mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-06 20:53:54 +08:00
b76d26d69e
There is no reason to assume that the IRQ rising edge (indicating that
the device start up phase is done) will happen after we request the IRQ.
If the device is already up by the time we request it, the call to
'wait_for_completion_timeout()' will timeout and we will fail the device
probe even though there's nothing wrong.
Fix it by just polling the status register until we get the indication that
the device is up and running. As a side effect of this fix, requesting the
IRQ is also moved to after the setup function.
Fixes: f110f3188e
("iio: temperature: Add support for LTC2983")
Reported-and-tested-by: Drew Fustini <drew@pdp7.com>
Reviewed-by: Drew Fustini <drew@pdp7.com>
Signed-off-by: Nuno Sá <nuno.sa@analog.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: <Stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20210811133220.190264-2-nuno.sa@analog.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
1564 lines
43 KiB
C
1564 lines
43 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System
|
|
* driver
|
|
*
|
|
* Copyright 2019 Analog Devices Inc.
|
|
*/
|
|
#include <linux/bitfield.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/device.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/iio/iio.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_gpio.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/spi/spi.h>
|
|
|
|
/* register map */
|
|
#define LTC2983_STATUS_REG 0x0000
|
|
#define LTC2983_TEMP_RES_START_REG 0x0010
|
|
#define LTC2983_TEMP_RES_END_REG 0x005F
|
|
#define LTC2983_GLOBAL_CONFIG_REG 0x00F0
|
|
#define LTC2983_MULT_CHANNEL_START_REG 0x00F4
|
|
#define LTC2983_MULT_CHANNEL_END_REG 0x00F7
|
|
#define LTC2983_MUX_CONFIG_REG 0x00FF
|
|
#define LTC2983_CHAN_ASSIGN_START_REG 0x0200
|
|
#define LTC2983_CHAN_ASSIGN_END_REG 0x024F
|
|
#define LTC2983_CUST_SENS_TBL_START_REG 0x0250
|
|
#define LTC2983_CUST_SENS_TBL_END_REG 0x03CF
|
|
|
|
#define LTC2983_DIFFERENTIAL_CHAN_MIN 2
|
|
#define LTC2983_MAX_CHANNELS_NR 20
|
|
#define LTC2983_MIN_CHANNELS_NR 1
|
|
#define LTC2983_SLEEP 0x97
|
|
#define LTC2983_CUSTOM_STEINHART_SIZE 24
|
|
#define LTC2983_CUSTOM_SENSOR_ENTRY_SZ 6
|
|
#define LTC2983_CUSTOM_STEINHART_ENTRY_SZ 4
|
|
|
|
#define LTC2983_CHAN_START_ADDR(chan) \
|
|
(((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG)
|
|
#define LTC2983_CHAN_RES_ADDR(chan) \
|
|
(((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG)
|
|
#define LTC2983_THERMOCOUPLE_DIFF_MASK BIT(3)
|
|
#define LTC2983_THERMOCOUPLE_SGL(x) \
|
|
FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x)
|
|
#define LTC2983_THERMOCOUPLE_OC_CURR_MASK GENMASK(1, 0)
|
|
#define LTC2983_THERMOCOUPLE_OC_CURR(x) \
|
|
FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x)
|
|
#define LTC2983_THERMOCOUPLE_OC_CHECK_MASK BIT(2)
|
|
#define LTC2983_THERMOCOUPLE_OC_CHECK(x) \
|
|
FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x)
|
|
|
|
#define LTC2983_THERMISTOR_DIFF_MASK BIT(2)
|
|
#define LTC2983_THERMISTOR_SGL(x) \
|
|
FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x)
|
|
#define LTC2983_THERMISTOR_R_SHARE_MASK BIT(1)
|
|
#define LTC2983_THERMISTOR_R_SHARE(x) \
|
|
FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x)
|
|
#define LTC2983_THERMISTOR_C_ROTATE_MASK BIT(0)
|
|
#define LTC2983_THERMISTOR_C_ROTATE(x) \
|
|
FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x)
|
|
|
|
#define LTC2983_DIODE_DIFF_MASK BIT(2)
|
|
#define LTC2983_DIODE_SGL(x) \
|
|
FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x)
|
|
#define LTC2983_DIODE_3_CONV_CYCLE_MASK BIT(1)
|
|
#define LTC2983_DIODE_3_CONV_CYCLE(x) \
|
|
FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x)
|
|
#define LTC2983_DIODE_AVERAGE_ON_MASK BIT(0)
|
|
#define LTC2983_DIODE_AVERAGE_ON(x) \
|
|
FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x)
|
|
|
|
#define LTC2983_RTD_4_WIRE_MASK BIT(3)
|
|
#define LTC2983_RTD_ROTATION_MASK BIT(1)
|
|
#define LTC2983_RTD_C_ROTATE(x) \
|
|
FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x)
|
|
#define LTC2983_RTD_KELVIN_R_SENSE_MASK GENMASK(3, 2)
|
|
#define LTC2983_RTD_N_WIRES_MASK GENMASK(3, 2)
|
|
#define LTC2983_RTD_N_WIRES(x) \
|
|
FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x)
|
|
#define LTC2983_RTD_R_SHARE_MASK BIT(0)
|
|
#define LTC2983_RTD_R_SHARE(x) \
|
|
FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1)
|
|
|
|
#define LTC2983_COMMON_HARD_FAULT_MASK GENMASK(31, 30)
|
|
#define LTC2983_COMMON_SOFT_FAULT_MASK GENMASK(27, 25)
|
|
|
|
#define LTC2983_STATUS_START_MASK BIT(7)
|
|
#define LTC2983_STATUS_START(x) FIELD_PREP(LTC2983_STATUS_START_MASK, x)
|
|
#define LTC2983_STATUS_UP_MASK GENMASK(7, 6)
|
|
#define LTC2983_STATUS_UP(reg) FIELD_GET(LTC2983_STATUS_UP_MASK, reg)
|
|
|
|
#define LTC2983_STATUS_CHAN_SEL_MASK GENMASK(4, 0)
|
|
#define LTC2983_STATUS_CHAN_SEL(x) \
|
|
FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x)
|
|
|
|
#define LTC2983_TEMP_UNITS_MASK BIT(2)
|
|
#define LTC2983_TEMP_UNITS(x) FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x)
|
|
|
|
#define LTC2983_NOTCH_FREQ_MASK GENMASK(1, 0)
|
|
#define LTC2983_NOTCH_FREQ(x) FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x)
|
|
|
|
#define LTC2983_RES_VALID_MASK BIT(24)
|
|
#define LTC2983_DATA_MASK GENMASK(23, 0)
|
|
#define LTC2983_DATA_SIGN_BIT 23
|
|
|
|
#define LTC2983_CHAN_TYPE_MASK GENMASK(31, 27)
|
|
#define LTC2983_CHAN_TYPE(x) FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x)
|
|
|
