mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-20 11:13:58 +08:00
7d6beb71da
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
=yPaw
-----END PGP SIGNATURE-----
Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdf
https://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
1d7b902e28
In order to support idmapped mounts, filesystems need to be changed
and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The
patches to convert individual filesystem are not very large or
complicated overall as can be seen from the included fat, ext4, and
xfs ports. Patches for other filesystems are actively worked on and
will be sent out separately. The xfstestsuite can be used to verify
that port has been done correctly.
The mount_setattr() syscall is motivated independent of the idmapped
mounts patches and it's been around since July 2019. One of the most
valuable features of the new mount api is the ability to perform
mounts based on file descriptors only.
Together with the lookup restrictions available in the openat2()
RESOLVE_* flag namespace which we added in v5.6 this is the first time
we are close to hardened and race-free (e.g. symlinks) mounting and
path resolution.
While userspace has started porting to the new mount api to mount
proper filesystems and create new bind-mounts it is currently not
possible to change mount options of an already existing bind mount in
the new mount api since the mount_setattr() syscall is missing.
With the addition of the mount_setattr() syscall we remove this last
restriction and userspace can now fully port to the new mount api,
covering every use-case the old mount api could. We also add the
crucial ability to recursively change mount options for a whole mount
tree, both removing and adding mount options at the same time. This
syscall has been requested multiple times by various people and
projects.
There is a simple tool available at
https://github.com/brauner/mount-idmapped
that allows to create idmapped mounts so people can play with this
patch series. I'll add support for the regular mount binary should you
decide to pull this in the following weeks:
Here's an example to a simple idmapped mount of another user's home
directory:
u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt
u1001@f2-vm:/$ ls -al /home/ubuntu/
total 28
drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 .
drwxr-xr-x 4 root root 4096 Oct 28 04:00 ..
-rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile
-rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ ls -al /mnt/
total 28
drwxr-xr-x 2 u1001 u1001 4096 Oct 28 22:07 .
drwxr-xr-x 29 root root 4096 Oct 28 22:01 ..
-rw------- 1 u1001 u1001 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 u1001 u1001 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 u1001 u1001 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 u1001 u1001 807 Feb 25 2020 .profile
-rw-r--r-- 1 u1001 u1001 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 u1001 u1001 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ touch /mnt/my-file
u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file
u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file
u1001@f2-vm:/$ ls -al /mnt/my-file
-rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file
u1001@f2-vm:/$ ls -al /home/ubuntu/my-file
-rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file
u1001@f2-vm:/$ getfacl /mnt/my-file
getfacl: Removing leading '/' from absolute path names
# file: mnt/my-file
# owner: u1001
# group: u1001
user::rw-
user:u1001:rwx
group::rw-
mask::rwx
other::r--
u1001@f2-vm:/$ getfacl /home/ubuntu/my-file
getfacl: Removing leading '/' from absolute path names
# file: home/ubuntu/my-file
# owner: ubuntu
# group: ubuntu
user::rw-
user:ubuntu:rwx
group::rw-
mask::rwx
other::r--"
* tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits)
xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl
xfs: support idmapped mounts
ext4: support idmapped mounts
fat: handle idmapped mounts
tests: add mount_setattr() selftests
fs: introduce MOUNT_ATTR_IDMAP
fs: add mount_setattr()
fs: add attr_flags_to_mnt_flags helper
fs: split out functions to hold writers
namespace: only take read lock in do_reconfigure_mnt()
mount: make {lock,unlock}_mount_hash() static
namespace: take lock_mount_hash() directly when changing flags
nfs: do not export idmapped mounts
overlayfs: do not mount on top of idmapped mounts
ecryptfs: do not mount on top of idmapped mounts
ima: handle idmapped mounts
apparmor: handle idmapped mounts
fs: make helpers idmap mount aware
exec: handle idmapped mounts
would_dump: handle idmapped mounts
...
