesc->node[0].pdesc | FDMA_CH_CMD_STA_START;
/* start the channel for the descriptor */
fnode_write(fchan, nbytes, FDMA_CNTN_OFST);
fchan_write(fchan, ch_cmd, FDMA_CH_CMD_OFST);
writel(cmd,
fchan->fdev->slim_rproc->peri + FDMA_CMD_SET_OFST);
dev_dbg(fchan->fdev->dev, "start chan:%d\n", fchan->vchan.chan.chan_id);
}
static void st_fdma_ch_sta_update(struct st_fdma_chan *fchan,
unsigned long int_sta)
{
unsigned long ch_sta, ch_err;
int ch_id = fchan->vchan.chan.chan_id;
struct st_fdma_dev *fdev = fchan->fdev;
ch_sta = fchan_read(fchan, FDMA_CH_CMD_OFST);
ch_err = ch_sta & FDMA_CH_CMD_ERR_MASK;
ch_sta &= FDMA_CH_CMD_STA_MASK;
if (int_sta & FDMA_INT_STA_ERR) {
dev_warn(fdev->dev, "chan:%d, error:%ld\n", ch_id, ch_err);
fchan->status = DMA_ERROR;
return;
}
switch (ch_sta) {
case FDMA_CH_CMD_STA_PAUSED:
fchan->status = DMA_PAUSED;
break;
case FDMA_CH_CMD_STA_RUNNING:
fchan->status = DMA_IN_PROGRESS;
break;
}
}
static irqreturn_t st_fdma_irq_handler(int irq, void *dev_id)
{
struct st_fdma_dev *fdev = dev_id;
irqreturn_t ret = IRQ_NONE;
struct st_fdma_chan *fchan = &fdev->chans[0];
unsigned long int_sta, clr;
int_sta = fdma_read(fdev, FDMA_INT_STA_OFST);
clr = int_sta;
for (; int_sta != 0 ; int_sta >>= 2, fchan++) {
if (!(int_sta & (FDMA_INT_STA_CH | FDMA_INT_STA_ERR)))
continue;
spin_lock(&fchan->vchan.lock);
st_fdma_ch_sta_update(fchan, int_sta);
if (fchan->fdesc) {
if (!fchan->fdesc->iscyclic) {
list_del(&fchan->fdesc->vdesc.node);
vchan_cookie_complete(&fchan->fdesc->vdesc);
fchan->fdesc = NULL;
fchan->status = DMA_COMPLETE;
} else {
vchan_cyclic_callback(&fchan->fdesc->vdesc);
}
/* Start the next descriptor (if available) */
if (!fchan->fdesc)
st_fdma_xfer_desc(fchan);
}
spin_unlock(&fchan->vchan.lock);
ret = IRQ_HANDLED;
}
fdma_write(fdev, clr, FDMA_INT_CLR_OFST);
return ret;
}
static struct dma_chan *st_fdma_of_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct st_fdma_dev *fdev = ofdma->of_dma_data;
struct dma_chan *chan;
struct st_fdma_chan *fchan;
int ret;
if (dma_spec->args_count < 1)
return ERR_PTR(-EINVAL);
if (fdev->dma_device.dev->of_node != dma_spec->np)
return ERR_PTR(-EINVAL);
ret = rproc_boot(fdev->slim_rproc->rproc);
if (ret == -ENOENT)
return ERR_PTR(-EPROBE_DEFER);
else if (ret)
return ERR_PTR(ret);
chan = dma_get_any_slave_channel(&fdev->dma_device);
if (!chan)
goto err_chan;
fchan = to_st_fdma_chan(chan);
fchan->cfg.of_node = dma_spec->np;
fchan->cfg.req_line = dma_spec->args[0];
fchan->cfg.req_ctrl = 0;
fchan->cfg.type = ST_FDMA_TYPE_FREE_RUN;
if (dma_spec->args_count > 1)
fchan->cfg.req_ctrl = dma_spec->args[1]
& FDMA_REQ_CTRL_CFG_MASK;
if (dma_spec->args_count > 2)
fchan->cfg.type = dma_spec->args[2];
if (fchan->cfg.type == ST_FDMA_TYPE_FREE_RUN) {
fchan->dreq_line = 0;
} else {
fchan->dreq_line = st_fdma_dreq_get(fchan);
if (IS_ERR_VALUE(fchan->dreq_line)) {
chan = ERR_PTR(fchan->dreq_line);
goto err_chan;
}
}
dev_dbg(fdev->dev, "xlate req_line:%d type:%d req_ctrl:%#lx\n",
fchan->cfg.req_line, fchan->cfg.type, fchan->cfg.req_ctrl);
return chan;
err_chan:
rproc_shutdown(fdev->slim_rproc->rproc);
return chan;
}
static void st_fdma_free_desc(struct virt_dma_desc *vdesc)
{
struct st_fdma_desc *fdesc;
int i;
