2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 14:43:54 +08:00
linux-next/arch/parisc/mm/init.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

1084 lines
27 KiB
C

/*
* linux/arch/parisc/mm/init.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright 1999 SuSE GmbH
* changed by Philipp Rumpf
* Copyright 1999 Philipp Rumpf (prumpf@tux.org)
* Copyright 2004 Randolph Chung (tausq@debian.org)
* Copyright 2006-2007 Helge Deller (deller@gmx.de)
*
*/
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/gfp.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
#include <linux/initrd.h>
#include <linux/swap.h>
#include <linux/unistd.h>
#include <linux/nodemask.h> /* for node_online_map */
#include <linux/pagemap.h> /* for release_pages and page_cache_release */
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/tlb.h>
#include <asm/pdc_chassis.h>
#include <asm/mmzone.h>
#include <asm/sections.h>
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
extern int data_start;
#ifdef CONFIG_DISCONTIGMEM
struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
#endif
static struct resource data_resource = {
.name = "Kernel data",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource code_resource = {
.name = "Kernel code",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource pdcdata_resource = {
.name = "PDC data (Page Zero)",
.start = 0,
.end = 0x9ff,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
/* The following array is initialized from the firmware specific
* information retrieved in kernel/inventory.c.
*/
physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
int npmem_ranges __read_mostly;
#ifdef CONFIG_64BIT
#define MAX_MEM (~0UL)
#else /* !CONFIG_64BIT */
#define MAX_MEM (3584U*1024U*1024U)
#endif /* !CONFIG_64BIT */
static unsigned long mem_limit __read_mostly = MAX_MEM;
static void __init mem_limit_func(void)
{
char *cp, *end;
unsigned long limit;
/* We need this before __setup() functions are called */
limit = MAX_MEM;
for (cp = boot_command_line; *cp; ) {
if (memcmp(cp, "mem=", 4) == 0) {
cp += 4;
limit = memparse(cp, &end);
if (end != cp)
break;
cp = end;
} else {
while (*cp != ' ' && *cp)
++cp;
while (*cp == ' ')
++cp;
}
}
if (limit < mem_limit)
mem_limit = limit;
}
#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
static void __init setup_bootmem(void)
{
unsigned long bootmap_size;
unsigned long mem_max;
unsigned long bootmap_pages;
unsigned long bootmap_start_pfn;
unsigned long bootmap_pfn;
#ifndef CONFIG_DISCONTIGMEM
physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
int npmem_holes;
#endif
int i, sysram_resource_count;
disable_sr_hashing(); /* Turn off space register hashing */
/*
* Sort the ranges. Since the number of ranges is typically
* small, and performance is not an issue here, just do
* a simple insertion sort.
*/
for (i = 1; i < npmem_ranges; i++) {
int j;
for (j = i; j > 0; j--) {
unsigned long tmp;
if (pmem_ranges[j-1].start_pfn <
pmem_ranges[j].start_pfn) {
break;
}
tmp = pmem_ranges[j-1].start_pfn;
pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
pmem_ranges[j].start_pfn = tmp;
tmp = pmem_ranges[j-1].pages;
pmem_ranges[j-1].pages = pmem_ranges[j].pages;
pmem_ranges[j].pages = tmp;
}
}
#ifndef CONFIG_DISCONTIGMEM
/*
* Throw out ranges that are too far apart (controlled by
* MAX_GAP).
*/
for (i = 1; i < npmem_ranges; i++) {
if (pmem_ranges[i].start_pfn -
(pmem_ranges[i-1].start_pfn +
pmem_ranges[i-1].pages) > MAX_GAP) {
npmem_ranges = i;
printk("Large gap in memory detected (%ld pages). "
"Consider turning on CONFIG_DISCONTIGMEM\n",
pmem_ranges[i].start_pfn -
(pmem_ranges[i-1].start_pfn +
pmem_ranges[i-1].pages));
break;
}
}
#endif
if (npmem_ranges > 1) {
/* Print the memory ranges */
printk(KERN_INFO "Memory Ranges:\n");
for (i = 0; i < npmem_ranges; i++) {
unsigned long start;
unsigned long size;
size = (pmem_ranges[i].pages << PAGE_SHIFT);
start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
i,start, start + (size - 1), size >> 20);
}
}
sysram_resource_count = npmem_ranges;
for (i = 0; i < sysram_resource_count; i++) {
struct resource *res = &sysram_resources[i];
res->name = "System RAM";
res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
}
/*
* For 32 bit kernels we limit the amount of memory we can
* support, in order to preserve enough kernel address space
* for other purposes. For 64 bit kernels we don't normally
* limit the memory, but this mechanism can be used to
* artificially limit the amount of memory (and it is written
* to work with multiple memory ranges).