1606 lines
44 KiB
C
1606 lines
44 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/fs/ext4/ialloc.c
|
|
*
|
|
* Copyright (C) 1992, 1993, 1994, 1995
|
|
* Remy Card (card@masi.ibp.fr)
|
|
* Laboratoire MASI - Institut Blaise Pascal
|
|
* Universite Pierre et Marie Curie (Paris VI)
|
|
*
|
|
* BSD ufs-inspired inode and directory allocation by
|
|
* Stephen Tweedie (sct@redhat.com), 1993
|
|
* Big-endian to little-endian byte-swapping/bitmaps by
|
|
* David S. Miller (davem@caip.rutgers.edu), 1995
|
|
*/
|
|
|
|
#include <linux/time.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/string.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/random.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/cred.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
|
|
#include "ext4.h"
|
|
#include "ext4_jbd2.h"
|
|
#include "xattr.h"
|
|
#include "acl.h"
|
|
|
|
#include <trace/events/ext4.h>
|
|
|
|
/*
|
|
* ialloc.c contains the inodes allocation and deallocation routines
|
|
*/
|
|
|
|
/*
|
|
* The free inodes are managed by bitmaps. A file system contains several
|
|
* blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
|
|
* block for inodes, N blocks for the inode table and data blocks.
|
|
*
|
|
* The file system contains group descriptors which are located after the
|
|
* super block. Each descriptor contains the number of the bitmap block and
|
|
* the free blocks count in the block.
|
|
*/
|
|
|
|
/*
|
|
* To avoid calling the atomic setbit hundreds or thousands of times, we only
|
|
* need to use it within a single byte (to ensure we get endianness right).
|
|
* We can use memset for the rest of the bitmap as there are no other users.
|
|
*/
|
|
void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
|
|
{
|
|
int i;
|
|
|
|
if (start_bit >= end_bit)
|
|
return;
|
|
|
|
ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
|
|
for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
|
|
ext4_set_bit(i, bitmap);
|
|
if (i < end_bit)
|
|
memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
|
|
}
|
|
|
|
void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
|
|
{
|
|
if (uptodate) {
|
|
set_buffer_uptodate(bh);
|
|
set_bitmap_uptodate(bh);
|
|
}
|
|
unlock_buffer(bh);
|
|
put_bh(bh);
|
|
}
|
|
|
|
static int ext4_validate_inode_bitmap(struct super_block *sb,
|
|
struct ext4_group_desc *desc,
|
|
ext4_group_t block_group,
|
|
struct buffer_head *bh)
|
|
{
|
|
ext4_fsblk_t blk;
|
|
struct ext4_group_info *grp;
|
|
|
|
if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
|
|
return 0;
|
|
|
|
grp = ext4_get_group_info(sb, block_group);
|
|
|
|
if (buffer_verified(bh))
|
|
return 0;
|
|
if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
|
|
return -EFSCORRUPTED;
|
|
|
|
ext4_lock_group(sb, block_group);
|
|
if (buffer_verified(bh))
|
|
goto verified;
|
|
blk = ext4_inode_bitmap(sb, desc);
|
|
if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
|
|
EXT4_INODES_PER_GROUP(sb) / 8) ||
|
|
ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) {
|
|
ext4_unlock_group(sb, block_group);
|
|
ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
|
|
"inode_bitmap = %llu", block_group, blk);
|
|
ext4_mark_group_bitmap_corrupted(sb, block_group,
|
|
EXT4_GROUP_INFO_IBITMAP_CORRUPT);
|
|
return -EFSBADCRC;
|
|
}
|
|
set_buffer_verified(bh);
|
|
verified:
|
|
ext4_unlock_group(sb, block_group);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the inode allocation bitmap for a given block_group, reading
|
|
* into the specified slot in the superblock's bitmap cache.
|
|
*
|
|
* Return buffer_head of bitmap on success, or an ERR_PTR on error.
