2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/samples/vfio-mdev/mtty.c
Nathan Chancellor 8ba35b3a00 vfio-mdev/samples: Use u8 instead of char for handle functions
Clang warns:

samples/vfio-mdev/mtty.c:592:39: warning: implicit conversion from 'int'
to 'char' changes value from 162 to -94 [-Wconstant-conversion]
                *buf = UART_MSR_DSR | UART_MSR_DDSR | UART_MSR_DCD;
                     ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~
1 warning generated.

Turns out that all uses of buf in this function ultimately end up stored
or cast to an unsigned type. Just use u8, which has the same number of
bits but can store this larger number so Clang no longer warns.

Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2018-12-17 11:07:13 -07:00

1517 lines
33 KiB
C

/*
* Mediated virtual PCI serial host device driver
*
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
* Author: Neo Jia <cjia@nvidia.com>
* Kirti Wankhede <kwankhede@nvidia.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Sample driver that creates mdev device that simulates serial port over PCI
* card.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/cdev.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/uuid.h>
#include <linux/vfio.h>
#include <linux/iommu.h>
#include <linux/sysfs.h>
#include <linux/ctype.h>
#include <linux/file.h>
#include <linux/mdev.h>
#include <linux/pci.h>
#include <linux/serial.h>
#include <uapi/linux/serial_reg.h>
#include <linux/eventfd.h>
/*
* #defines
*/
#define VERSION_STRING "0.1"
#define DRIVER_AUTHOR "NVIDIA Corporation"
#define MTTY_CLASS_NAME "mtty"
#define MTTY_NAME "mtty"
#define MTTY_STRING_LEN 16
#define MTTY_CONFIG_SPACE_SIZE 0xff
#define MTTY_IO_BAR_SIZE 0x8
#define MTTY_MMIO_BAR_SIZE 0x100000
#define STORE_LE16(addr, val) (*(u16 *)addr = val)
#define STORE_LE32(addr, val) (*(u32 *)addr = val)
#define MAX_FIFO_SIZE 16
#define CIRCULAR_BUF_INC_IDX(idx) (idx = (idx + 1) & (MAX_FIFO_SIZE - 1))
#define MTTY_VFIO_PCI_OFFSET_SHIFT 40
#define MTTY_VFIO_PCI_OFFSET_TO_INDEX(off) (off >> MTTY_VFIO_PCI_OFFSET_SHIFT)
#define MTTY_VFIO_PCI_INDEX_TO_OFFSET(index) \
((u64)(index) << MTTY_VFIO_PCI_OFFSET_SHIFT)
#define MTTY_VFIO_PCI_OFFSET_MASK \
(((u64)(1) << MTTY_VFIO_PCI_OFFSET_SHIFT) - 1)
#define MAX_MTTYS 24
/*
* Global Structures
*/
struct mtty_dev {
dev_t vd_devt;
struct class *vd_class;
struct cdev vd_cdev;
struct idr vd_idr;
struct device dev;
} mtty_dev;
struct mdev_region_info {
u64 start;
u64 phys_start;
u32 size;
u64 vfio_offset;
};
#if defined(DEBUG_REGS)
const char *wr_reg[] = {
"TX",
"IER",
"FCR",
"LCR",
"MCR",
"LSR",
"MSR",
"SCR"
};
const char *rd_reg[] = {
"RX",
"IER",
"IIR",
"LCR",
"MCR",
"LSR",
"MSR",
"SCR"
};
#endif
/* loop back buffer */
struct rxtx {
u8 fifo[MAX_FIFO_SIZE];
u8 head, tail;
u8 count;
};
struct serial_port {
u8 uart_reg[8]; /* 8 registers */
struct rxtx rxtx; /* loop back buffer */
bool dlab;
bool overrun;
u16 divisor;
u8 fcr; /* FIFO control register */
u8 max_fifo_size;
u8 intr_trigger_level; /* interrupt trigger level */
};
/* State of each mdev device */
struct mdev_state {
int irq_fd;
struct eventfd_ctx *intx_evtfd;
struct eventfd_ctx *msi_evtfd;
int irq_index;
u8 *vconfig;
struct mutex ops_lock;
struct mdev_device *mdev;
struct mdev_region_info region_info[VFIO_PCI_NUM_REGIONS];
u32 bar_mask[VFIO_PCI_NUM_REGIONS];
struct list_head next;
struct serial_port s[2];
struct mutex rxtx_lock;
struct vfio_device_info dev_info;
int nr_ports;
};
struct mutex mdev_list_lock;
struct list_head mdev_devices_list;
static const struct file_operations vd_fops = {
.owner = THIS_MODULE,
};
/* function prototypes */
static int mtty_trigger_interrupt(uuid_le uuid);
/* Helper functions */
static struct mdev_state *find_mdev_state_by_uuid(uuid_le uuid)
{
struct mdev_state *mds;
list_for_each_entry(mds, &mdev_devices_list, next) {
if (uuid_le_cmp(mdev_uuid(mds->mdev), uuid) == 0)
return mds;
}
return NULL;
}
void dump_buffer(u8 *buf, uint32_t count)