*/
mem_limit_func(); /* check for "mem=" argument */
mem_max = 0;
num_physpages = 0;
for (i = 0; i < npmem_ranges; i++) {
unsigned long rsize;
rsize = pmem_ranges[i].pages << PAGE_SHIFT;
if ((mem_max + rsize) > mem_limit) {
printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
if (mem_max == mem_limit)
npmem_ranges = i;
else {
pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
- (mem_max >> PAGE_SHIFT);
npmem_ranges = i + 1;
mem_max = mem_limit;
}
num_physpages += pmem_ranges[i].pages;
break;
}
num_physpages += pmem_ranges[i].pages;
mem_max += rsize;
}
printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
#ifndef CONFIG_DISCONTIGMEM
/* Merge the ranges, keeping track of the holes */
{
unsigned long end_pfn;
unsigned long hole_pages;
npmem_holes = 0;
end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
for (i = 1; i < npmem_ranges; i++) {
hole_pages = pmem_ranges[i].start_pfn - end_pfn;
if (hole_pages) {
pmem_holes[npmem_holes].start_pfn = end_pfn;
pmem_holes[npmem_holes++].pages = hole_pages;
end_pfn += hole_pages;
}
end_pfn += pmem_ranges[i].pages;
}
pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
npmem_ranges = 1;
}
#endif
bootmap_pages = 0;
for (i = 0; i < npmem_ranges; i++)
bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
#ifdef CONFIG_DISCONTIGMEM
for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
memset(NODE_DATA(i), 0, sizeof(pg_data_t));
NODE_DATA(i)->bdata = &bootmem_node_data[i];
}
memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
for (i = 0; i < npmem_ranges; i++)
node_set_online(i);
#endif
/*
* Initialize and free the full range of memory in each range.
* Note that the only writing these routines do are to the bootmap,
* and we've made sure to locate the bootmap properly so that they
* won't be writing over anything important.
*/
bootmap_pfn = bootmap_start_pfn;
max_pfn = 0;
for (i = 0; i < npmem_ranges; i++) {
unsigned long start_pfn;
unsigned long npages;
start_pfn = pmem_ranges[i].start_pfn;
npages = pmem_ranges[i].pages;
bootmap_size = init_bootmem_node(NODE_DATA(i),
bootmap_pfn,
start_pfn,
(start_pfn + npages) );
free_bootmem_node(NODE_DATA(i),
(start_pfn << PAGE_SHIFT),
(npages << PAGE_SHIFT) );
bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
if ((start_pfn + npages) > max_pfn)
max_pfn = start_pfn + npages;
}
/* IOMMU is always used to access "high mem" on those boxes
* that can support enough mem that a PCI device couldn't
* directly DMA to any physical addresses.
* ISA DMA support will need to revisit this.
*/
max_low_pfn = max_pfn;
/* bootmap sizing messed up? */
BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
#define PDC_CONSOLE_IO_IODC_SIZE 32768
reserve_bootmem_node(NODE_DATA(0), 0UL,
(unsigned long)(PAGE0->mem_free +
PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
(unsigned long)(_end - _text), BOOTMEM_DEFAULT);
reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
BOOTMEM_DEFAULT);
#ifndef CONFIG_DISCONTIGMEM
/* reserve the holes */
for (i = 0; i < npmem_holes; i++) {
reserve_bootmem_node(NODE_DATA(0),
(pmem_holes[i].start_pfn << PAGE_SHIFT),
(pmem_holes[i].pages << PAGE_SHIFT),
BOOTMEM_DEFAULT);
}
#endif
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start) {
printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
if (__pa(initrd_start) < mem_max) {
unsigned long initrd_reserve;
if (__pa(initrd_end) > mem_max) {
initrd_reserve = mem_max - __pa(initrd_start);
} else {
initrd_reserve = initrd_end - initrd_start;
}
initrd_below_start_ok = 1;
printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
initrd_reserve, BOOTMEM_DEFAULT);
}
}
#endif
data_resource.start = virt_to_phys(&data_start);
data_resource.end = virt_to_phys(_end) - 1;
code_resource.start = virt_to_phys(_text);
code_resource.end = virt_to_phys(&data_start)-1;
/* We don't know which region the kernel will be in, so try
* all of them.