|
/* cold junction for thermocouples and rsense for rtd's and thermistor's */
|
|
#define LTC2983_CHAN_ASSIGN_MASK GENMASK(26, 22)
|
|
#define LTC2983_CHAN_ASSIGN(x) FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x)
|
|
|
|
#define LTC2983_CUSTOM_LEN_MASK GENMASK(5, 0)
|
|
#define LTC2983_CUSTOM_LEN(x) FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x)
|
|
|
|
#define LTC2983_CUSTOM_ADDR_MASK GENMASK(11, 6)
|
|
#define LTC2983_CUSTOM_ADDR(x) FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x)
|
|
|
|
#define LTC2983_THERMOCOUPLE_CFG_MASK GENMASK(21, 18)
|
|
#define LTC2983_THERMOCOUPLE_CFG(x) \
|
|
FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x)
|
|
#define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK GENMASK(31, 29)
|
|
#define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK GENMASK(28, 25)
|
|
|
|
#define LTC2983_RTD_CFG_MASK GENMASK(21, 18)
|
|
#define LTC2983_RTD_CFG(x) FIELD_PREP(LTC2983_RTD_CFG_MASK, x)
|
|
#define LTC2983_RTD_EXC_CURRENT_MASK GENMASK(17, 14)
|
|
#define LTC2983_RTD_EXC_CURRENT(x) \
|
|
FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x)
|
|
#define LTC2983_RTD_CURVE_MASK GENMASK(13, 12)
|
|
#define LTC2983_RTD_CURVE(x) FIELD_PREP(LTC2983_RTD_CURVE_MASK, x)
|
|
|
|
#define LTC2983_THERMISTOR_CFG_MASK GENMASK(21, 19)
|
|
#define LTC2983_THERMISTOR_CFG(x) \
|
|
FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x)
|
|
#define LTC2983_THERMISTOR_EXC_CURRENT_MASK GENMASK(18, 15)
|
|
#define LTC2983_THERMISTOR_EXC_CURRENT(x) \
|
|
FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x)
|
|
|
|
#define LTC2983_DIODE_CFG_MASK GENMASK(26, 24)
|
|
#define LTC2983_DIODE_CFG(x) FIELD_PREP(LTC2983_DIODE_CFG_MASK, x)
|
|
#define LTC2983_DIODE_EXC_CURRENT_MASK GENMASK(23, 22)
|
|
#define LTC2983_DIODE_EXC_CURRENT(x) \
|
|
FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x)
|
|
#define LTC2983_DIODE_IDEAL_FACTOR_MASK GENMASK(21, 0)
|
|
#define LTC2983_DIODE_IDEAL_FACTOR(x) \
|
|
FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x)
|
|
|
|
#define LTC2983_R_SENSE_VAL_MASK GENMASK(26, 0)
|
|
#define LTC2983_R_SENSE_VAL(x) FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x)
|
|
|
|
#define LTC2983_ADC_SINGLE_ENDED_MASK BIT(26)
|
|
#define LTC2983_ADC_SINGLE_ENDED(x) \
|
|
FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x)
|
|
|
|
enum {
|
|
LTC2983_SENSOR_THERMOCOUPLE = 1,
|
|
LTC2983_SENSOR_THERMOCOUPLE_CUSTOM = 9,
|
|
LTC2983_SENSOR_RTD = 10,
|
|
LTC2983_SENSOR_RTD_CUSTOM = 18,
|
|
LTC2983_SENSOR_THERMISTOR = 19,
|
|
LTC2983_SENSOR_THERMISTOR_STEINHART = 26,
|
|
LTC2983_SENSOR_THERMISTOR_CUSTOM = 27,
|
|
LTC2983_SENSOR_DIODE = 28,
|
|
LTC2983_SENSOR_SENSE_RESISTOR = 29,
|
|
LTC2983_SENSOR_DIRECT_ADC = 30,
|
|
};
|
|
|
|
#define to_thermocouple(_sensor) \
|
|
container_of(_sensor, struct ltc2983_thermocouple, sensor)
|
|
|
|
#define to_rtd(_sensor) \
|
|
container_of(_sensor, struct ltc2983_rtd, sensor)
|
|
|
|
#define to_thermistor(_sensor) \
|
|
container_of(_sensor, struct ltc2983_thermistor, sensor)
|
|
|
|
#define to_diode(_sensor) \
|
|
container_of(_sensor, struct ltc2983_diode, sensor)
|
|
|
|
#define to_rsense(_sensor) \
|
|
container_of(_sensor, struct ltc2983_rsense, sensor)
|
|
|
|
#define to_adc(_sensor) \
|
|
container_of(_sensor, struct ltc2983_adc, sensor)
|
|
|
|
struct ltc2983_data {
|
|
struct regmap *regmap;
|
|
struct spi_device *spi;
|
|
struct mutex lock;
|
|
struct completion completion;
|
|
struct iio_chan_spec *iio_chan;
|
|
struct ltc2983_sensor **sensors;
|
|
u32 mux_delay_config;
|
|
u32 filter_notch_freq;
|
|
u16 custom_table_size;
|
|
u8 num_channels;
|
|
u8 iio_channels;
|
|
/*
|
|
* DMA (thus cache coherency maintenance) requires the
|
|
* transfer buffers to live in their own cache lines.
|
|
* Holds the converted temperature
|
|
*/
|
|
__be32 temp ____cacheline_aligned;
|
|
};
|
|
|
|
struct ltc2983_sensor {
|
|
int (*fault_handler)(const struct ltc2983_data *st, const u32 result);
|
|
int (*assign_chan)(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor);
|
|
/* specifies the sensor channel */
|
|
u32 chan;
|
|
/* sensor type */
|
|
u32 type;
|
|
};
|
|
|
|
struct ltc2983_custom_sensor {
|
|
/* raw table sensor data */
|
|
u8 *table;
|
|
size_t size;
|
|
/* address offset */
|
|
s8 offset;
|
|
bool is_steinhart;
|
|
};
|
|
|
|
struct ltc2983_thermocouple {
|
|
struct ltc2983_sensor sensor;
|
|
struct ltc2983_custom_sensor *custom;
|
|
u32 sensor_config;
|
|
u32 cold_junction_chan;
|
|
};
|
|
|
|
struct ltc2983_rtd {
|
|
struct ltc2983_sensor sensor;
|
|
struct ltc2983_custom_sensor *custom;
|
|
u32 sensor_config;
|
|
u32 r_sense_chan;
|
|
u32 excitation_current;
|
|
u32 rtd_curve;
|
|
};
|
|
|
|
struct ltc2983_thermistor {
|
|
struct ltc2983_sensor sensor;
|
|
struct ltc2983_custom_sensor *custom;
|
|
u32 sensor_config;
|
|
u32 r_sense_chan;
|
|
u32 excitation_current;
|
|
};
|
|
|
|
struct ltc2983_diode {
|
|
struct ltc2983_sensor sensor;
|
|
u32 sensor_config;
|
|
u32 excitation_current;
|
|
u32 ideal_factor_value;
|
|
};
|
|
|
|
struct ltc2983_rsense {
|
|
struct ltc2983_sensor sensor;
|
|
u32 r_sense_val;
|
|
};
|
|
|
|
struct ltc2983_adc {
|
|
struct ltc2983_sensor sensor;
|
|
bool single_ended;
|
|
};
|
|
|
|
/*
|
|
* Convert to Q format numbers. These number's are integers where
|
|
* the number of integer and fractional bits are specified. The resolution
|
|
* is given by 1/@resolution and tell us the number of fractional bits. For
|
|
* instance a resolution of 2^-10 means we have 10 fractional bits.