|
|
*/
|
|
static struct buffer_head *
|
|
ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
|
|
{
|
|
struct ext4_group_desc *desc;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
struct buffer_head *bh = NULL;
|
|
ext4_fsblk_t bitmap_blk;
|
|
int err;
|
|
|
|
desc = ext4_get_group_desc(sb, block_group, NULL);
|
|
if (!desc)
|
|
return ERR_PTR(-EFSCORRUPTED);
|
|
|
|
bitmap_blk = ext4_inode_bitmap(sb, desc);
|
|
if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
|
|
(bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
|
|
ext4_error(sb, "Invalid inode bitmap blk %llu in "
|
|
"block_group %u", bitmap_blk, block_group);
|
|
ext4_mark_group_bitmap_corrupted(sb, block_group,
|
|
EXT4_GROUP_INFO_IBITMAP_CORRUPT);
|
|
return ERR_PTR(-EFSCORRUPTED);
|
|
}
|
|
bh = sb_getblk(sb, bitmap_blk);
|
|
if (unlikely(!bh)) {
|
|
ext4_warning(sb, "Cannot read inode bitmap - "
|
|
"block_group = %u, inode_bitmap = %llu",
|
|
block_group, bitmap_blk);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
if (bitmap_uptodate(bh))
|
|
goto verify;
|
|
|
|
lock_buffer(bh);
|
|
if (bitmap_uptodate(bh)) {
|
|
unlock_buffer(bh);
|
|
goto verify;
|
|
}
|
|
|
|
ext4_lock_group(sb, block_group);
|
|
if (ext4_has_group_desc_csum(sb) &&
|
|
(desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
|
|
if (block_group == 0) {
|
|
ext4_unlock_group(sb, block_group);
|
|
unlock_buffer(bh);
|
|
ext4_error(sb, "Inode bitmap for bg 0 marked "
|
|
"uninitialized");
|
|
err = -EFSCORRUPTED;
|
|
goto out;
|
|
}
|
|
memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
|
|
ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
|
|
sb->s_blocksize * 8, bh->b_data);
|
|
set_bitmap_uptodate(bh);
|
|
set_buffer_uptodate(bh);
|
|
set_buffer_verified(bh);
|
|
ext4_unlock_group(sb, block_group);
|
|
unlock_buffer(bh);
|
|
return bh;
|
|
}
|
|
ext4_unlock_group(sb, block_group);
|
|
|
|
if (buffer_uptodate(bh)) {
|
|
/*
|
|
* if not uninit if bh is uptodate,
|
|
* bitmap is also uptodate
|
|
*/
|
|
set_bitmap_uptodate(bh);
|
|
unlock_buffer(bh);
|
|
goto verify;
|
|
}
|
|
/*
|
|
* submit the buffer_head for reading
|
|
*/
|
|
trace_ext4_load_inode_bitmap(sb, block_group);
|
|
ext4_read_bh(bh, REQ_META | REQ_PRIO, ext4_end_bitmap_read);
|
|
ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO);
|
|
if (!buffer_uptodate(bh)) {
|
|
put_bh(bh);
|
|
ext4_error_err(sb, EIO, "Cannot read inode bitmap - "
|
|
"block_group = %u, inode_bitmap = %llu",
|
|
block_group, bitmap_blk);
|
|
ext4_mark_group_bitmap_corrupted(sb, block_group,
|
|
EXT4_GROUP_INFO_IBITMAP_CORRUPT);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
verify:
|
|
err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
|
|
if (err)
|
|
goto out;
|
|
return bh;
|
|
out:
|
|
put_bh(bh);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/*
|
|
* NOTE! When we get the inode, we're the only people
|
|
* that have access to it, and as such there are no
|
|
* race conditions we have to worry about. The inode
|
|
* is not on the hash-lists, and it cannot be reached
|
|
* through the filesystem because the directory entry
|
|
* has been deleted earlier.