{
#if defined(DEBUG)
int i;
pr_info("Buffer:\n");
for (i = 0; i < count; i++) {
pr_info("%2x ", *(buf + i));
if ((i + 1) % 16 == 0)
pr_info("\n");
}
#endif
}
static void mtty_create_config_space(struct mdev_state *mdev_state)
{
/* PCI dev ID */
STORE_LE32((u32 *) &mdev_state->vconfig[0x0], 0x32534348);
/* Control: I/O+, Mem-, BusMaster- */
STORE_LE16((u16 *) &mdev_state->vconfig[0x4], 0x0001);
/* Status: capabilities list absent */
STORE_LE16((u16 *) &mdev_state->vconfig[0x6], 0x0200);
/* Rev ID */
mdev_state->vconfig[0x8] = 0x10;
/* programming interface class : 16550-compatible serial controller */
mdev_state->vconfig[0x9] = 0x02;
/* Sub class : 00 */
mdev_state->vconfig[0xa] = 0x00;
/* Base class : Simple Communication controllers */
mdev_state->vconfig[0xb] = 0x07;
/* base address registers */
/* BAR0: IO space */
STORE_LE32((u32 *) &mdev_state->vconfig[0x10], 0x000001);
mdev_state->bar_mask[0] = ~(MTTY_IO_BAR_SIZE) + 1;
if (mdev_state->nr_ports == 2) {
/* BAR1: IO space */
STORE_LE32((u32 *) &mdev_state->vconfig[0x14], 0x000001);
mdev_state->bar_mask[1] = ~(MTTY_IO_BAR_SIZE) + 1;
}
/* Subsystem ID */
STORE_LE32((u32 *) &mdev_state->vconfig[0x2c], 0x32534348);
mdev_state->vconfig[0x34] = 0x00; /* Cap Ptr */
mdev_state->vconfig[0x3d] = 0x01; /* interrupt pin (INTA#) */
/* Vendor specific data */
mdev_state->vconfig[0x40] = 0x23;
mdev_state->vconfig[0x43] = 0x80;
mdev_state->vconfig[0x44] = 0x23;
mdev_state->vconfig[0x48] = 0x23;
mdev_state->vconfig[0x4c] = 0x23;
mdev_state->vconfig[0x60] = 0x50;
mdev_state->vconfig[0x61] = 0x43;
mdev_state->vconfig[0x62] = 0x49;
mdev_state->vconfig[0x63] = 0x20;
mdev_state->vconfig[0x64] = 0x53;
mdev_state->vconfig[0x65] = 0x65;
mdev_state->vconfig[0x66] = 0x72;
mdev_state->vconfig[0x67] = 0x69;
mdev_state->vconfig[0x68] = 0x61;
mdev_state->vconfig[0x69] = 0x6c;
mdev_state->vconfig[0x6a] = 0x2f;
mdev_state->vconfig[0x6b] = 0x55;
mdev_state->vconfig[0x6c] = 0x41;
mdev_state->vconfig[0x6d] = 0x52;
mdev_state->vconfig[0x6e] = 0x54;
}
static void handle_pci_cfg_write(struct mdev_state *mdev_state, u16 offset,
u8 *buf, u32 count)
{
u32 cfg_addr, bar_mask, bar_index = 0;
switch (offset) {
case 0x04: /* device control */
case 0x06: /* device status */
/* do nothing */
break;
case 0x3c: /* interrupt line */
mdev_state->vconfig[0x3c] = buf[0];
break;
case 0x3d:
/*
* Interrupt Pin is hardwired to INTA.
* This field is write protected by hardware
*/
break;
case 0x10: /* BAR0 */
case 0x14: /* BAR1 */
if (offset == 0x10)
bar_index = 0;
else if (offset == 0x14)
bar_index = 1;
if ((mdev_state->nr_ports == 1) && (bar_index == 1)) {
STORE_LE32(&mdev_state->vconfig[offset], 0);
break;
}
cfg_addr = *(u32 *)buf;
pr_info("BAR%d addr 0x%x\n", bar_index, cfg_addr);
if (cfg_addr == 0xffffffff) {
bar_mask = mdev_state->bar_mask[bar_index];
cfg_addr = (cfg_addr & bar_mask);
}
cfg_addr |= (mdev_state->vconfig[offset] & 0x3ul);
STORE_LE32(&mdev_state->vconfig[offset], cfg_addr);
break;
case 0x18: /* BAR2 */
case 0x1c: /* BAR3 */
case 0x20: /* BAR4 */
STORE_LE32(&mdev_state->vconfig[offset], 0);
break;
default:
pr_info("PCI config write @0x%x of %d bytes not handled\n",
offset, count);
break;
}
}
static void handle_bar_write(unsigned int index, struct mdev_state *mdev_state,
u16 offset, u8 *buf, u32 count)
{
u8 data = *buf;
/* Handle data written by guest */
switch (offset) {
case UART_TX:
/* if DLAB set, data is LSB of divisor */
if (mdev_state->s[index].dlab) {
mdev_state->s[index].divisor |= data;
break;
}
mutex_lock(&mdev_state->rxtx_lock);
/* save in TX buffer */
if (mdev_state->s[index].rxtx.count <
mdev_state->s[index].max_fifo_size) {
mdev_state->s[index].rxtx.fifo[
mdev_state->s[index].rxtx.head] = data;
mdev_state->s[index].rxtx.count++;
CIRCULAR_BUF_INC_IDX(mdev_state->s[index].rxtx.head);
mdev_state->s[index].overrun = false;
/*
* Trigger interrupt if receive data interrupt is
* enabled and fifo reached trigger level
*/
if ((mdev_state->s[index].uart_reg[UART_IER] &