|
|
*/
|
|
static u32 __convert_to_raw(const u64 val, const u32 resolution)
|
|
{
|
|
u64 __res = val * resolution;
|
|
|
|
/* all values are multiplied by 1000000 to remove the fraction */
|
|
do_div(__res, 1000000);
|
|
|
|
return __res;
|
|
}
|
|
|
|
static u32 __convert_to_raw_sign(const u64 val, const u32 resolution)
|
|
{
|
|
s64 __res = -(s32)val;
|
|
|
|
__res = __convert_to_raw(__res, resolution);
|
|
|
|
return (u32)-__res;
|
|
}
|
|
|
|
static int __ltc2983_fault_handler(const struct ltc2983_data *st,
|
|
const u32 result, const u32 hard_mask,
|
|
const u32 soft_mask)
|
|
{
|
|
const struct device *dev = &st->spi->dev;
|
|
|
|
if (result & hard_mask) {
|
|
dev_err(dev, "Invalid conversion: Sensor HARD fault\n");
|
|
return -EIO;
|
|
} else if (result & soft_mask) {
|
|
/* just print a warning */
|
|
dev_warn(dev, "Suspicious conversion: Sensor SOFT fault\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __ltc2983_chan_assign_common(const struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor,
|
|
u32 chan_val)
|
|
{
|
|
u32 reg = LTC2983_CHAN_START_ADDR(sensor->chan);
|
|
__be32 __chan_val;
|
|
|
|
chan_val |= LTC2983_CHAN_TYPE(sensor->type);
|
|
dev_dbg(&st->spi->dev, "Assign reg:0x%04X, val:0x%08X\n", reg,
|
|
chan_val);
|
|
__chan_val = cpu_to_be32(chan_val);
|
|
return regmap_bulk_write(st->regmap, reg, &__chan_val,
|
|
sizeof(__chan_val));
|
|
}
|
|
|
|
static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data *st,
|
|
struct ltc2983_custom_sensor *custom,
|
|
u32 *chan_val)
|
|
{
|
|
u32 reg;
|
|
u8 mult = custom->is_steinhart ? LTC2983_CUSTOM_STEINHART_ENTRY_SZ :
|
|
LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
|
|
const struct device *dev = &st->spi->dev;
|
|
/*
|
|
* custom->size holds the raw size of the table. However, when
|
|
* configuring the sensor channel, we must write the number of
|
|
* entries of the table minus 1. For steinhart sensors 0 is written
|
|
* since the size is constant!
|
|
*/
|
|
const u8 len = custom->is_steinhart ? 0 :
|
|
(custom->size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ) - 1;
|
|
/*
|
|
* Check if the offset was assigned already. It should be for steinhart
|
|
* sensors. When coming from sleep, it should be assigned for all.
|
|
*/
|
|
if (custom->offset < 0) {
|
|
/*
|
|
* This needs to be done again here because, from the moment
|
|
* when this test was done (successfully) for this custom
|
|
* sensor, a steinhart sensor might have been added changing
|
|
* custom_table_size...
|
|
*/
|
|
if (st->custom_table_size + custom->size >
|
|
(LTC2983_CUST_SENS_TBL_END_REG -
|
|
LTC2983_CUST_SENS_TBL_START_REG) + 1) {
|
|
dev_err(dev,
|
|
"Not space left(%d) for new custom sensor(%zu)",
|
|
st->custom_table_size,
|
|
custom->size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
custom->offset = st->custom_table_size /
|
|
LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
|
|
st->custom_table_size += custom->size;
|
|
}
|
|
|
|
reg = (custom->offset * mult) + LTC2983_CUST_SENS_TBL_START_REG;
|
|
|
|
*chan_val |= LTC2983_CUSTOM_LEN(len);
|
|
*chan_val |= LTC2983_CUSTOM_ADDR(custom->offset);
|
|
dev_dbg(dev, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu",
|
|
reg, custom->offset,
|
|
custom->size);
|
|
/* write custom sensor table */
|
|
return regmap_bulk_write(st->regmap, reg, custom->table, custom->size);
|
|
}
|
|
|
|
static struct ltc2983_custom_sensor *__ltc2983_custom_sensor_new(
|
|
struct ltc2983_data *st,
|
|
const struct device_node *np,
|
|
const char *propname,
|
|
const bool is_steinhart,
|
|
const u32 resolution,
|
|
const bool has_signed)
|
|
{
|
|
struct ltc2983_custom_sensor *new_custom;
|
|
u8 index, n_entries, tbl = 0;
|
|
struct device *dev = &st->spi->dev;
|
|
/*
|
|
* For custom steinhart, the full u32 is taken. For all the others
|
|
* the MSB is discarded.
|
|
*/
|
|
const u8 n_size = is_steinhart ? 4 : 3;
|
|
const u8 e_size = is_steinhart ? sizeof(u32) : sizeof(u64);
|
|
|
|
n_entries = of_property_count_elems_of_size(np, propname, e_size);
|
|
/* n_entries must be an even number */
|
|
if (!n_entries || (n_entries % 2) != 0) {
|
|
dev_err(dev, "Number of entries either 0 or not even\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
new_custom = devm_kzalloc(dev, sizeof(*new_custom), GFP_KERNEL);
|
|
if (!new_custom)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
new_custom->size = n_entries * n_size;
|
|
/* check Steinhart size */
|
|
if (is_steinhart && new_custom->size != LTC2983_CUSTOM_STEINHART_SIZE) {
|
|
dev_err(dev, "Steinhart sensors size(%zu) must be 24",
|
|
new_custom->size);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
/* Check space on the table. */
|
|
if (st->custom_table_size + new_custom->size >
|
|
(LTC2983_CUST_SENS_TBL_END_REG -
|
|
LTC2983_CUST_SENS_TBL_START_REG) + 1) {
|
|
dev_err(dev, "No space left(%d) for new custom sensor(%zu)",
|
|
st->custom_table_size, new_custom->size);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
/* allocate the table */
|
|
new_custom->table = devm_kzalloc(dev, new_custom->size, GFP_KERNEL);
|
|
if (!new_custom->table)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
for (index = 0; index < n_entries; index++) {
|
|
u64 temp = 0, j;
|
|
/*
|
|
* Steinhart sensors are configured with raw values in the
|
|
* devicetree. For the other sensors we must convert the
|
|
* value to raw. The odd index's correspond to temperarures
|
|
* and always have 1/1024 of resolution. Temperatures also
|
|
* come in kelvin, so signed values is not possible
|
|
*/
|
|
if (!is_steinhart) {
|
|
of_property_read_u64_index(np, propname, index, &temp);
|
|
|
|
if ((index % 2) != 0)
|
|
temp = __convert_to_raw(temp, 1024);
|
|
else if (has_signed && (s64)temp < 0)
|
|
temp = __convert_to_raw_sign(temp, resolution);
|
|
else
|
|
temp = __convert_to_raw(temp, resolution);
|
|
} else {
|
|
u32 t32;
|
|
|
|
of_property_read_u32_index(np, propname, index, &t32);
|
|
temp = t32;
|
|
}
|
|
|
|
for (j = 0; j < n_size; j++)
|
|
new_custom->table[tbl++] =
|
|
temp >> (8 * (n_size - j - 1));
|
|
}
|
|
|
|
new_custom->is_steinhart = is_steinhart;
|
|
/*
|
|
* This is done to first add all the steinhart sensors to the table,
|
|
* in order to maximize the table usage. If we mix adding steinhart
|
|
* with the other sensors, we might have to do some roundup to make
|
|
* sure that sensor_addr - 0x250(start address) is a multiple of 4
|
|
* (for steinhart), and a multiple of 6 for all the other sensors.
|
|
* Since we have const 24 bytes for steinhart sensors and 24 is
|
|
* also a multiple of 6, we guarantee that the first non-steinhart
|
|
* sensor will sit in a correct address without the need of filling
|
|
* addresses.