fdesc = to_st_fdma_desc(vdesc);
for (i = 0; i < fdesc->n_nodes; i++)
dma_pool_free(fdesc->fchan->node_pool, fdesc->node[i].desc,
fdesc->node[i].pdesc);
kfree(fdesc);
}
static struct st_fdma_desc *st_fdma_alloc_desc(struct st_fdma_chan *fchan,
int sg_len)
{
struct st_fdma_desc *fdesc;
int i;
fdesc = kzalloc(sizeof(*fdesc) +
sizeof(struct st_fdma_sw_node) * sg_len, GFP_NOWAIT);
if (!fdesc)
return NULL;
fdesc->fchan = fchan;
fdesc->n_nodes = sg_len;
for (i = 0; i < sg_len; i++) {
fdesc->node[i].desc = dma_pool_alloc(fchan->node_pool,
GFP_NOWAIT, &fdesc->node[i].pdesc);
if (!fdesc->node[i].desc)
goto err;
}
return fdesc;
err:
while (--i >= 0)
dma_pool_free(fchan->node_pool, fdesc->node[i].desc,
fdesc->node[i].pdesc);
kfree(fdesc);
return NULL;
}
static int st_fdma_alloc_chan_res(struct dma_chan *chan)
{
struct st_fdma_chan *fchan = to_st_fdma_chan(chan);
/* Create the dma pool for descriptor allocation */
fchan->node_pool = dma_pool_create(dev_name(&chan->dev->device),
fchan->fdev->dev,
sizeof(struct st_fdma_hw_node),
__alignof__(struct st_fdma_hw_node),
0);
if (!fchan->node_pool) {
dev_err(fchan->fdev->dev, "unable to allocate desc pool\n");
return -ENOMEM;
}
dev_dbg(fchan->fdev->dev, "alloc ch_id:%d type:%d\n",
fchan->vchan.chan.chan_id, fchan->cfg.type);
return 0;
}
static void st_fdma_free_chan_res(struct dma_chan *chan)
{
struct st_fdma_chan *fchan = to_st_fdma_chan(chan);
struct rproc *rproc = fchan->fdev->slim_rproc->rproc;
unsigned long flags;
LIST_HEAD(head);
dev_dbg(fchan->fdev->dev, "%s: freeing chan:%d\n",
__func__, fchan->vchan.chan.chan_id);
if (fchan->cfg.type != ST_FDMA_TYPE_FREE_RUN)
st_fdma_dreq_put(fchan);
spin_lock_irqsave(&fchan->vchan.lock, flags);
fchan->fdesc = NULL;
spin_unlock_irqrestore(&fchan->vchan.lock, flags);
dma_pool_destroy(fchan->node_pool);
fchan->node_pool = NULL;
memset(&fchan->cfg, 0, sizeof(struct st_fdma_cfg));
rproc_shutdown(rproc);
}
static struct dma_async_tx_descriptor *st_fdma_prep_dma_memcpy(
struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
size_t len, unsigned long flags)
{
struct st_fdma_chan *fchan;
struct st_fdma_desc *fdesc;
struct st_fdma_hw_node *hw_node;
if (!len)
return NULL;
fchan = to_st_fdma_chan(chan);
/* We only require a single descriptor */
fdesc = st_fdma_alloc_desc(fchan, 1);
if (!fdesc) {
dev_err(fchan->fdev->dev, "no memory for desc\n");
return NULL;
}
hw_node = fdesc->node[0].desc;
hw_node->next = 0;
hw_node->control = FDMA_NODE_CTRL_REQ_MAP_FREE_RUN;
hw_node->control |= FDMA_NODE_CTRL_SRC_INCR;
hw_node->control |= FDMA_NODE_CTRL_DST_INCR;
hw_node->control |= FDMA_NODE_CTRL_INT_EON;
hw_node->nbytes = len;
hw_node->saddr = src;
hw_node->daddr = dst;
hw_node->generic.length = len;
hw_node->generic.sstride = 0;
hw_node->generic.dstride = 0;
return vchan_tx_prep(&fchan->vchan, &fdesc->vdesc, flags);
}
static int config_reqctrl(struct st_fdma_chan *fchan,
enum dma_transfer_direction direction)
{
u32 maxburst = 0, addr = 0;
enum dma_slave_buswidth width;
int ch_id = fchan->vchan.chan.chan_id;
struct st_fdma_dev *fdev = fchan->fdev;
switch (direction) {
case DMA_DEV_TO_MEM:
fchan->cfg.req_ctrl &= ~FDMA_REQ_CTRL_WNR;
maxburst = fchan->scfg.src_maxburst;