UART_IER_RDI) &&
(mdev_state->s[index].rxtx.count ==
mdev_state->s[index].intr_trigger_level)) {
/* trigger interrupt */
#if defined(DEBUG_INTR)
pr_err("Serial port %d: Fifo level trigger\n",
index);
#endif
mtty_trigger_interrupt(
mdev_uuid(mdev_state->mdev));
}
} else {
#if defined(DEBUG_INTR)
pr_err("Serial port %d: Buffer Overflow\n", index);
#endif
mdev_state->s[index].overrun = true;
/*
* Trigger interrupt if receiver line status interrupt
* is enabled
*/
if (mdev_state->s[index].uart_reg[UART_IER] &
UART_IER_RLSI)
mtty_trigger_interrupt(
mdev_uuid(mdev_state->mdev));
}
mutex_unlock(&mdev_state->rxtx_lock);
break;
case UART_IER:
/* if DLAB set, data is MSB of divisor */
if (mdev_state->s[index].dlab)
mdev_state->s[index].divisor |= (u16)data << 8;
else {
mdev_state->s[index].uart_reg[offset] = data;
mutex_lock(&mdev_state->rxtx_lock);
if ((data & UART_IER_THRI) &&
(mdev_state->s[index].rxtx.head ==
mdev_state->s[index].rxtx.tail)) {
#if defined(DEBUG_INTR)
pr_err("Serial port %d: IER_THRI write\n",
index);
#endif
mtty_trigger_interrupt(
mdev_uuid(mdev_state->mdev));
}
mutex_unlock(&mdev_state->rxtx_lock);
}
break;
case UART_FCR:
mdev_state->s[index].fcr = data;
mutex_lock(&mdev_state->rxtx_lock);
if (data & (UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)) {
/* clear loop back FIFO */
mdev_state->s[index].rxtx.count = 0;
mdev_state->s[index].rxtx.head = 0;
mdev_state->s[index].rxtx.tail = 0;
}
mutex_unlock(&mdev_state->rxtx_lock);
switch (data & UART_FCR_TRIGGER_MASK) {
case UART_FCR_TRIGGER_1:
mdev_state->s[index].intr_trigger_level = 1;
break;
case UART_FCR_TRIGGER_4:
mdev_state->s[index].intr_trigger_level = 4;
break;
case UART_FCR_TRIGGER_8:
mdev_state->s[index].intr_trigger_level = 8;
break;
case UART_FCR_TRIGGER_14:
mdev_state->s[index].intr_trigger_level = 14;
break;
}
/*
* Set trigger level to 1 otherwise or implement timer with
* timeout of 4 characters and on expiring that timer set
* Recevice data timeout in IIR register
*/
mdev_state->s[index].intr_trigger_level = 1;
if (data & UART_FCR_ENABLE_FIFO)
mdev_state->s[index].max_fifo_size = MAX_FIFO_SIZE;
else {
mdev_state->s[index].max_fifo_size = 1;
mdev_state->s[index].intr_trigger_level = 1;
}
break;
case UART_LCR:
if (data & UART_LCR_DLAB) {
mdev_state->s[index].dlab = true;
mdev_state->s[index].divisor = 0;
} else
mdev_state->s[index].dlab = false;
mdev_state->s[index].uart_reg[offset] = data;
break;
case UART_MCR:
mdev_state->s[index].uart_reg[offset] = data;
if ((mdev_state->s[index].uart_reg[UART_IER] & UART_IER_MSI) &&
(data & UART_MCR_OUT2)) {
#if defined(DEBUG_INTR)
pr_err("Serial port %d: MCR_OUT2 write\n", index);
#endif
mtty_trigger_interrupt(mdev_uuid(mdev_state->mdev));
}
if ((mdev_state->s[index].uart_reg[UART_IER] & UART_IER_MSI) &&
(data & (UART_MCR_RTS | UART_MCR_DTR))) {
#if defined(DEBUG_INTR)
pr_err("Serial port %d: MCR RTS/DTR write\n", index);
#endif
mtty_trigger_interrupt(mdev_uuid(mdev_state->mdev));
}
break;
case UART_LSR:
case UART_MSR:
/* do nothing */
break;
case UART_SCR:
mdev_state->s[index].uart_reg[offset] = data;
break;
default:
break;
}
}
static void handle_bar_read(unsigned int index, struct mdev_state *mdev_state,
u16 offset, u8 *buf, u32 count)
{
/* Handle read requests by guest */
switch (offset) {
case UART_RX:
/* if DLAB set, data is LSB of divisor */
if (mdev_state->s[index].dlab) {
*buf = (u8)mdev_state->s[index].divisor;
break;
}
mutex_lock(&mdev_state->rxtx_lock);
/* return data in tx buffer */
if (mdev_state->s[index].rxtx.head !=
mdev_state->s[index].rxtx.tail) {
*buf = mdev_state->s[index].rxtx.fifo[
mdev_state->s[index].rxtx.tail];
mdev_state->s[index].rxtx.count--;
CIRCULAR_BUF_INC_IDX(mdev_state->s[index].rxtx.tail);
}
if (mdev_state->s[index].rxtx.head ==
mdev_state->s[index].rxtx.tail) {
/*
* Trigger interrupt if tx buffer empty interrupt is
* enabled and fifo is empty
*/
#if defined(DEBUG_INTR)
pr_err("Serial port %d: Buffer Empty\n", index);
#endif