|
|
*/
|
|
if (is_steinhart) {
|
|
new_custom->offset = st->custom_table_size /
|
|
LTC2983_CUSTOM_STEINHART_ENTRY_SZ;
|
|
st->custom_table_size += new_custom->size;
|
|
} else {
|
|
/* mark as unset. This is checked later on the assign phase */
|
|
new_custom->offset = -1;
|
|
}
|
|
|
|
return new_custom;
|
|
}
|
|
|
|
static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data *st,
|
|
const u32 result)
|
|
{
|
|
return __ltc2983_fault_handler(st, result,
|
|
LTC2983_THERMOCOUPLE_HARD_FAULT_MASK,
|
|
LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK);
|
|
}
|
|
|
|
static int ltc2983_common_fault_handler(const struct ltc2983_data *st,
|
|
const u32 result)
|
|
{
|
|
return __ltc2983_fault_handler(st, result,
|
|
LTC2983_COMMON_HARD_FAULT_MASK,
|
|
LTC2983_COMMON_SOFT_FAULT_MASK);
|
|
}
|
|
|
|
static int ltc2983_thermocouple_assign_chan(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_thermocouple *thermo = to_thermocouple(sensor);
|
|
u32 chan_val;
|
|
|
|
chan_val = LTC2983_CHAN_ASSIGN(thermo->cold_junction_chan);
|
|
chan_val |= LTC2983_THERMOCOUPLE_CFG(thermo->sensor_config);
|
|
|
|
if (thermo->custom) {
|
|
int ret;
|
|
|
|
ret = __ltc2983_chan_custom_sensor_assign(st, thermo->custom,
|
|
&chan_val);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return __ltc2983_chan_assign_common(st, sensor, chan_val);
|
|
}
|
|
|
|
static int ltc2983_rtd_assign_chan(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_rtd *rtd = to_rtd(sensor);
|
|
u32 chan_val;
|
|
|
|
chan_val = LTC2983_CHAN_ASSIGN(rtd->r_sense_chan);
|
|
chan_val |= LTC2983_RTD_CFG(rtd->sensor_config);
|
|
chan_val |= LTC2983_RTD_EXC_CURRENT(rtd->excitation_current);
|
|
chan_val |= LTC2983_RTD_CURVE(rtd->rtd_curve);
|
|
|
|
if (rtd->custom) {
|
|
int ret;
|
|
|
|
ret = __ltc2983_chan_custom_sensor_assign(st, rtd->custom,
|
|
&chan_val);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return __ltc2983_chan_assign_common(st, sensor, chan_val);
|
|
}
|
|
|
|
static int ltc2983_thermistor_assign_chan(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_thermistor *thermistor = to_thermistor(sensor);
|
|
u32 chan_val;
|
|
|
|
chan_val = LTC2983_CHAN_ASSIGN(thermistor->r_sense_chan);
|
|
chan_val |= LTC2983_THERMISTOR_CFG(thermistor->sensor_config);
|
|
chan_val |=
|
|
LTC2983_THERMISTOR_EXC_CURRENT(thermistor->excitation_current);
|
|
|
|
if (thermistor->custom) {
|
|
int ret;
|
|
|
|
ret = __ltc2983_chan_custom_sensor_assign(st,
|
|
thermistor->custom,
|
|
&chan_val);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return __ltc2983_chan_assign_common(st, sensor, chan_val);
|
|
}
|
|
|
|
static int ltc2983_diode_assign_chan(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_diode *diode = to_diode(sensor);
|
|
u32 chan_val;
|
|
|
|
chan_val = LTC2983_DIODE_CFG(diode->sensor_config);
|
|
chan_val |= LTC2983_DIODE_EXC_CURRENT(diode->excitation_current);
|
|
chan_val |= LTC2983_DIODE_IDEAL_FACTOR(diode->ideal_factor_value);
|
|
|
|
return __ltc2983_chan_assign_common(st, sensor, chan_val);
|
|
}
|
|
|
|
static int ltc2983_r_sense_assign_chan(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_rsense *rsense = to_rsense(sensor);
|
|
u32 chan_val;
|
|
|
|
chan_val = LTC2983_R_SENSE_VAL(rsense->r_sense_val);
|
|
|
|
return __ltc2983_chan_assign_common(st, sensor, chan_val);
|
|
}
|
|
|
|
static int ltc2983_adc_assign_chan(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_adc *adc = to_adc(sensor);
|
|
u32 chan_val;
|
|
|
|
chan_val = LTC2983_ADC_SINGLE_ENDED(adc->single_ended);
|
|
|
|
return __ltc2983_chan_assign_common(st, sensor, chan_val);
|
|
}
|
|
|
|
static struct ltc2983_sensor *ltc2983_thermocouple_new(
|
|
const struct device_node *child,
|
|
struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_thermocouple *thermo;
|
|
struct device_node *phandle;
|
|
u32 oc_current;
|
|
int ret;
|
|
|
|
thermo = devm_kzalloc(&st->spi->dev, sizeof(*thermo), GFP_KERNEL);
|
|
if (!thermo)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (of_property_read_bool(child, "adi,single-ended"))
|
|
thermo->sensor_config = LTC2983_THERMOCOUPLE_SGL(1);
|
|
|
|
ret = of_property_read_u32(child, "adi,sensor-oc-current-microamp",
|
|
&oc_current);
|
|
if (!ret) {
|
|
switch (oc_current) {
|
|
case 10:
|
|
thermo->sensor_config |=
|
|
LTC2983_THERMOCOUPLE_OC_CURR(0);
|
|
break;
|
|
case 100:
|
|
thermo->sensor_config |=
|
|
LTC2983_THERMOCOUPLE_OC_CURR(1);
|
|
break;
|
|
case 500:
|
|
thermo->sensor_config |=
|
|
LTC2983_THERMOCOUPLE_OC_CURR(2);
|
|
break;
|
|
case 1000:
|
|
thermo->sensor_config |=
|
|
LTC2983_THERMOCOUPLE_OC_CURR(3);
|
|
break;
|
|
default:
|
|
dev_err(&st->spi->dev,
|
|
"Invalid open circuit current:%u", oc_current);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CHECK(1);
|
|
}
|
|
/* validate channel index */
|
|
if (!(thermo->sensor_config & LTC2983_THERMOCOUPLE_DIFF_MASK) &&
|
|
sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
|
|
dev_err(&st->spi->dev,
|
|
"Invalid chann:%d for differential thermocouple",
|
|
sensor->chan);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
phandle = of_parse_phandle(child, "adi,cold-junction-handle", 0);
|
|
if (phandle) {
|
|
int ret;
|
|
|
|
ret = of_property_read_u32(phandle, "reg",
|
|
&thermo->cold_junction_chan);
|
|
if (ret) {
|
|
/*
|
|
* This would be catched later but we can just return
|
|
* the error right away.