*/
for (i = 0; i < sysram_resource_count; i++) {
struct resource *res = &sysram_resources[i];
request_resource(res, &code_resource);
request_resource(res, &data_resource);
}
request_resource(&sysram_resources[0], &pdcdata_resource);
}
void free_initmem(void)
{
unsigned long addr;
unsigned long init_begin = (unsigned long)__init_begin;
unsigned long init_end = (unsigned long)__init_end;
#ifdef CONFIG_DEBUG_KERNEL
/* Attempt to catch anyone trying to execute code here
* by filling the page with BRK insns.
*/
memset((void *)init_begin, 0x00, init_end - init_begin);
flush_icache_range(init_begin, init_end);
#endif
/* align __init_begin and __init_end to page size,
ignoring linker script where we might have tried to save RAM */
init_begin = PAGE_ALIGN(init_begin);
init_end = PAGE_ALIGN(init_end);
for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
free_page(addr);
num_physpages++;
totalram_pages++;
}
/* set up a new led state on systems shipped LED State panel */
pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
(init_end - init_begin) >> 10);
}
#ifdef CONFIG_DEBUG_RODATA
void mark_rodata_ro(void)
{
/* rodata memory was already mapped with KERNEL_RO access rights by
pagetable_init() and map_pages(). No need to do additional stuff here */
printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
(unsigned long)(__end_rodata - __start_rodata) >> 10);
}
#endif
/*
* Just an arbitrary offset to serve as a "hole" between mapping areas
* (between top of physical memory and a potential pcxl dma mapping
* area, and below the vmalloc mapping area).
*
* The current 32K value just means that there will be a 32K "hole"
* between mapping areas. That means that any out-of-bounds memory
* accesses will hopefully be caught. The vmalloc() routines leaves
* a hole of 4kB between each vmalloced area for the same reason.
*/
/* Leave room for gateway page expansion */
#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
#error KERNEL_MAP_START is in gateway reserved region
#endif
#define MAP_START (KERNEL_MAP_START)
#define VM_MAP_OFFSET (32*1024)
#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
& ~(VM_MAP_OFFSET-1)))
void *parisc_vmalloc_start __read_mostly;
EXPORT_SYMBOL(parisc_vmalloc_start);
#ifdef CONFIG_PA11
unsigned long pcxl_dma_start __read_mostly;
#endif
void __init mem_init(void)
{
int codesize, reservedpages, datasize, initsize;
/* Do sanity checks on page table constants */
BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
> BITS_PER_LONG);
high_memory = __va((max_pfn << PAGE_SHIFT));
#ifndef CONFIG_DISCONTIGMEM
max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
totalram_pages += free_all_bootmem();
#else
{
int i;
for (i = 0; i < npmem_ranges; i++)
totalram_pages += free_all_bootmem_node(NODE_DATA(i));
}
#endif
codesize = (unsigned long)_etext - (unsigned long)_text;
datasize = (unsigned long)_edata - (unsigned long)_etext;
initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
reservedpages = 0;
{
unsigned long pfn;
#ifdef CONFIG_DISCONTIGMEM
int i;
for (i = 0; i < npmem_ranges; i++) {
for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
if (PageReserved(pfn_to_page(pfn)))
reservedpages++;
}
}
#else /* !CONFIG_DISCONTIGMEM */
for (pfn = 0; pfn < max_pfn; pfn++) {
/*
* Only count reserved RAM pages
*/
if (PageReserved(pfn_to_page(pfn)))
reservedpages++;
}
#endif
}
#ifdef CONFIG_PA11
if (hppa_dma_ops == &pcxl_dma_ops) {
pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
+ PCXL_DMA_MAP_SIZE);
} else {
pcxl_dma_start = 0;
parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
}
#else
parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
#endif
printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
initsize >> 10
);
#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
printk("virtual kernel memory layout:\n"