if (mdev_state->s[index].uart_reg[UART_IER] &
UART_IER_THRI)
mtty_trigger_interrupt(
mdev_uuid(mdev_state->mdev));
}
mutex_unlock(&mdev_state->rxtx_lock);
break;
case UART_IER:
if (mdev_state->s[index].dlab) {
*buf = (u8)(mdev_state->s[index].divisor >> 8);
break;
}
*buf = mdev_state->s[index].uart_reg[offset] & 0x0f;
break;
case UART_IIR:
{
u8 ier = mdev_state->s[index].uart_reg[UART_IER];
*buf = 0;
mutex_lock(&mdev_state->rxtx_lock);
/* Interrupt priority 1: Parity, overrun, framing or break */
if ((ier & UART_IER_RLSI) && mdev_state->s[index].overrun)
*buf |= UART_IIR_RLSI;
/* Interrupt priority 2: Fifo trigger level reached */
if ((ier & UART_IER_RDI) &&
(mdev_state->s[index].rxtx.count >=
mdev_state->s[index].intr_trigger_level))
*buf |= UART_IIR_RDI;
/* Interrupt priotiry 3: transmitter holding register empty */
if ((ier & UART_IER_THRI) &&
(mdev_state->s[index].rxtx.head ==
mdev_state->s[index].rxtx.tail))
*buf |= UART_IIR_THRI;
/* Interrupt priotiry 4: Modem status: CTS, DSR, RI or DCD */
if ((ier & UART_IER_MSI) &&
(mdev_state->s[index].uart_reg[UART_MCR] &
(UART_MCR_RTS | UART_MCR_DTR)))
*buf |= UART_IIR_MSI;
/* bit0: 0=> interrupt pending, 1=> no interrupt is pending */
if (*buf == 0)
*buf = UART_IIR_NO_INT;
/* set bit 6 & 7 to be 16550 compatible */
*buf |= 0xC0;
mutex_unlock(&mdev_state->rxtx_lock);
}
break;
case UART_LCR:
case UART_MCR:
*buf = mdev_state->s[index].uart_reg[offset];
break;
case UART_LSR:
{
u8 lsr = 0;
mutex_lock(&mdev_state->rxtx_lock);
/* atleast one char in FIFO */
if (mdev_state->s[index].rxtx.head !=
mdev_state->s[index].rxtx.tail)
lsr |= UART_LSR_DR;
/* if FIFO overrun */
if (mdev_state->s[index].overrun)
lsr |= UART_LSR_OE;
/* transmit FIFO empty and tramsitter empty */
if (mdev_state->s[index].rxtx.head ==
mdev_state->s[index].rxtx.tail)
lsr |= UART_LSR_TEMT | UART_LSR_THRE;
mutex_unlock(&mdev_state->rxtx_lock);
*buf = lsr;
break;
}
case UART_MSR:
*buf = UART_MSR_DSR | UART_MSR_DDSR | UART_MSR_DCD;
mutex_lock(&mdev_state->rxtx_lock);
/* if AFE is 1 and FIFO have space, set CTS bit */
if (mdev_state->s[index].uart_reg[UART_MCR] &
UART_MCR_AFE) {
if (mdev_state->s[index].rxtx.count <
mdev_state->s[index].max_fifo_size)
*buf |= UART_MSR_CTS | UART_MSR_DCTS;
} else
*buf |= UART_MSR_CTS | UART_MSR_DCTS;
mutex_unlock(&mdev_state->rxtx_lock);
break;
case UART_SCR:
*buf = mdev_state->s[index].uart_reg[offset];
break;
default:
break;
}
}
static void mdev_read_base(struct mdev_state *mdev_state)
{
int index, pos;
u32 start_lo, start_hi;
u32 mem_type;
pos = PCI_BASE_ADDRESS_0;
for (index = 0; index <= VFIO_PCI_BAR5_REGION_INDEX; index++) {
if (!mdev_state->region_info[index].size)
continue;
start_lo = (*(u32 *)(mdev_state->vconfig + pos)) &
PCI_BASE_ADDRESS_MEM_MASK;
mem_type = (*(u32 *)(mdev_state->vconfig + pos)) &
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
switch (mem_type) {
case PCI_BASE_ADDRESS_MEM_TYPE_64:
start_hi = (*(u32 *)(mdev_state->vconfig + pos + 4));
pos += 4;
break;
case PCI_BASE_ADDRESS_MEM_TYPE_32:
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
/* 1M mem BAR treated as 32-bit BAR */
default:
/* mem unknown type treated as 32-bit BAR */
start_hi = 0;
break;
}
pos += 4;
mdev_state->region_info[index].start = ((u64)start_hi << 32) |
start_lo;
}
}
static ssize_t mdev_access(struct mdev_device *mdev, u8 *buf, size_t count,
loff_t pos, bool is_write)
{
struct mdev_state *mdev_state;
unsigned int index;
loff_t offset;
int ret = 0;
if (!mdev || !buf)
return -EINVAL;
mdev_state = mdev_get_drvdata(mdev);
if (!mdev_state) {
pr_err("%s mdev_state not found\n", __func__);
return -EINVAL;
}
mutex_lock(&mdev_state->ops_lock);
index = MTTY_VFIO_PCI_OFFSET_TO_INDEX(pos);
offset = pos & MTTY_VFIO_PCI_OFFSET_MASK;
switch (index) {
case VFIO_PCI_CONFIG_REGION_INDEX:
#if defined(DEBUG)
pr_info("%s: PCI config space %s at offset 0x%llx\n",
__func__, is_write ? "write" : "read", offset);
#endif
if (is_write) {
dump_buffer(buf, count);