|
|
*/
|
|
dev_err(&st->spi->dev, "Property reg must be given\n");
|
|
of_node_put(phandle);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
}
|
|
|
|
/* check custom sensor */
|
|
if (sensor->type == LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
|
|
const char *propname = "adi,custom-thermocouple";
|
|
|
|
thermo->custom = __ltc2983_custom_sensor_new(st, child,
|
|
propname, false,
|
|
16384, true);
|
|
if (IS_ERR(thermo->custom)) {
|
|
of_node_put(phandle);
|
|
return ERR_CAST(thermo->custom);
|
|
}
|
|
}
|
|
|
|
/* set common parameters */
|
|
thermo->sensor.fault_handler = ltc2983_thermocouple_fault_handler;
|
|
thermo->sensor.assign_chan = ltc2983_thermocouple_assign_chan;
|
|
|
|
of_node_put(phandle);
|
|
return &thermo->sensor;
|
|
}
|
|
|
|
static struct ltc2983_sensor *ltc2983_rtd_new(const struct device_node *child,
|
|
struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_rtd *rtd;
|
|
int ret = 0;
|
|
struct device *dev = &st->spi->dev;
|
|
struct device_node *phandle;
|
|
u32 excitation_current = 0, n_wires = 0;
|
|
|
|
rtd = devm_kzalloc(dev, sizeof(*rtd), GFP_KERNEL);
|
|
if (!rtd)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
phandle = of_parse_phandle(child, "adi,rsense-handle", 0);
|
|
if (!phandle) {
|
|
dev_err(dev, "Property adi,rsense-handle missing or invalid");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
ret = of_property_read_u32(phandle, "reg", &rtd->r_sense_chan);
|
|
if (ret) {
|
|
dev_err(dev, "Property reg must be given\n");
|
|
goto fail;
|
|
}
|
|
|
|
ret = of_property_read_u32(child, "adi,number-of-wires", &n_wires);
|
|
if (!ret) {
|
|
switch (n_wires) {
|
|
case 2:
|
|
rtd->sensor_config = LTC2983_RTD_N_WIRES(0);
|
|
break;
|
|
case 3:
|
|
rtd->sensor_config = LTC2983_RTD_N_WIRES(1);
|
|
break;
|
|
case 4:
|
|
rtd->sensor_config = LTC2983_RTD_N_WIRES(2);
|
|
break;
|
|
case 5:
|
|
/* 4 wires, Kelvin Rsense */
|
|
rtd->sensor_config = LTC2983_RTD_N_WIRES(3);
|
|
break;
|
|
default:
|
|
dev_err(dev, "Invalid number of wires:%u\n", n_wires);
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (of_property_read_bool(child, "adi,rsense-share")) {
|
|
/* Current rotation is only available with rsense sharing */
|
|
if (of_property_read_bool(child, "adi,current-rotate")) {
|
|
if (n_wires == 2 || n_wires == 3) {
|
|
dev_err(dev,
|
|
"Rotation not allowed for 2/3 Wire RTDs");
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
rtd->sensor_config |= LTC2983_RTD_C_ROTATE(1);
|
|
} else {
|
|
rtd->sensor_config |= LTC2983_RTD_R_SHARE(1);
|
|
}
|
|
}
|
|
/*
|
|
* rtd channel indexes are a bit more complicated to validate.
|
|
* For 4wire RTD with rotation, the channel selection cannot be
|
|
* >=19 since the chann + 1 is used in this configuration.
|
|
* For 4wire RTDs with kelvin rsense, the rsense channel cannot be
|
|
* <=1 since chanel - 1 and channel - 2 are used.
|
|
*/
|
|
if (rtd->sensor_config & LTC2983_RTD_4_WIRE_MASK) {
|
|
/* 4-wire */
|
|
u8 min = LTC2983_DIFFERENTIAL_CHAN_MIN,
|
|
max = LTC2983_MAX_CHANNELS_NR;
|
|
|
|
if (rtd->sensor_config & LTC2983_RTD_ROTATION_MASK)
|
|
max = LTC2983_MAX_CHANNELS_NR - 1;
|
|
|
|
if (((rtd->sensor_config & LTC2983_RTD_KELVIN_R_SENSE_MASK)
|
|
== LTC2983_RTD_KELVIN_R_SENSE_MASK) &&
|
|
(rtd->r_sense_chan <= min)) {
|
|
/* kelvin rsense*/
|
|
dev_err(dev,
|
|
"Invalid rsense chann:%d to use in kelvin rsense",
|
|
rtd->r_sense_chan);
|
|
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
if (sensor->chan < min || sensor->chan > max) {
|
|
dev_err(dev, "Invalid chann:%d for the rtd config",
|
|
sensor->chan);
|
|
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
} else {
|
|
/* same as differential case */
|
|
if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
|
|
dev_err(&st->spi->dev,
|
|
"Invalid chann:%d for RTD", sensor->chan);
|
|
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* check custom sensor */
|
|
if (sensor->type == LTC2983_SENSOR_RTD_CUSTOM) {
|
|
rtd->custom = __ltc2983_custom_sensor_new(st, child,
|
|
"adi,custom-rtd",
|
|
false, 2048, false);
|
|
if (IS_ERR(rtd->custom)) {
|
|
of_node_put(phandle);
|
|
return ERR_CAST(rtd->custom);
|
|
}
|
|
}
|
|
|
|
/* set common parameters */
|
|
rtd->sensor.fault_handler = ltc2983_common_fault_handler;
|
|
rtd->sensor.assign_chan = ltc2983_rtd_assign_chan;
|
|
|
|
ret = of_property_read_u32(child, "adi,excitation-current-microamp",
|
|
&excitation_current);
|
|
if (ret) {
|
|
/* default to 5uA */
|
|
rtd->excitation_current = 1;
|
|
} else {
|
|
switch (excitation_current) {
|
|
case 5:
|
|
rtd->excitation_current = 0x01;
|
|
break;
|
|
case 10:
|
|
rtd->excitation_current = 0x02;
|
|
break;
|
|
case 25:
|
|
rtd->excitation_current = 0x03;
|
|
break;
|
|
case 50:
|
|
rtd->excitation_current = 0x04;
|
|
break;
|
|
case 100:
|
|
rtd->excitation_current = 0x05;
|
|
break;
|
|
case 250:
|
|
rtd->excitation_current = 0x06;
|
|
break;
|
|
case 500:
|
|
rtd->excitation_current = 0x07;
|
|
break;
|
|
case 1000:
|
|
rtd->excitation_current = 0x08;
|
|
break;
|
|
default:
|
|
dev_err(&st->spi->dev,
|
|
"Invalid value for excitation current(%u)",
|
|
excitation_current);
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
of_property_read_u32(child, "adi,rtd-curve", &rtd->rtd_curve);
|
|
|
|
of_node_put(phandle);
|
|
return &rtd->sensor;
|
|
fail:
|
|
of_node_put(phandle);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct ltc2983_sensor *ltc2983_thermistor_new(
|
|
const struct device_node *child,
|
|
struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_thermistor *thermistor;
|
|
struct device *dev = &st->spi->dev;
|
|
struct device_node *phandle;
|
|
u32 excitation_current = 0;
|
|
int ret = 0;
|
|
|
|
thermistor = devm_kzalloc(dev, sizeof(*thermistor), GFP_KERNEL);
|
|
if (!thermistor)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
phandle = of_parse_phandle(child, "adi,rsense-handle", 0);
|
|
if (!phandle) {
|
|
dev_err(dev, "Property adi,rsense-handle missing or invalid");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
ret = of_property_read_u32(phandle, "reg", &thermistor->r_sense_chan);
|
|
if (ret) {
|
|
dev_err(dev, "rsense channel must be configured...\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (of_property_read_bool(child, "adi,single-ended")) {
|
|
thermistor->sensor_config = LTC2983_THERMISTOR_SGL(1);
|
|
} else if (of_property_read_bool(child, "adi,rsense-share")) {
|
|
/* rotation is only possible if sharing rsense */
|
|
if (of_property_read_bool(child, "adi,current-rotate"))
|
|
thermistor->sensor_config =
|
|
LTC2983_THERMISTOR_C_ROTATE(1);
|
|
else
|
|
thermistor->sensor_config =
|
|
LTC2983_THERMISTOR_R_SHARE(1);
|
|
}
|
|
/* validate channel index */
|
|
if (!(thermistor->sensor_config & LTC2983_THERMISTOR_DIFF_MASK) &&
|
|
sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
|
|
dev_err(&st->spi->dev,
|
|
"Invalid chann:%d for differential thermistor",
|
|
sensor->chan);
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
/* check custom sensor */
|
|