|
|
*
|
|
* HOWEVER: we must make sure that we get no aliases,
|
|
* which means that we have to call "clear_inode()"
|
|
* _before_ we mark the inode not in use in the inode
|
|
* bitmaps. Otherwise a newly created file might use
|
|
* the same inode number (not actually the same pointer
|
|
* though), and then we'd have two inodes sharing the
|
|
* same inode number and space on the harddisk.
|
|
*/
|
|
void ext4_free_inode(handle_t *handle, struct inode *inode)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
int is_directory;
|
|
unsigned long ino;
|
|
struct buffer_head *bitmap_bh = NULL;
|
|
struct buffer_head *bh2;
|
|
ext4_group_t block_group;
|
|
unsigned long bit;
|
|
struct ext4_group_desc *gdp;
|
|
struct ext4_super_block *es;
|
|
struct ext4_sb_info *sbi;
|
|
int fatal = 0, err, count, cleared;
|
|
struct ext4_group_info *grp;
|
|
|
|
if (!sb) {
|
|
printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
|
|
"nonexistent device\n", __func__, __LINE__);
|
|
return;
|
|
}
|
|
if (atomic_read(&inode->i_count) > 1) {
|
|
ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
|
|
__func__, __LINE__, inode->i_ino,
|
|
atomic_read(&inode->i_count));
|
|
return;
|
|
}
|
|
if (inode->i_nlink) {
|
|
ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
|
|
__func__, __LINE__, inode->i_ino, inode->i_nlink);
|
|
return;
|
|
}
|
|
sbi = EXT4_SB(sb);
|
|
|
|
ino = inode->i_ino;
|
|
ext4_debug("freeing inode %lu\n", ino);
|
|
trace_ext4_free_inode(inode);
|
|
|
|
dquot_initialize(inode);
|
|
dquot_free_inode(inode);
|
|
|
|
is_directory = S_ISDIR(inode->i_mode);
|
|
|
|
/* Do this BEFORE marking the inode not in use or returning an error */
|
|
ext4_clear_inode(inode);
|
|
|
|
es = sbi->s_es;
|
|
if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
|
|
ext4_error(sb, "reserved or nonexistent inode %lu", ino);
|
|
goto error_return;
|
|
}
|
|
block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
|
|
bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
|
|
bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
|
|
/* Don't bother if the inode bitmap is corrupt. */
|
|
if (IS_ERR(bitmap_bh)) {
|
|
fatal = PTR_ERR(bitmap_bh);
|
|
bitmap_bh = NULL;
|
|
goto error_return;
|
|
}
|
|
if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
|
|
grp = ext4_get_group_info(sb, block_group);
|
|
if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
|
|
fatal = -EFSCORRUPTED;
|
|
goto error_return;
|
|
}
|
|
}
|
|
|
|
BUFFER_TRACE(bitmap_bh, "get_write_access");
|
|
fatal = ext4_journal_get_write_access(handle, bitmap_bh);
|
|
if (fatal)
|
|
goto error_return;
|
|
|
|
fatal = -ESRCH;
|
|
gdp = ext4_get_group_desc(sb, block_group, &bh2);
|
|
if (gdp) {
|
|
BUFFER_TRACE(bh2, "get_write_access");
|
|
fatal = ext4_journal_get_write_access(handle, bh2);
|
|
}
|
|
ext4_lock_group(sb, block_group);
|
|
cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
|
|
if (fatal || !cleared) {
|
|
ext4_unlock_group(sb, block_group);
|
|
goto out;
|
|
}
|
|
|
|
count = ext4_free_inodes_count(sb, gdp) + 1;
|
|
ext4_free_inodes_set(sb, gdp, count);
|
|
if (is_directory) {
|
|
count = ext4_used_dirs_count(sb, gdp) - 1;
|
|
ext4_used_dirs_set(sb, gdp, count);
|
|
percpu_counter_dec(&sbi->s_dirs_counter);
|
|
}
|
|
ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
|
|
EXT4_INODES_PER_GROUP(sb) / 8);