width = fchan->scfg.src_addr_width;
addr = fchan->scfg.src_addr;
break;
case DMA_MEM_TO_DEV:
fchan->cfg.req_ctrl |= FDMA_REQ_CTRL_WNR;
maxburst = fchan->scfg.dst_maxburst;
width = fchan->scfg.dst_addr_width;
addr = fchan->scfg.dst_addr;
break;
default:
return -EINVAL;
}
fchan->cfg.req_ctrl &= ~FDMA_REQ_CTRL_OPCODE_MASK;
switch (width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
fchan->cfg.req_ctrl |= FDMA_REQ_CTRL_OPCODE_LD_ST1;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
fchan->cfg.req_ctrl |= FDMA_REQ_CTRL_OPCODE_LD_ST2;
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
fchan->cfg.req_ctrl |= FDMA_REQ_CTRL_OPCODE_LD_ST4;
break;
case DMA_SLAVE_BUSWIDTH_8_BYTES:
fchan->cfg.req_ctrl |= FDMA_REQ_CTRL_OPCODE_LD_ST8;
break;
default:
return -EINVAL;
}
fchan->cfg.req_ctrl &= ~FDMA_REQ_CTRL_NUM_OPS_MASK;
fchan->cfg.req_ctrl |= FDMA_REQ_CTRL_NUM_OPS(maxburst-1);
dreq_write(fchan, fchan->cfg.req_ctrl, FDMA_REQ_CTRL_OFST);
fchan->cfg.dev_addr = addr;
fchan->cfg.dir = direction;
dev_dbg(fdev->dev, "chan:%d config_reqctrl:%#x req_ctrl:%#lx\n",
ch_id, addr, fchan->cfg.req_ctrl);
return 0;
}
static void fill_hw_node(struct st_fdma_hw_node *hw_node,
struct st_fdma_chan *fchan,
enum dma_transfer_direction direction)
{
if (direction == DMA_MEM_TO_DEV) {
hw_node->control |= FDMA_NODE_CTRL_SRC_INCR;
hw_node->control |= FDMA_NODE_CTRL_DST_STATIC;
hw_node->daddr = fchan->cfg.dev_addr;
} else {
hw_node->control |= FDMA_NODE_CTRL_SRC_STATIC;
hw_node->control |= FDMA_NODE_CTRL_DST_INCR;
hw_node->saddr = fchan->cfg.dev_addr;
}
hw_node->generic.sstride = 0;
hw_node->generic.dstride = 0;
}
static inline struct st_fdma_chan *st_fdma_prep_common(struct dma_chan *chan,
size_t len, enum dma_transfer_direction direction)
{
struct st_fdma_chan *fchan;
if (!chan || !len)
return NULL;
fchan = to_st_fdma_chan(chan);
if (!is_slave_direction(direction)) {
dev_err(fchan->fdev->dev, "bad direction?\n");
return NULL;
}
return fchan;
}
static struct dma_async_tx_descriptor *st_fdma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t buf_addr, size_t len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct st_fdma_chan *fchan;
struct st_fdma_desc *fdesc;
int sg_len, i;
fchan = st_fdma_prep_common(chan, len, direction);
if (!fchan)
return NULL;
if (!period_len)
return NULL;
if (config_reqctrl(fchan, direction)) {
dev_err(fchan->fdev->dev, "bad width or direction\n");
return NULL;
}
/* the buffer length must be a multiple of period_len */
if (len % period_len != 0) {
dev_err(fchan->fdev->dev, "len is not multiple of period\n");
return NULL;
}
sg_len = len / period_len;
fdesc = st_fdma_alloc_desc(fchan, sg_len);
if (!fdesc) {
dev_err(fchan->fdev->dev, "no memory for desc\n");
return NULL;
}
fdesc->iscyclic = true;
for (i = 0; i < sg_len; i++) {
struct st_fdma_hw_node *hw_node = fdesc->node[i].desc;
hw_node->next = fdesc->node[(i + 1) % sg_len].pdesc;
hw_node->control =
FDMA_NODE_CTRL_REQ_MAP_DREQ(fchan->dreq_line);
hw_node->control |= FDMA_NODE_CTRL_INT_EON;
fill_hw_node(hw_node, fchan, direction);
if (direction == DMA_MEM_TO_DEV)
hw_node->saddr = buf_addr + (i * period_len);
else
hw_node->daddr = buf_addr + (i * period_len);
hw_node->nbytes = period_len;