if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) {
|
|
bool steinhart = false;
|
|
const char *propname;
|
|
|
|
if (sensor->type == LTC2983_SENSOR_THERMISTOR_STEINHART) {
|
|
steinhart = true;
|
|
propname = "adi,custom-steinhart";
|
|
} else {
|
|
propname = "adi,custom-thermistor";
|
|
}
|
|
|
|
thermistor->custom = __ltc2983_custom_sensor_new(st, child,
|
|
propname,
|
|
steinhart,
|
|
64, false);
|
|
if (IS_ERR(thermistor->custom)) {
|
|
of_node_put(phandle);
|
|
return ERR_CAST(thermistor->custom);
|
|
}
|
|
}
|
|
/* set common parameters */
|
|
thermistor->sensor.fault_handler = ltc2983_common_fault_handler;
|
|
thermistor->sensor.assign_chan = ltc2983_thermistor_assign_chan;
|
|
|
|
ret = of_property_read_u32(child, "adi,excitation-current-nanoamp",
|
|
&excitation_current);
|
|
if (ret) {
|
|
/* Auto range is not allowed for custom sensors */
|
|
if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART)
|
|
/* default to 1uA */
|
|
thermistor->excitation_current = 0x03;
|
|
else
|
|
/* default to auto-range */
|
|
thermistor->excitation_current = 0x0c;
|
|
} else {
|
|
switch (excitation_current) {
|
|
case 0:
|
|
/* auto range */
|
|
if (sensor->type >=
|
|
LTC2983_SENSOR_THERMISTOR_STEINHART) {
|
|
dev_err(&st->spi->dev,
|
|
"Auto Range not allowed for custom sensors\n");
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
thermistor->excitation_current = 0x0c;
|
|
break;
|
|
case 250:
|
|
thermistor->excitation_current = 0x01;
|
|
break;
|
|
case 500:
|
|
thermistor->excitation_current = 0x02;
|
|
break;
|
|
case 1000:
|
|
thermistor->excitation_current = 0x03;
|
|
break;
|
|
case 5000:
|
|
thermistor->excitation_current = 0x04;
|
|
break;
|
|
case 10000:
|
|
thermistor->excitation_current = 0x05;
|
|
break;
|
|
case 25000:
|
|
thermistor->excitation_current = 0x06;
|
|
break;
|
|
case 50000:
|
|
thermistor->excitation_current = 0x07;
|
|
break;
|
|
case 100000:
|
|
thermistor->excitation_current = 0x08;
|
|
break;
|
|
case 250000:
|
|
thermistor->excitation_current = 0x09;
|
|
break;
|
|
case 500000:
|
|
thermistor->excitation_current = 0x0a;
|
|
break;
|
|
case 1000000:
|
|
thermistor->excitation_current = 0x0b;
|
|
break;
|
|
default:
|
|
dev_err(&st->spi->dev,
|
|
"Invalid value for excitation current(%u)",
|
|
excitation_current);
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
of_node_put(phandle);
|
|
return &thermistor->sensor;
|
|
fail:
|
|
of_node_put(phandle);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct ltc2983_sensor *ltc2983_diode_new(
|
|
const struct device_node *child,
|
|
const struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_diode *diode;
|
|
u32 temp = 0, excitation_current = 0;
|
|
int ret;
|
|
|
|
diode = devm_kzalloc(&st->spi->dev, sizeof(*diode), GFP_KERNEL);
|
|
if (!diode)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (of_property_read_bool(child, "adi,single-ended"))
|
|
diode->sensor_config = LTC2983_DIODE_SGL(1);
|
|
|
|
if (of_property_read_bool(child, "adi,three-conversion-cycles"))
|
|
diode->sensor_config |= LTC2983_DIODE_3_CONV_CYCLE(1);
|
|
|
|
if (of_property_read_bool(child, "adi,average-on"))
|
|
diode->sensor_config |= LTC2983_DIODE_AVERAGE_ON(1);
|
|
|
|
/* validate channel index */
|
|
if (!(diode->sensor_config & LTC2983_DIODE_DIFF_MASK) &&
|
|
sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
|
|
dev_err(&st->spi->dev,
|
|
"Invalid chann:%d for differential thermistor",
|
|
sensor->chan);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
/* set common parameters */
|
|
diode->sensor.fault_handler = ltc2983_common_fault_handler;
|
|
diode->sensor.assign_chan = ltc2983_diode_assign_chan;
|
|
|
|
ret = of_property_read_u32(child, "adi,excitation-current-microamp",
|
|
&excitation_current);
|
|
if (!ret) {
|
|
switch (excitation_current) {
|
|
case 10:
|
|
diode->excitation_current = 0x00;
|
|
break;
|
|
case 20:
|
|
diode->excitation_current = 0x01;
|
|
break;
|
|
case 40:
|
|
diode->excitation_current = 0x02;
|
|
break;
|
|
case 80:
|
|
diode->excitation_current = 0x03;
|
|
break;
|
|
default:
|
|
dev_err(&st->spi->dev,
|
|
"Invalid value for excitation current(%u)",
|
|
excitation_current);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
}
|
|
|
|
of_property_read_u32(child, "adi,ideal-factor-value", &temp);
|
|
|
|
/* 2^20 resolution */
|
|
diode->ideal_factor_value = __convert_to_raw(temp, 1048576);
|
|
|
|
return &diode->sensor;
|
|
}
|
|
|
|
static struct ltc2983_sensor *ltc2983_r_sense_new(struct device_node *child,
|
|
struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_rsense *rsense;
|
|
int ret;
|
|
u32 temp;
|
|
|
|
rsense = devm_kzalloc(&st->spi->dev, sizeof(*rsense), GFP_KERNEL);
|
|
if (!rsense)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* validate channel index */
|
|
if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
|
|
dev_err(&st->spi->dev, "Invalid chann:%d for r_sense",
|
|
sensor->chan);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
ret = of_property_read_u32(child, "adi,rsense-val-milli-ohms", &temp);
|
|
if (ret) {
|
|
dev_err(&st->spi->dev, "Property adi,rsense-val-milli-ohms missing\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
/*
|
|
* Times 1000 because we have milli-ohms and __convert_to_raw
|
|
* expects scales of 1000000 which are used for all other
|
|
* properties.
|
|
* 2^10 resolution
|
|
*/
|
|
rsense->r_sense_val = __convert_to_raw((u64)temp * 1000, 1024);
|
|
|
|
/* set common parameters */
|
|
rsense->sensor.assign_chan = ltc2983_r_sense_assign_chan;
|
|
|
|
return &rsense->sensor;
|
|
}
|
|
|
|
static struct ltc2983_sensor *ltc2983_adc_new(struct device_node *child,
|
|
struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor)
|
|
{
|
|
struct ltc2983_adc *adc;
|
|
|
|
adc = devm_kzalloc(&st->spi->dev, sizeof(*adc), GFP_KERNEL);
|
|
if (!adc)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (of_property_read_bool(child, "adi,single-ended"))
|
|
adc->single_ended = true;
|
|
|
|
if (!adc->single_ended &&
|
|
sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
|
|
dev_err(&st->spi->dev, "Invalid chan:%d for differential adc\n",
|
|
sensor->chan);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
/* set common parameters */
|
|
adc->sensor.assign_chan = ltc2983_adc_assign_chan;
|
|
adc->sensor.fault_handler = ltc2983_common_fault_handler;
|
|
|
|
return &adc->sensor;
|
|
}
|
|
|
|
static int ltc2983_chan_read(struct ltc2983_data *st,
|
|
const struct ltc2983_sensor *sensor, int *val)
|
|
{
|
|
u32 start_conversion = 0;
|
|
int ret;
|
|
unsigned long time;
|
|
|
|
start_conversion = LTC2983_STATUS_START(true);
|
|
start_conversion |= LTC2983_STATUS_CHAN_SEL(sensor->chan);
|
|
dev_dbg(&st->spi->dev, "Start conversion on chan:%d, status:%02X\n",
|
|
sensor->chan, start_conversion);
|
|
/* start conversion */
|
|
ret = regmap_write(st->regmap, LTC2983_STATUS_REG, start_conversion);
|
|
if (ret)
|
|
return ret;
|
|
|
|
reinit_completion(&st->completion);
|
|
/*
|
|
* wait for conversion to complete.