handle_pci_cfg_write(mdev_state, offset, buf, count);
} else {
memcpy(buf, (mdev_state->vconfig + offset), count);
dump_buffer(buf, count);
}
break;
case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
if (!mdev_state->region_info[index].start)
mdev_read_base(mdev_state);
if (is_write) {
dump_buffer(buf, count);
#if defined(DEBUG_REGS)
pr_info("%s: BAR%d WR @0x%llx %s val:0x%02x dlab:%d\n",
__func__, index, offset, wr_reg[offset],
*buf, mdev_state->s[index].dlab);
#endif
handle_bar_write(index, mdev_state, offset, buf, count);
} else {
handle_bar_read(index, mdev_state, offset, buf, count);
dump_buffer(buf, count);
#if defined(DEBUG_REGS)
pr_info("%s: BAR%d RD @0x%llx %s val:0x%02x dlab:%d\n",
__func__, index, offset, rd_reg[offset],
*buf, mdev_state->s[index].dlab);
#endif
}
break;
default:
ret = -1;
goto accessfailed;
}
ret = count;
accessfailed:
mutex_unlock(&mdev_state->ops_lock);
return ret;
}
int mtty_create(struct kobject *kobj, struct mdev_device *mdev)
{
struct mdev_state *mdev_state;
char name[MTTY_STRING_LEN];
int nr_ports = 0, i;
if (!mdev)
return -EINVAL;
for (i = 0; i < 2; i++) {
snprintf(name, MTTY_STRING_LEN, "%s-%d",
dev_driver_string(mdev_parent_dev(mdev)), i + 1);
if (!strcmp(kobj->name, name)) {
nr_ports = i + 1;
break;
}
}
if (!nr_ports)
return -EINVAL;
mdev_state = kzalloc(sizeof(struct mdev_state), GFP_KERNEL);
if (mdev_state == NULL)
return -ENOMEM;
mdev_state->nr_ports = nr_ports;
mdev_state->irq_index = -1;
mdev_state->s[0].max_fifo_size = MAX_FIFO_SIZE;
mdev_state->s[1].max_fifo_size = MAX_FIFO_SIZE;
mutex_init(&mdev_state->rxtx_lock);
mdev_state->vconfig = kzalloc(MTTY_CONFIG_SPACE_SIZE, GFP_KERNEL);
if (mdev_state->vconfig == NULL) {
kfree(mdev_state);
return -ENOMEM;
}
mutex_init(&mdev_state->ops_lock);
mdev_state->mdev = mdev;
mdev_set_drvdata(mdev, mdev_state);
mtty_create_config_space(mdev_state);
mutex_lock(&mdev_list_lock);
list_add(&mdev_state->next, &mdev_devices_list);
mutex_unlock(&mdev_list_lock);
return 0;
}
int mtty_remove(struct mdev_device *mdev)
{
struct mdev_state *mds, *tmp_mds;
struct mdev_state *mdev_state = mdev_get_drvdata(mdev);
int ret = -EINVAL;
mutex_lock(&mdev_list_lock);
list_for_each_entry_safe(mds, tmp_mds, &mdev_devices_list, next) {
if (mdev_state == mds) {
list_del(&mdev_state->next);
mdev_set_drvdata(mdev, NULL);
kfree(mdev_state->vconfig);
kfree(mdev_state);
ret = 0;
break;
}
}
mutex_unlock(&mdev_list_lock);
return ret;
}
int mtty_reset(struct mdev_device *mdev)
{
struct mdev_state *mdev_state;
if (!mdev)
return -EINVAL;
mdev_state = mdev_get_drvdata(mdev);
if (!mdev_state)
return -EINVAL;
pr_info("%s: called\n", __func__);
return 0;
}
ssize_t mtty_read(struct mdev_device *mdev, char __user *buf, size_t count,
loff_t *ppos)
{
unsigned int done = 0;
int ret;
while (count) {
size_t filled;
if (count >= 4 && !(*ppos % 4)) {
u32 val;
ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
*ppos, false);
if (ret <= 0)
goto read_err;
if (copy_to_user(buf, &val, sizeof(val)))
goto read_err;
filled = 4;
} else if (count >= 2 && !(*ppos % 2)) {
u16 val;
ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
*ppos, false);
if (ret <= 0)
goto read_err;
if (copy_to_user(buf, &val, sizeof(val)))
goto read_err;
filled = 2;
} else {
u8 val;
ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
*ppos, false);
if (ret <= 0)
goto read_err;
if (copy_to_user(buf, &val, sizeof(val)))
goto read_err;
filled = 1;
}
count -= filled;
done += filled;
*ppos += filled;
buf += filled;
}
return done;
read_err:
return -EFAULT;
}
ssize_t mtty_write(struct mdev_device *mdev, const char __user *buf,
size_t count, loff_t *ppos)
{
unsigned int done = 0;
int ret;
while (count) {
size_t filled;
if (count >= 4 && !(*ppos % 4)) {
u32 val;
if (copy_from_user(&val, buf, sizeof(val)))
goto write_err;
ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
*ppos, true);
if (ret <= 0)
goto write_err;
filled = 4;
} else if (count >= 2 && !(*ppos % 2)) {
u16 val;
if (copy_from_user(&val, buf, sizeof(val)))