" vmalloc : 0x%p - 0x%p (%4ld MB)\n"
" memory : 0x%p - 0x%p (%4ld MB)\n"
" .init : 0x%p - 0x%p (%4ld kB)\n"
" .data : 0x%p - 0x%p (%4ld kB)\n"
" .text : 0x%p - 0x%p (%4ld kB)\n",
(void*)VMALLOC_START, (void*)VMALLOC_END,
(VMALLOC_END - VMALLOC_START) >> 20,
__va(0), high_memory,
((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
__init_begin, __init_end,
((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
_etext, _edata,
((unsigned long)_edata - (unsigned long)_etext) >> 10,
_text, _etext,
((unsigned long)_etext - (unsigned long)_text) >> 10);
#endif
}
unsigned long *empty_zero_page __read_mostly;
EXPORT_SYMBOL(empty_zero_page);
void show_mem(void)
{
int i,free = 0,total = 0,reserved = 0;
int shared = 0, cached = 0;
printk(KERN_INFO "Mem-info:\n");
show_free_areas();
#ifndef CONFIG_DISCONTIGMEM
i = max_mapnr;
while (i-- > 0) {
total++;
if (PageReserved(mem_map+i))
reserved++;
else if (PageSwapCache(mem_map+i))
cached++;
else if (!page_count(&mem_map[i]))
free++;
else
shared += page_count(&mem_map[i]) - 1;
}
#else
for (i = 0; i < npmem_ranges; i++) {
int j;
for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
struct page *p;
unsigned long flags;
pgdat_resize_lock(NODE_DATA(i), &flags);
p = nid_page_nr(i, j) - node_start_pfn(i);
total++;
if (PageReserved(p))
reserved++;
else if (PageSwapCache(p))
cached++;
else if (!page_count(p))
free++;
else
shared += page_count(p) - 1;
pgdat_resize_unlock(NODE_DATA(i), &flags);
}
}
#endif
printk(KERN_INFO "%d pages of RAM\n", total);
printk(KERN_INFO "%d reserved pages\n", reserved);
printk(KERN_INFO "%d pages shared\n", shared);
printk(KERN_INFO "%d pages swap cached\n", cached);
#ifdef CONFIG_DISCONTIGMEM
{
struct zonelist *zl;
int i, j;
for (i = 0; i < npmem_ranges; i++) {
zl = node_zonelist(i, 0);
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zoneref *z;
struct zone *zone;
printk("Zone list for zone %d on node %d: ", j, i);
for_each_zone_zonelist(zone, z, zl, j)
printk("[%d/%s] ", zone_to_nid(zone),
zone->name);
printk("\n");
}
}
}
#endif
}
static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
{
pgd_t *pg_dir;
pmd_t *pmd;
pte_t *pg_table;
unsigned long end_paddr;
unsigned long start_pmd;
unsigned long start_pte;
unsigned long tmp1;
unsigned long tmp2;
unsigned long address;
unsigned long ro_start;
unsigned long ro_end;
unsigned long fv_addr;
unsigned long gw_addr;
extern const unsigned long fault_vector_20;
extern void * const linux_gateway_page;
ro_start = __pa((unsigned long)_text);
ro_end = __pa((unsigned long)&data_start);
fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
end_paddr = start_paddr + size;
pg_dir = pgd_offset_k(start_vaddr);
#if PTRS_PER_PMD == 1
start_pmd = 0;
#else
start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
#endif
start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
address = start_paddr;
while (address < end_paddr) {
#if PTRS_PER_PMD == 1
pmd = (pmd_t *)__pa(pg_dir);
#else
pmd = (pmd_t *)pgd_address(*pg_dir);
/*
* pmd is physical at this point
*/
if (!pmd) {
pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
pmd = (pmd_t *) __pa(pmd);
}
pgd_populate(NULL, pg_dir, __va(pmd));
#endif
pg_dir++;
/* now change pmd to kernel virtual addresses */
pmd = (pmd_t *)__va(pmd) + start_pmd;
for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
/*
* pg_table is physical at this point
*/
pg_table = (pte_t *)pmd_address(*pmd);
if (!pg_table) {
pg_table = (pte_t *)
alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
pg_table = (pte_t *) __pa(pg_table);
}
pmd_populate_kernel(NULL, pmd, __va(pg_table));
/* now change pg_table to kernel virtual addresses */
pg_table = (pte_t *) __va(pg_table) + start_pte;
for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
pte_t pte;
/*
* Map the fault vector writable so we can
* write the HPMC checksum.