|
|
* 300 ms should be more than enough to complete the conversion.
|
|
* Depending on the sensor configuration, there are 2/3 conversions
|
|
* cycles of 82ms.
|
|
*/
|
|
time = wait_for_completion_timeout(&st->completion,
|
|
msecs_to_jiffies(300));
|
|
if (!time) {
|
|
dev_warn(&st->spi->dev, "Conversion timed out\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* read the converted data */
|
|
ret = regmap_bulk_read(st->regmap, LTC2983_CHAN_RES_ADDR(sensor->chan),
|
|
&st->temp, sizeof(st->temp));
|
|
if (ret)
|
|
return ret;
|
|
|
|
*val = __be32_to_cpu(st->temp);
|
|
|
|
if (!(LTC2983_RES_VALID_MASK & *val)) {
|
|
dev_err(&st->spi->dev, "Invalid conversion detected\n");
|
|
return -EIO;
|
|
}
|
|
|
|
ret = sensor->fault_handler(st, *val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*val = sign_extend32((*val) & LTC2983_DATA_MASK, LTC2983_DATA_SIGN_BIT);
|
|
return 0;
|
|
}
|
|
|
|
static int ltc2983_read_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan,
|
|
int *val, int *val2, long mask)
|
|
{
|
|
struct ltc2983_data *st = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
/* sanity check */
|
|
if (chan->address >= st->num_channels) {
|
|
dev_err(&st->spi->dev, "Invalid chan address:%ld",
|
|
chan->address);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_RAW:
|
|
mutex_lock(&st->lock);
|
|
ret = ltc2983_chan_read(st, st->sensors[chan->address], val);
|
|
mutex_unlock(&st->lock);
|
|
return ret ?: IIO_VAL_INT;
|
|
case IIO_CHAN_INFO_SCALE:
|
|
switch (chan->type) {
|
|
case IIO_TEMP:
|
|
/* value in milli degrees */
|
|
*val = 1000;
|
|
/* 2^10 */
|
|
*val2 = 1024;
|
|
return IIO_VAL_FRACTIONAL;
|
|
case IIO_VOLTAGE:
|
|
/* value in millivolt */
|
|
*val = 1000;
|
|
/* 2^21 */
|
|
*val2 = 2097152;
|
|
return IIO_VAL_FRACTIONAL;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int ltc2983_reg_access(struct iio_dev *indio_dev,
|
|
unsigned int reg,
|
|
unsigned int writeval,
|
|
unsigned int *readval)
|
|
{
|
|
struct ltc2983_data *st = iio_priv(indio_dev);
|
|
|
|
if (readval)
|
|
return regmap_read(st->regmap, reg, readval);
|
|
else
|
|
return regmap_write(st->regmap, reg, writeval);
|
|
}
|
|
|
|
static irqreturn_t ltc2983_irq_handler(int irq, void *data)
|
|
{
|
|
struct ltc2983_data *st = data;
|
|
|
|
complete(&st->completion);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
#define LTC2983_CHAN(__type, index, __address) ({ \
|
|
struct iio_chan_spec __chan = { \
|
|
.type = __type, \
|
|
.indexed = 1, \
|
|
.channel = index, \
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
|
|
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
|
|
.address = __address, \
|
|
}; \
|
|
__chan; \
|
|
})
|
|
|
|
static int ltc2983_parse_dt(struct ltc2983_data *st)
|
|
{
|
|
struct device_node *child;
|
|
struct device *dev = &st->spi->dev;
|
|
int ret = 0, chan = 0, channel_avail_mask = 0;
|
|
|
|
of_property_read_u32(dev->of_node, "adi,mux-delay-config-us",
|
|
&st->mux_delay_config);
|
|
|
|
of_property_read_u32(dev->of_node, "adi,filter-notch-freq",
|
|
&st->filter_notch_freq);
|
|
|
|
st->num_channels = of_get_available_child_count(dev->of_node);
|
|
st->sensors = devm_kcalloc(dev, st->num_channels, sizeof(*st->sensors),
|
|
GFP_KERNEL);
|
|
if (!st->sensors)
|
|
return -ENOMEM;
|
|
|
|
st->iio_channels = st->num_channels;
|
|
for_each_available_child_of_node(dev->of_node, child) {
|
|
struct ltc2983_sensor sensor;
|
|
|
|
ret = of_property_read_u32(child, "reg", &sensor.chan);
|
|
if (ret) {
|
|
dev_err(dev, "reg property must given for child nodes\n");
|
|
goto put_child;
|
|
}
|
|
|
|
/* check if we have a valid channel */
|
|
if (sensor.chan < LTC2983_MIN_CHANNELS_NR ||
|
|
sensor.chan > LTC2983_MAX_CHANNELS_NR) {
|
|
ret = -EINVAL;
|
|
dev_err(dev,
|
|
"chan:%d must be from 1 to 20\n", sensor.chan);
|
|
goto put_child;
|
|
} else if (channel_avail_mask & BIT(sensor.chan)) {
|
|
ret = -EINVAL;
|
|
dev_err(dev, "chan:%d already in use\n", sensor.chan);
|
|
goto put_child;
|
|
}
|
|
|
|
ret = of_property_read_u32(child, "adi,sensor-type",
|
|
&sensor.type);
|
|
if (ret) {
|
|
dev_err(dev,
|
|
"adi,sensor-type property must given for child nodes\n");
|
|
goto put_child;
|
|
}
|
|
|
|
dev_dbg(dev, "Create new sensor, type %u, chann %u",
|
|
sensor.type,
|
|
sensor.chan);
|
|
|
|
if (sensor.type >= LTC2983_SENSOR_THERMOCOUPLE &&
|
|
sensor.type <= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
|
|
st->sensors[chan] = ltc2983_thermocouple_new(child, st,
|
|
&sensor);
|
|
} else if (sensor.type >= LTC2983_SENSOR_RTD &&
|
|
sensor.type <= LTC2983_SENSOR_RTD_CUSTOM) {
|
|
st->sensors[chan] = ltc2983_rtd_new(child, st, &sensor);
|
|
} else if (sensor.type >= LTC2983_SENSOR_THERMISTOR &&
|
|
sensor.type <= LTC2983_SENSOR_THERMISTOR_CUSTOM) {
|
|
st->sensors[chan] = ltc2983_thermistor_new(child, st,
|
|
&sensor);
|
|
} else if (sensor.type == LTC2983_SENSOR_DIODE) {
|
|
st->sensors[chan] = ltc2983_diode_new(child, st,
|
|
&sensor);
|
|
} else if (sensor.type == LTC2983_SENSOR_SENSE_RESISTOR) {
|
|
st->sensors[chan] = ltc2983_r_sense_new(child, st,
|
|
&sensor);
|
|
/* don't add rsense to iio */
|
|
st->iio_channels--;
|
|
} else if (sensor.type == LTC2983_SENSOR_DIRECT_ADC) {
|
|
st->sensors[chan] = ltc2983_adc_new(child, st, &sensor);
|
|
} else {
|
|
dev_err(dev, "Unknown sensor type %d\n", sensor.type);
|
|
ret = -EINVAL;
|
|
goto put_child;
|
|
}
|
|
|
|
if (IS_ERR(st->sensors[chan])) {
|
|
dev_err(dev, "Failed to create sensor %ld",
|
|
PTR_ERR(st->sensors[chan]));
|
|
ret = PTR_ERR(st->sensors[chan]);
|
|
goto put_child;
|
|
}
|
|
/* set generic sensor parameters */
|
|
st->sensors[chan]->chan = sensor.chan;
|
|
st->sensors[chan]->type = sensor.type;
|
|
|
|
channel_avail_mask |= BIT(sensor.chan);
|
|
chan++;
|
|
}
|
|
|
|
return 0;
|
|
put_child:
|
|
of_node_put(child);
|
|
return ret;
|
|
}
|
|
|
|
static int ltc2983_setup(struct ltc2983_data *st, bool assign_iio)
|
|
{
|
|
u32 iio_chan_t = 0, iio_chan_v = 0, chan, iio_idx = 0, status;
|
|
int ret;
|
|
|
|
/* make sure the device is up: start bit (7) is 0 and done bit (6) is 1 */
|
|
ret = regmap_read_poll_timeout(st->regmap, LTC2983_STATUS_REG, status,
|
|
LTC2983_STATUS_UP(status) == 1, 25000,
|
|
25000 * 10);
|
|
if (ret) {
|
|
dev_err(&st->spi->dev, "Device startup timed out\n");
|
|
return ret;
|
|
}
|
|
|
|
st->iio_chan = devm_kzalloc(&st->spi->dev,
|
|
st->iio_channels * sizeof(*st->iio_chan),
|
|
GFP_KERNEL);
|
|
|
|
if (!st->iio_chan)
|
|
return -ENOMEM;
|
|
|
|
ret = regmap_update_bits(st->regmap, LTC2983_GLOBAL_CONFIG_REG,
|
|
LTC2983_NOTCH_FREQ_MASK,
|
|
LTC2983_NOTCH_FREQ(st->filter_notch_freq));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_write(st->regmap, LTC2983_MUX_CONFIG_REG,
|
|
st->mux_delay_config);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (chan = 0; chan < st->num_channels; chan++) {
|
|
u32 chan_type = 0, *iio_chan;
|
|
|
|
ret = st->sensors[chan]->assign_chan(st, st->sensors[chan]);
|
|
if (ret)
|
|
return ret;
|
|
/*
|
|
* The assign_iio flag is necessary for when the device is
|
|
* coming out of sleep. In that case, we just need to
|
|
* re-configure the device channels.