goto write_err;
ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
*ppos, true);
if (ret <= 0)
goto write_err;
filled = 2;
} else {
u8 val;
if (copy_from_user(&val, buf, sizeof(val)))
goto write_err;
ret = mdev_access(mdev, (u8 *)&val, sizeof(val),
*ppos, true);
if (ret <= 0)
goto write_err;
filled = 1;
}
count -= filled;
done += filled;
*ppos += filled;
buf += filled;
}
return done;
write_err:
return -EFAULT;
}
static int mtty_set_irqs(struct mdev_device *mdev, uint32_t flags,
unsigned int index, unsigned int start,
unsigned int count, void *data)
{
int ret = 0;
struct mdev_state *mdev_state;
if (!mdev)
return -EINVAL;
mdev_state = mdev_get_drvdata(mdev);
if (!mdev_state)
return -EINVAL;
mutex_lock(&mdev_state->ops_lock);
switch (index) {
case VFIO_PCI_INTX_IRQ_INDEX:
switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
case VFIO_IRQ_SET_ACTION_MASK:
case VFIO_IRQ_SET_ACTION_UNMASK:
break;
case VFIO_IRQ_SET_ACTION_TRIGGER:
{
if (flags & VFIO_IRQ_SET_DATA_NONE) {
pr_info("%s: disable INTx\n", __func__);
if (mdev_state->intx_evtfd)
eventfd_ctx_put(mdev_state->intx_evtfd);
break;
}
if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
int fd = *(int *)data;
if (fd > 0) {
struct eventfd_ctx *evt;
evt = eventfd_ctx_fdget(fd);
if (IS_ERR(evt)) {
ret = PTR_ERR(evt);
break;
}
mdev_state->intx_evtfd = evt;
mdev_state->irq_fd = fd;
mdev_state->irq_index = index;
break;
}
}
break;
}
}
break;
case VFIO_PCI_MSI_IRQ_INDEX:
switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
case VFIO_IRQ_SET_ACTION_MASK:
case VFIO_IRQ_SET_ACTION_UNMASK:
break;
case VFIO_IRQ_SET_ACTION_TRIGGER:
if (flags & VFIO_IRQ_SET_DATA_NONE) {
if (mdev_state->msi_evtfd)
eventfd_ctx_put(mdev_state->msi_evtfd);
pr_info("%s: disable MSI\n", __func__);
mdev_state->irq_index = VFIO_PCI_INTX_IRQ_INDEX;
break;
}
if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
int fd = *(int *)data;
struct eventfd_ctx *evt;
if (fd <= 0)
break;
if (mdev_state->msi_evtfd)
break;
evt = eventfd_ctx_fdget(fd);
if (IS_ERR(evt)) {
ret = PTR_ERR(evt);
break;
}
mdev_state->msi_evtfd = evt;
mdev_state->irq_fd = fd;
mdev_state->irq_index = index;
}
break;
}
break;
case VFIO_PCI_MSIX_IRQ_INDEX:
pr_info("%s: MSIX_IRQ\n", __func__);
break;
case VFIO_PCI_ERR_IRQ_INDEX:
pr_info("%s: ERR_IRQ\n", __func__);
break;
case VFIO_PCI_REQ_IRQ_INDEX:
pr_info("%s: REQ_IRQ\n", __func__);
break;
}
mutex_unlock(&mdev_state->ops_lock);
return ret;
}
static int mtty_trigger_interrupt(uuid_le uuid)
{
int ret = -1;
struct mdev_state *mdev_state;
mdev_state = find_mdev_state_by_uuid(uuid);
if (!mdev_state) {
pr_info("%s: mdev not found\n", __func__);
return -EINVAL;
}
if ((mdev_state->irq_index == VFIO_PCI_MSI_IRQ_INDEX) &&
(!mdev_state->msi_evtfd))
return -EINVAL;
else if ((mdev_state->irq_index == VFIO_PCI_INTX_IRQ_INDEX) &&
(!mdev_state->intx_evtfd)) {
pr_info("%s: Intr eventfd not found\n", __func__);
return -EINVAL;
}
if (mdev_state->irq_index == VFIO_PCI_MSI_IRQ_INDEX)
ret = eventfd_signal(mdev_state->msi_evtfd, 1);
else
ret = eventfd_signal(mdev_state->intx_evtfd, 1);
#if defined(DEBUG_INTR)
pr_info("Intx triggered\n");
#endif
if (ret != 1)
pr_err("%s: eventfd signal failed (%d)\n", __func__, ret);
return ret;
}
int mtty_get_region_info(struct mdev_device *mdev,
struct vfio_region_info *region_info,
u16 *cap_type_id, void **cap_type)
{
unsigned int size = 0;
struct mdev_state *mdev_state;
u32 bar_index;
if (!mdev)
return -EINVAL;
mdev_state = mdev_get_drvdata(mdev);
if (!mdev_state)
return -EINVAL;
bar_index = region_info->index;
if (bar_index >= VFIO_PCI_NUM_REGIONS)
return -EINVAL;
mutex_lock(&mdev_state->ops_lock);
switch (bar_index) {
case VFIO_PCI_CONFIG_REGION_INDEX:
size = MTTY_CONFIG_SPACE_SIZE;
break;
case VFIO_PCI_BAR0_REGION_INDEX:
size = MTTY_IO_BAR_SIZE;
break;
case VFIO_PCI_BAR1_REGION_INDEX:
if (mdev_state->nr_ports == 2)
size = MTTY_IO_BAR_SIZE;
break;
default:
size = 0;
break;
}
mdev_state->region_info[bar_index].size = size;