*/
#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
if (address >= ro_start && address < ro_end
&& address != fv_addr
&& address != gw_addr)
pte = __mk_pte(address, PAGE_KERNEL_RO);
else
#endif
pte = __mk_pte(address, pgprot);
if (address >= end_paddr)
pte_val(pte) = 0;
set_pte(pg_table, pte);
address += PAGE_SIZE;
}
start_pte = 0;
if (address >= end_paddr)
break;
}
start_pmd = 0;
}
}
/*
* pagetable_init() sets up the page tables
*
* Note that gateway_init() places the Linux gateway page at page 0.
* Since gateway pages cannot be dereferenced this has the desirable
* side effect of trapping those pesky NULL-reference errors in the
* kernel.
*/
static void __init pagetable_init(void)
{
int range;
/* Map each physical memory range to its kernel vaddr */
for (range = 0; range < npmem_ranges; range++) {
unsigned long start_paddr;
unsigned long end_paddr;
unsigned long size;
start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
size = pmem_ranges[range].pages << PAGE_SHIFT;
map_pages((unsigned long)__va(start_paddr), start_paddr,
size, PAGE_KERNEL);
}
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_end && initrd_end > mem_limit) {
printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
map_pages(initrd_start, __pa(initrd_start),
initrd_end - initrd_start, PAGE_KERNEL);
}
#endif
empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
memset(empty_zero_page, 0, PAGE_SIZE);
}
static void __init gateway_init(void)
{
unsigned long linux_gateway_page_addr;
/* FIXME: This is 'const' in order to trick the compiler
into not treating it as DP-relative data. */
extern void * const linux_gateway_page;
linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
/*
* Setup Linux Gateway page.
*
* The Linux gateway page will reside in kernel space (on virtual
* page 0), so it doesn't need to be aliased into user space.
*/
map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
PAGE_SIZE, PAGE_GATEWAY);
}
#ifdef CONFIG_HPUX
void
map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
{
pgd_t *pg_dir;
pmd_t *pmd;
pte_t *pg_table;
unsigned long start_pmd;
unsigned long start_pte;
unsigned long address;
unsigned long hpux_gw_page_addr;
/* FIXME: This is 'const' in order to trick the compiler
into not treating it as DP-relative data. */
extern void * const hpux_gateway_page;
hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
/*
* Setup HP-UX Gateway page.
*
* The HP-UX gateway page resides in the user address space,
* so it needs to be aliased into each process.
*/
pg_dir = pgd_offset(mm,hpux_gw_page_addr);
#if PTRS_PER_PMD == 1
start_pmd = 0;
#else
start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
#endif
start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
address = __pa(&hpux_gateway_page);
#if PTRS_PER_PMD == 1
pmd = (pmd_t *)__pa(pg_dir);
#else
pmd = (pmd_t *) pgd_address(*pg_dir);
/*
* pmd is physical at this point
*/
if (!pmd) {
pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
pmd = (pmd_t *) __pa(pmd);
}
__pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
#endif
/* now change pmd to kernel virtual addresses */
pmd = (pmd_t *)__va(pmd) + start_pmd;
/*
* pg_table is physical at this point
*/
pg_table = (pte_t *) pmd_address(*pmd);
if (!pg_table)
pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
__pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
/* now change pg_table to kernel virtual addresses */
pg_table = (pte_t *) __va(pg_table) + start_pte;
set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
}
EXPORT_SYMBOL(map_hpux_gateway_page);
#endif
void __init paging_init(void)
{
int i;
setup_bootmem();
pagetable_init();
gateway_init();
flush_cache_all_local(); /* start with known state */
flush_tlb_all_local(NULL);
for (i = 0; i < npmem_ranges; i++) {
unsigned long zones_size[MAX_NR_ZONES] = { 0, };
zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
#ifdef CONFIG_DISCONTIGMEM
/* Need to initialize the pfnnid_map before we can initialize
the zone */
{
int j;
for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
j++) {
pfnnid_map[j] = i;
}
}
#endif
free_area_init_node(i, zones_size,
pmem_ranges[i].start_pfn, NULL);
}
}
#ifdef CONFIG_PA20
/*
* Currently, all PA20 chips have 18 bit protection IDs, which is the
* limiting factor (space ids are 32 bits).