hw_node->generic.length = period_len;
}
return vchan_tx_prep(&fchan->vchan, &fdesc->vdesc, flags);
}
static struct dma_async_tx_descriptor *st_fdma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct st_fdma_chan *fchan;
struct st_fdma_desc *fdesc;
struct st_fdma_hw_node *hw_node;
struct scatterlist *sg;
int i;
fchan = st_fdma_prep_common(chan, sg_len, direction);
if (!fchan)
return NULL;
if (!sgl)
return NULL;
fdesc = st_fdma_alloc_desc(fchan, sg_len);
if (!fdesc) {
dev_err(fchan->fdev->dev, "no memory for desc\n");
return NULL;
}
fdesc->iscyclic = false;
for_each_sg(sgl, sg, sg_len, i) {
hw_node = fdesc->node[i].desc;
hw_node->next = fdesc->node[(i + 1) % sg_len].pdesc;
hw_node->control = FDMA_NODE_CTRL_REQ_MAP_DREQ(fchan->dreq_line);
fill_hw_node(hw_node, fchan, direction);
if (direction == DMA_MEM_TO_DEV)
hw_node->saddr = sg_dma_address(sg);
else
hw_node->daddr = sg_dma_address(sg);
hw_node->nbytes = sg_dma_len(sg);
hw_node->generic.length = sg_dma_len(sg);
}
/* interrupt at end of last node */
hw_node->control |= FDMA_NODE_CTRL_INT_EON;
return vchan_tx_prep(&fchan->vchan, &fdesc->vdesc, flags);
}
static size_t st_fdma_desc_residue(struct st_fdma_chan *fchan,
struct virt_dma_desc *vdesc,
bool in_progress)
{
struct st_fdma_desc *fdesc = fchan->fdesc;
size_t residue = 0;
dma_addr_t cur_addr = 0;
int i;
if (in_progress) {
cur_addr = fchan_read(fchan, FDMA_CH_CMD_OFST);
cur_addr &= FDMA_CH_CMD_DATA_MASK;
}
for (i = fchan->fdesc->n_nodes - 1 ; i >= 0; i--) {
if (cur_addr == fdesc->node[i].pdesc) {
residue += fnode_read(fchan, FDMA_CNTN_OFST);
break;
}
residue += fdesc->node[i].desc->nbytes;
}
return residue;
}
static enum dma_status st_fdma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct st_fdma_chan *fchan = to_st_fdma_chan(chan);
struct virt_dma_desc *vd;
enum dma_status ret;
unsigned long flags;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
spin_lock_irqsave(&fchan->vchan.lock, flags);
vd = vchan_find_desc(&fchan->vchan, cookie);
if (fchan->fdesc && cookie == fchan->fdesc->vdesc.tx.cookie)
txstate->residue = st_fdma_desc_residue(fchan, vd, true);
else if (vd)
txstate->residue = st_fdma_desc_residue(fchan, vd, false);
else
txstate->residue = 0;
spin_unlock_irqrestore(&fchan->vchan.lock, flags);
return ret;
}
static void st_fdma_issue_pending(struct dma_chan *chan)
{
struct st_fdma_chan *fchan = to_st_fdma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fchan->vchan.lock, flags);
if (vchan_issue_pending(&fchan->vchan) && !fchan->fdesc)
st_fdma_xfer_desc(fchan);
spin_unlock_irqrestore(&fchan->vchan.lock, flags);
}
static int st_fdma_pause(struct dma_chan *chan)
{
unsigned long flags;
LIST_HEAD(head);
struct st_fdma_chan *fchan = to_st_fdma_chan(chan);
int ch_id = fchan->vchan.chan.chan_id;
unsigned long cmd = FDMA_CMD_PAUSE(ch_id);
dev_dbg(fchan->fdev->dev, "pause chan:%d\n", ch_id);
spin_lock_irqsave(&fchan->vchan.lock, flags);
if (fchan->fdesc)
fdma_write(fchan->fdev, cmd, FDMA_CMD_SET_OFST);
spin_unlock_irqrestore(&fchan->vchan.lock, flags);
return 0;
}
static int st_fdma_resume(struct dma_chan *chan)
{
unsigned long flags;
unsigned long val;
struct st_fdma_chan *fchan = to_st_fdma_chan(chan);
int ch_id = fchan->vchan.chan.chan_id;