mdev_state->region_info[bar_index].vfio_offset =
MTTY_VFIO_PCI_INDEX_TO_OFFSET(bar_index);
region_info->size = size;
region_info->offset = MTTY_VFIO_PCI_INDEX_TO_OFFSET(bar_index);
region_info->flags = VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE;
mutex_unlock(&mdev_state->ops_lock);
return 0;
}
int mtty_get_irq_info(struct mdev_device *mdev, struct vfio_irq_info *irq_info)
{
switch (irq_info->index) {
case VFIO_PCI_INTX_IRQ_INDEX:
case VFIO_PCI_MSI_IRQ_INDEX:
case VFIO_PCI_REQ_IRQ_INDEX:
break;
default:
return -EINVAL;
}
irq_info->flags = VFIO_IRQ_INFO_EVENTFD;
irq_info->count = 1;
if (irq_info->index == VFIO_PCI_INTX_IRQ_INDEX)
irq_info->flags |= (VFIO_IRQ_INFO_MASKABLE |
VFIO_IRQ_INFO_AUTOMASKED);
else
irq_info->flags |= VFIO_IRQ_INFO_NORESIZE;
return 0;
}
int mtty_get_device_info(struct mdev_device *mdev,
struct vfio_device_info *dev_info)
{
dev_info->flags = VFIO_DEVICE_FLAGS_PCI;
dev_info->num_regions = VFIO_PCI_NUM_REGIONS;
dev_info->num_irqs = VFIO_PCI_NUM_IRQS;
return 0;
}
static long mtty_ioctl(struct mdev_device *mdev, unsigned int cmd,
unsigned long arg)
{
int ret = 0;
unsigned long minsz;
struct mdev_state *mdev_state;
if (!mdev)
return -EINVAL;
mdev_state = mdev_get_drvdata(mdev);
if (!mdev_state)
return -ENODEV;
switch (cmd) {
case VFIO_DEVICE_GET_INFO:
{
struct vfio_device_info info;
minsz = offsetofend(struct vfio_device_info, num_irqs);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
ret = mtty_get_device_info(mdev, &info);
if (ret)
return ret;
memcpy(&mdev_state->dev_info, &info, sizeof(info));
if (copy_to_user((void __user *)arg, &info, minsz))
return -EFAULT;
return 0;
}
case VFIO_DEVICE_GET_REGION_INFO:
{
struct vfio_region_info info;
u16 cap_type_id = 0;
void *cap_type = NULL;
minsz = offsetofend(struct vfio_region_info, offset);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
ret = mtty_get_region_info(mdev, &info, &cap_type_id,
&cap_type);
if (ret)
return ret;
if (copy_to_user((void __user *)arg, &info, minsz))
return -EFAULT;
return 0;
}
case VFIO_DEVICE_GET_IRQ_INFO:
{
struct vfio_irq_info info;
minsz = offsetofend(struct vfio_irq_info, count);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if ((info.argsz < minsz) ||
(info.index >= mdev_state->dev_info.num_irqs))
return -EINVAL;
ret = mtty_get_irq_info(mdev, &info);
if (ret)
return ret;
if (copy_to_user((void __user *)arg, &info, minsz))
return -EFAULT;
return 0;
}
case VFIO_DEVICE_SET_IRQS:
{
struct vfio_irq_set hdr;
u8 *data = NULL, *ptr = NULL;
size_t data_size = 0;
minsz = offsetofend(struct vfio_irq_set, count);
if (copy_from_user(&hdr, (void __user *)arg, minsz))
return -EFAULT;
ret = vfio_set_irqs_validate_and_prepare(&hdr,
mdev_state->dev_info.num_irqs,
VFIO_PCI_NUM_IRQS,
&data_size);
if (ret)
return ret;
if (data_size) {
ptr = data = memdup_user((void __user *)(arg + minsz),
data_size);
if (IS_ERR(data))
return PTR_ERR(data);
}
ret = mtty_set_irqs(mdev, hdr.flags, hdr.index, hdr.start,
hdr.count, data);
kfree(ptr);
return ret;
}
case VFIO_DEVICE_RESET:
return mtty_reset(mdev);
}
return -ENOTTY;
}
int mtty_open(struct mdev_device *mdev)
{
pr_info("%s\n", __func__);
return 0;
}
void mtty_close(struct mdev_device *mdev)
{
pr_info("%s\n", __func__);
}
static ssize_t
sample_mtty_dev_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "This is phy device\n");
}
static DEVICE_ATTR_RO(sample_mtty_dev);
static struct attribute *mtty_dev_attrs[] = {
&dev_attr_sample_mtty_dev.attr,
NULL,
};
static const struct attribute_group mtty_dev_group = {
.name = "mtty_dev",
.attrs = mtty_dev_attrs,
};
const struct attribute_group *mtty_dev_groups[] = {
&mtty_dev_group,
NULL,
};
static ssize_t
sample_mdev_dev_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
if (mdev_from_dev(dev))
return sprintf(buf, "This is MDEV %s\n", dev_name(dev));
return sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(sample_mdev_dev);
static struct attribute *mdev_dev_attrs[] = {
&dev_attr_sample_mdev_dev.attr,