*/
#define NR_SPACE_IDS 262144
#else
/*
* Currently we have a one-to-one relationship between space IDs and
* protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
* support 15 bit protection IDs, so that is the limiting factor.
* PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
* probably not worth the effort for a special case here.
*/
#define NR_SPACE_IDS 32768
#endif /* !CONFIG_PA20 */
#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
#define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
static unsigned long dirty_space_id[SID_ARRAY_SIZE];
static unsigned long space_id_index;
static unsigned long free_space_ids = NR_SPACE_IDS - 1;
static unsigned long dirty_space_ids = 0;
static DEFINE_SPINLOCK(sid_lock);
unsigned long alloc_sid(void)
{
unsigned long index;
spin_lock(&sid_lock);
if (free_space_ids == 0) {
if (dirty_space_ids != 0) {
spin_unlock(&sid_lock);
flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
spin_lock(&sid_lock);
}
BUG_ON(free_space_ids == 0);
}
free_space_ids--;
index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
space_id_index = index;
spin_unlock(&sid_lock);
return index << SPACEID_SHIFT;
}
void free_sid(unsigned long spaceid)
{
unsigned long index = spaceid >> SPACEID_SHIFT;
unsigned long *dirty_space_offset;
dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
index &= (BITS_PER_LONG - 1);
spin_lock(&sid_lock);
BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
*dirty_space_offset |= (1L << index);
dirty_space_ids++;
spin_unlock(&sid_lock);
}
#ifdef CONFIG_SMP
static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
{
int i;
/* NOTE: sid_lock must be held upon entry */
*ndirtyptr = dirty_space_ids;
if (dirty_space_ids != 0) {
for (i = 0; i < SID_ARRAY_SIZE; i++) {
dirty_array[i] = dirty_space_id[i];
dirty_space_id[i] = 0;
}
dirty_space_ids = 0;
}
return;
}
static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
{
int i;
/* NOTE: sid_lock must be held upon entry */
if (ndirty != 0) {
for (i = 0; i < SID_ARRAY_SIZE; i++) {
space_id[i] ^= dirty_array[i];
}
free_space_ids += ndirty;
space_id_index = 0;
}
}
#else /* CONFIG_SMP */
static void recycle_sids(void)
{
int i;
/* NOTE: sid_lock must be held upon entry */
if (dirty_space_ids != 0) {
for (i = 0; i < SID_ARRAY_SIZE; i++) {
space_id[i] ^= dirty_space_id[i];
dirty_space_id[i] = 0;
}
free_space_ids += dirty_space_ids;
dirty_space_ids = 0;
space_id_index = 0;
}
}
#endif
/*
* flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
* purged, we can safely reuse the space ids that were released but
* not flushed from the tlb.
*/
#ifdef CONFIG_SMP
static unsigned long recycle_ndirty;
static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
static unsigned int recycle_inuse;
void flush_tlb_all(void)
{
int do_recycle;
do_recycle = 0;
spin_lock(&sid_lock);
if (dirty_space_ids > RECYCLE_THRESHOLD) {
BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
recycle_inuse++;
do_recycle++;
}
spin_unlock(&sid_lock);
on_each_cpu(flush_tlb_all_local, NULL, 1);
if (do_recycle) {
spin_lock(&sid_lock);
recycle_sids(recycle_ndirty,recycle_dirty_array);
recycle_inuse = 0;
spin_unlock(&sid_lock);
}
}
#else
void flush_tlb_all(void)
{
spin_lock(&sid_lock);
flush_tlb_all_local(NULL);
recycle_sids();
spin_unlock(&sid_lock);
}
#endif
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (start >= end)
return;
printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
ClearPageReserved(virt_to_page(start));
init_page_count(virt_to_page(start));
free_page(start);
num_physpages++;
totalram_pages++;
}
}
#endif