dev_dbg(fchan->fdev->dev, "resume chan:%d\n", ch_id);
spin_lock_irqsave(&fchan->vchan.lock, flags);
if (fchan->fdesc) {
val = fchan_read(fchan, FDMA_CH_CMD_OFST);
val &= FDMA_CH_CMD_DATA_MASK;
fchan_write(fchan, val, FDMA_CH_CMD_OFST);
}
spin_unlock_irqrestore(&fchan->vchan.lock, flags);
return 0;
}
static int st_fdma_terminate_all(struct dma_chan *chan)
{
unsigned long flags;
LIST_HEAD(head);
struct st_fdma_chan *fchan = to_st_fdma_chan(chan);
int ch_id = fchan->vchan.chan.chan_id;
unsigned long cmd = FDMA_CMD_PAUSE(ch_id);
dev_dbg(fchan->fdev->dev, "terminate chan:%d\n", ch_id);
spin_lock_irqsave(&fchan->vchan.lock, flags);
fdma_write(fchan->fdev, cmd, FDMA_CMD_SET_OFST);
fchan->fdesc = NULL;
vchan_get_all_descriptors(&fchan->vchan, &head);
spin_unlock_irqrestore(&fchan->vchan.lock, flags);
vchan_dma_desc_free_list(&fchan->vchan, &head);
return 0;
}
static int st_fdma_slave_config(struct dma_chan *chan,
struct dma_slave_config *slave_cfg)
{
struct st_fdma_chan *fchan = to_st_fdma_chan(chan);
memcpy(&fchan->scfg, slave_cfg, sizeof(fchan->scfg));
return 0;
}
static const struct st_fdma_driverdata fdma_mpe31_stih407_11 = {
.name = "STiH407",
.id = 0,
};
static const struct st_fdma_driverdata fdma_mpe31_stih407_12 = {
.name = "STiH407",
.id = 1,
};
static const struct st_fdma_driverdata fdma_mpe31_stih407_13 = {
.name = "STiH407",
.id = 2,
};
static const struct of_device_id st_fdma_match[] = {
{ .compatible = "st,stih407-fdma-mpe31-11"
, .data = &fdma_mpe31_stih407_11 },
{ .compatible = "st,stih407-fdma-mpe31-12"
, .data = &fdma_mpe31_stih407_12 },
{ .compatible = "st,stih407-fdma-mpe31-13"
, .data = &fdma_mpe31_stih407_13 },
{},
};
MODULE_DEVICE_TABLE(of, st_fdma_match);
static int st_fdma_parse_dt(struct platform_device *pdev,
const struct st_fdma_driverdata *drvdata,
struct st_fdma_dev *fdev)
{
snprintf(fdev->fw_name, FW_NAME_SIZE, "fdma_%s_%d.elf",
drvdata->name, drvdata->id);
return of_property_read_u32(pdev->dev.of_node, "dma-channels",
&fdev->nr_channels);
}
#define FDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
static void st_fdma_free(struct st_fdma_dev *fdev)
{
struct st_fdma_chan *fchan;
int i;
for (i = 0; i < fdev->nr_channels; i++) {
fchan = &fdev->chans[i];
list_del(&fchan->vchan.chan.device_node);
tasklet_kill(&fchan->vchan.task);
}
}
static int st_fdma_probe(struct platform_device *pdev)
{
struct st_fdma_dev *fdev;
const struct of_device_id *match;
struct device_node *np = pdev->dev.of_node;
const struct st_fdma_driverdata *drvdata;
int ret, i;
match = of_match_device((st_fdma_match), &pdev->dev);
if (!match || !match->data) {
dev_err(&pdev->dev, "No device match found\n");
return -ENODEV;
}
drvdata = match->data;
fdev = devm_kzalloc(&pdev->dev, sizeof(*fdev), GFP_KERNEL);
if (!fdev)
return -ENOMEM;
ret = st_fdma_parse_dt(pdev, drvdata, fdev);
if (ret) {
dev_err(&pdev->dev, "unable to find platform data\n");
goto err;
}
fdev->chans = devm_kcalloc(&pdev->dev, fdev->nr_channels,
sizeof(struct st_fdma_chan), GFP_KERNEL);
if (!fdev->chans)
return -ENOMEM;
fdev->dev = &pdev->dev;
fdev->drvdata = drvdata;
platform_set_drvdata(pdev, fdev);
fdev->irq = platform_get_irq(pdev, 0);
if (fdev->irq < 0) {