NULL,
};
static const struct attribute_group mdev_dev_group = {
.name = "vendor",
.attrs = mdev_dev_attrs,
};
const struct attribute_group *mdev_dev_groups[] = {
&mdev_dev_group,
NULL,
};
static ssize_t
name_show(struct kobject *kobj, struct device *dev, char *buf)
{
char name[MTTY_STRING_LEN];
int i;
const char *name_str[2] = {"Single port serial", "Dual port serial"};
for (i = 0; i < 2; i++) {
snprintf(name, MTTY_STRING_LEN, "%s-%d",
dev_driver_string(dev), i + 1);
if (!strcmp(kobj->name, name))
return sprintf(buf, "%s\n", name_str[i]);
}
return -EINVAL;
}
MDEV_TYPE_ATTR_RO(name);
static ssize_t
available_instances_show(struct kobject *kobj, struct device *dev, char *buf)
{
char name[MTTY_STRING_LEN];
int i;
struct mdev_state *mds;
int ports = 0, used = 0;
for (i = 0; i < 2; i++) {
snprintf(name, MTTY_STRING_LEN, "%s-%d",
dev_driver_string(dev), i + 1);
if (!strcmp(kobj->name, name)) {
ports = i + 1;
break;
}
}
if (!ports)
return -EINVAL;
list_for_each_entry(mds, &mdev_devices_list, next)
used += mds->nr_ports;
return sprintf(buf, "%d\n", (MAX_MTTYS - used)/ports);
}
MDEV_TYPE_ATTR_RO(available_instances);
static ssize_t device_api_show(struct kobject *kobj, struct device *dev,
char *buf)
{
return sprintf(buf, "%s\n", VFIO_DEVICE_API_PCI_STRING);
}
MDEV_TYPE_ATTR_RO(device_api);
static struct attribute *mdev_types_attrs[] = {
&mdev_type_attr_name.attr,
&mdev_type_attr_device_api.attr,
&mdev_type_attr_available_instances.attr,
NULL,
};
static struct attribute_group mdev_type_group1 = {
.name = "1",
.attrs = mdev_types_attrs,
};
static struct attribute_group mdev_type_group2 = {
.name = "2",
.attrs = mdev_types_attrs,
};
struct attribute_group *mdev_type_groups[] = {
&mdev_type_group1,
&mdev_type_group2,
NULL,
};
static const struct mdev_parent_ops mdev_fops = {
.owner = THIS_MODULE,
.dev_attr_groups = mtty_dev_groups,
.mdev_attr_groups = mdev_dev_groups,
.supported_type_groups = mdev_type_groups,
.create = mtty_create,
.remove = mtty_remove,
.open = mtty_open,
.release = mtty_close,
.read = mtty_read,
.write = mtty_write,
.ioctl = mtty_ioctl,
};
static void mtty_device_release(struct device *dev)
{
dev_dbg(dev, "mtty: released\n");
}
static int __init mtty_dev_init(void)
{
int ret = 0;
pr_info("mtty_dev: %s\n", __func__);
memset(&mtty_dev, 0, sizeof(mtty_dev));
idr_init(&mtty_dev.vd_idr);
ret = alloc_chrdev_region(&mtty_dev.vd_devt, 0, MINORMASK, MTTY_NAME);
if (ret < 0) {
pr_err("Error: failed to register mtty_dev, err:%d\n", ret);
return ret;
}
cdev_init(&mtty_dev.vd_cdev, &vd_fops);
cdev_add(&mtty_dev.vd_cdev, mtty_dev.vd_devt, MINORMASK);
pr_info("major_number:%d\n", MAJOR(mtty_dev.vd_devt));
mtty_dev.vd_class = class_create(THIS_MODULE, MTTY_CLASS_NAME);
if (IS_ERR(mtty_dev.vd_class)) {
pr_err("Error: failed to register mtty_dev class\n");
ret = PTR_ERR(mtty_dev.vd_class);
goto failed1;
}
mtty_dev.dev.class = mtty_dev.vd_class;
mtty_dev.dev.release = mtty_device_release;
dev_set_name(&mtty_dev.dev, "%s", MTTY_NAME);
ret = device_register(&mtty_dev.dev);
if (ret)
goto failed2;
ret = mdev_register_device(&mtty_dev.dev, &mdev_fops);
if (ret)
goto failed3;
mutex_init(&mdev_list_lock);
INIT_LIST_HEAD(&mdev_devices_list);
goto all_done;
failed3:
device_unregister(&mtty_dev.dev);
failed2:
class_destroy(mtty_dev.vd_class);
failed1:
cdev_del(&mtty_dev.vd_cdev);
unregister_chrdev_region(mtty_dev.vd_devt, MINORMASK);
all_done:
return ret;
}
static void __exit mtty_dev_exit(void)
{
mtty_dev.dev.bus = NULL;
mdev_unregister_device(&mtty_dev.dev);
device_unregister(&mtty_dev.dev);
idr_destroy(&mtty_dev.vd_idr);
cdev_del(&mtty_dev.vd_cdev);
unregister_chrdev_region(mtty_dev.vd_devt, MINORMASK);
class_destroy(mtty_dev.vd_class);
mtty_dev.vd_class = NULL;
pr_info("mtty_dev: Unloaded!\n");
}
module_init(mtty_dev_init)
module_exit(mtty_dev_exit)
MODULE_LICENSE("GPL v2");
MODULE_INFO(supported, "Test driver that simulate serial port over PCI");
MODULE_VERSION(VERSION_STRING);
MODULE_AUTHOR(DRIVER_AUTHOR);