|
|
* We also don't assign iio channels for rsense.
|
|
*/
|
|
if (st->sensors[chan]->type == LTC2983_SENSOR_SENSE_RESISTOR ||
|
|
!assign_iio)
|
|
continue;
|
|
|
|
/* assign iio channel */
|
|
if (st->sensors[chan]->type != LTC2983_SENSOR_DIRECT_ADC) {
|
|
chan_type = IIO_TEMP;
|
|
iio_chan = &iio_chan_t;
|
|
} else {
|
|
chan_type = IIO_VOLTAGE;
|
|
iio_chan = &iio_chan_v;
|
|
}
|
|
|
|
/*
|
|
* add chan as the iio .address so that, we can directly
|
|
* reference the sensor given the iio_chan_spec
|
|
*/
|
|
st->iio_chan[iio_idx++] = LTC2983_CHAN(chan_type, (*iio_chan)++,
|
|
chan);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct regmap_range ltc2983_reg_ranges[] = {
|
|
regmap_reg_range(LTC2983_STATUS_REG, LTC2983_STATUS_REG),
|
|
regmap_reg_range(LTC2983_TEMP_RES_START_REG, LTC2983_TEMP_RES_END_REG),
|
|
regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG, LTC2983_GLOBAL_CONFIG_REG),
|
|
regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG,
|
|
LTC2983_MULT_CHANNEL_END_REG),
|
|
regmap_reg_range(LTC2983_MUX_CONFIG_REG, LTC2983_MUX_CONFIG_REG),
|
|
regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG,
|
|
LTC2983_CHAN_ASSIGN_END_REG),
|
|
regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG,
|
|
LTC2983_CUST_SENS_TBL_END_REG),
|
|
};
|
|
|
|
static const struct regmap_access_table ltc2983_reg_table = {
|
|
.yes_ranges = ltc2983_reg_ranges,
|
|
.n_yes_ranges = ARRAY_SIZE(ltc2983_reg_ranges),
|
|
};
|
|
|
|
/*
|
|
* The reg_bits are actually 12 but the device needs the first *complete*
|
|
* byte for the command (R/W).
|
|
*/
|
|
static const struct regmap_config ltc2983_regmap_config = {
|
|
.reg_bits = 24,
|
|
.val_bits = 8,
|
|
.wr_table = <c2983_reg_table,
|
|
.rd_table = <c2983_reg_table,
|
|
.read_flag_mask = GENMASK(1, 0),
|
|
.write_flag_mask = BIT(1),
|
|
};
|
|
|
|
static const struct iio_info ltc2983_iio_info = {
|
|
.read_raw = ltc2983_read_raw,
|
|
.debugfs_reg_access = ltc2983_reg_access,
|
|
};
|
|
|
|
static int ltc2983_probe(struct spi_device *spi)
|
|
{
|
|
struct ltc2983_data *st;
|
|
struct iio_dev *indio_dev;
|
|
const char *name = spi_get_device_id(spi)->name;
|
|
int ret;
|
|
|
|
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
|
|
if (!indio_dev)
|
|
return -ENOMEM;
|
|
|
|
st = iio_priv(indio_dev);
|
|
|
|
st->regmap = devm_regmap_init_spi(spi, <c2983_regmap_config);
|
|
if (IS_ERR(st->regmap)) {
|
|
dev_err(&spi->dev, "Failed to initialize regmap\n");
|
|
return PTR_ERR(st->regmap);
|
|
}
|
|
|
|
mutex_init(&st->lock);
|
|
init_completion(&st->completion);
|
|
st->spi = spi;
|
|
spi_set_drvdata(spi, st);
|
|
|
|
ret = ltc2983_parse_dt(st);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ltc2983_setup(st, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = devm_request_irq(&spi->dev, spi->irq, ltc2983_irq_handler,
|
|
IRQF_TRIGGER_RISING, name, st);
|
|
if (ret) {
|
|
dev_err(&spi->dev, "failed to request an irq, %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
indio_dev->name = name;
|
|
indio_dev->num_channels = st->iio_channels;
|
|
indio_dev->channels = st->iio_chan;
|
|
indio_dev->modes = INDIO_DIRECT_MODE;
|
|
indio_dev->info = <c2983_iio_info;
|
|
|
|
return devm_iio_device_register(&spi->dev, indio_dev);
|
|
}
|
|
|
|
static int __maybe_unused ltc2983_resume(struct device *dev)
|
|
{
|
|
struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
|
|
int dummy;
|
|
|
|
/* dummy read to bring the device out of sleep */
|
|
regmap_read(st->regmap, LTC2983_STATUS_REG, &dummy);
|
|
/* we need to re-assign the channels */
|
|
return ltc2983_setup(st, false);
|
|
}
|
|
|
|
static int __maybe_unused ltc2983_suspend(struct device *dev)
|
|
{
|
|
struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
|
|
|
|
return regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_SLEEP);
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(ltc2983_pm_ops, ltc2983_suspend, ltc2983_resume);
|
|
|
|
static const struct spi_device_id ltc2983_id_table[] = {
|
|
{ "ltc2983" },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(spi, ltc2983_id_table);
|
|
|
|
static const struct of_device_id ltc2983_of_match[] = {
|
|
{ .compatible = "adi,ltc2983" },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, ltc2983_of_match);
|
|
|
|
static struct spi_driver ltc2983_driver = {
|
|
.driver = {
|
|
.name = "ltc2983",
|
|
.of_match_table = ltc2983_of_match,
|
|
.pm = <c2983_pm_ops,
|
|
},
|
|
.probe = ltc2983_probe,
|
|
.id_table = ltc2983_id_table,
|
|
};
|
|
|
|
module_spi_driver(ltc2983_driver);
|
|
|
|
MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
|
|
MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors");
|
|
MODULE_LICENSE("GPL");
|