dev_err(&pdev->dev, "Failed to get irq resource\n");
return -EINVAL;
}
ret = devm_request_irq(&pdev->dev, fdev->irq, st_fdma_irq_handler, 0,
dev_name(&pdev->dev), fdev);
if (ret) {
dev_err(&pdev->dev, "Failed to request irq (%d)\n", ret);
goto err;
}
fdev->slim_rproc = st_slim_rproc_alloc(pdev, fdev->fw_name);
if (IS_ERR(fdev->slim_rproc)) {
ret = PTR_ERR(fdev->slim_rproc);
dev_err(&pdev->dev, "slim_rproc_alloc failed (%d)\n", ret);
goto err;
}
/* Initialise list of FDMA channels */
INIT_LIST_HEAD(&fdev->dma_device.channels);
for (i = 0; i < fdev->nr_channels; i++) {
struct st_fdma_chan *fchan = &fdev->chans[i];
fchan->fdev = fdev;
fchan->vchan.desc_free = st_fdma_free_desc;
vchan_init(&fchan->vchan, &fdev->dma_device);
}
/* Initialise the FDMA dreq (reserve 0 & 31 for FDMA use) */
fdev->dreq_mask = BIT(0) | BIT(31);
dma_cap_set(DMA_SLAVE, fdev->dma_device.cap_mask);
dma_cap_set(DMA_CYCLIC, fdev->dma_device.cap_mask);
dma_cap_set(DMA_MEMCPY, fdev->dma_device.cap_mask);
fdev->dma_device.dev = &pdev->dev;
fdev->dma_device.device_alloc_chan_resources = st_fdma_alloc_chan_res;
fdev->dma_device.device_free_chan_resources = st_fdma_free_chan_res;
fdev->dma_device.device_prep_dma_cyclic = st_fdma_prep_dma_cyclic;
fdev->dma_device.device_prep_slave_sg = st_fdma_prep_slave_sg;
fdev->dma_device.device_prep_dma_memcpy = st_fdma_prep_dma_memcpy;
fdev->dma_device.device_tx_status = st_fdma_tx_status;
fdev->dma_device.device_issue_pending = st_fdma_issue_pending;
fdev->dma_device.device_terminate_all = st_fdma_terminate_all;
fdev->dma_device.device_config = st_fdma_slave_config;
fdev->dma_device.device_pause = st_fdma_pause;
fdev->dma_device.device_resume = st_fdma_resume;
fdev->dma_device.src_addr_widths = FDMA_DMA_BUSWIDTHS;
fdev->dma_device.dst_addr_widths = FDMA_DMA_BUSWIDTHS;
fdev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
fdev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
ret = dma_async_device_register(&fdev->dma_device);
if (ret) {
dev_err(&pdev->dev,
"Failed to register DMA device (%d)\n", ret);
goto err_rproc;
}
ret = of_dma_controller_register(np, st_fdma_of_xlate, fdev);
if (ret) {
dev_err(&pdev->dev,
"Failed to register controller (%d)\n", ret);
goto err_dma_dev;
}
dev_info(&pdev->dev, "ST FDMA engine driver, irq:%d\n", fdev->irq);
return 0;
err_dma_dev:
dma_async_device_unregister(&fdev->dma_device);
err_rproc:
st_fdma_free(fdev);
st_slim_rproc_put(fdev->slim_rproc);
err:
return ret;
}
static int st_fdma_remove(struct platform_device *pdev)
{
struct st_fdma_dev *fdev = platform_get_drvdata(pdev);
devm_free_irq(&pdev->dev, fdev->irq, fdev);
st_slim_rproc_put(fdev->slim_rproc);
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&fdev->dma_device);
return 0;
}
static struct platform_driver st_fdma_platform_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = st_fdma_match,
},
.probe = st_fdma_probe,
.remove = st_fdma_remove,
};
module_platform_driver(st_fdma_platform_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("STMicroelectronics FDMA engine driver");
MODULE_AUTHOR("Ludovic.barre <Ludovic.barre@st.com>");
MODULE_AUTHOR("Peter Griffin <peter.griffin@linaro.org>");
MODULE_ALIAS("platform: " DRIVER_NAME);