|
|
ext4_group_desc_csum_set(sb, block_group, gdp);
|
|
ext4_unlock_group(sb, block_group);
|
|
|
|
percpu_counter_inc(&sbi->s_freeinodes_counter);
|
|
if (sbi->s_log_groups_per_flex) {
|
|
struct flex_groups *fg;
|
|
|
|
fg = sbi_array_rcu_deref(sbi, s_flex_groups,
|
|
ext4_flex_group(sbi, block_group));
|
|
atomic_inc(&fg->free_inodes);
|
|
if (is_directory)
|
|
atomic_dec(&fg->used_dirs);
|
|
}
|
|
BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
|
|
fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
|
|
out:
|
|
if (cleared) {
|
|
BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
|
|
err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
|
|
if (!fatal)
|
|
fatal = err;
|
|
} else {
|
|
ext4_error(sb, "bit already cleared for inode %lu", ino);
|
|
ext4_mark_group_bitmap_corrupted(sb, block_group,
|
|
EXT4_GROUP_INFO_IBITMAP_CORRUPT);
|
|
}
|
|
|
|
error_return:
|
|
brelse(bitmap_bh);
|
|
ext4_std_error(sb, fatal);
|
|
}
|
|
|
|
struct orlov_stats {
|
|
__u64 free_clusters;
|
|
__u32 free_inodes;
|
|
__u32 used_dirs;
|
|
};
|
|
|
|
/*
|
|
* Helper function for Orlov's allocator; returns critical information
|
|
* for a particular block group or flex_bg. If flex_size is 1, then g
|
|
* is a block group number; otherwise it is flex_bg number.
|
|
*/
|
|
static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
|
|
int flex_size, struct orlov_stats *stats)
|
|
{
|
|
struct ext4_group_desc *desc;
|
|
|
|
if (flex_size > 1) {
|
|
struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb),
|
|
s_flex_groups, g);
|
|
stats->free_inodes = atomic_read(&fg->free_inodes);
|
|
stats->free_clusters = atomic64_read(&fg->free_clusters);
|
|
stats->used_dirs = atomic_read(&fg->used_dirs);
|
|
return;
|
|
}
|
|
|
|
desc = ext4_get_group_desc(sb, g, NULL);
|
|
if (desc) {
|
|
stats->free_inodes = ext4_free_inodes_count(sb, desc);
|
|
stats->free_clusters = ext4_free_group_clusters(sb, desc);
|
|
stats->used_dirs = ext4_used_dirs_count(sb, desc);
|
|
} else {
|
|
stats->free_inodes = 0;
|
|
stats->free_clusters = 0;
|
|
stats->used_dirs = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Orlov's allocator for directories.
|
|
*
|
|
* We always try to spread first-level directories.
|
|
*
|
|
* If there are blockgroups with both free inodes and free blocks counts
|
|
* not worse than average we return one with smallest directory count.
|
|
* Otherwise we simply return a random group.
|
|
*
|
|
* For the rest rules look so:
|
|
*
|
|
* It's OK to put directory into a group unless
|
|
* it has too many directories already (max_dirs) or
|
|
* it has too few free inodes left (min_inodes) or
|
|
* it has too few free blocks left (min_blocks) or
|
|
* Parent's group is preferred, if it doesn't satisfy these
|
|
* conditions we search cyclically through the rest. If none
|
|
* of the groups look good we just look for a group with more
|
|
* free inodes than average (starting at parent's group).
|
|
*/
|
|
|
|
static int find_group_orlov(struct super_block *sb, struct inode *parent,
|
|
ext4_group_t *group, umode_t mode,
|
|
const struct qstr *qstr)
|
|
{
|
|
ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
ext4_group_t real_ngroups = ext4_get_groups_count(sb);
|
|
int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
|
|
unsigned int freei, avefreei, grp_free;
|
|
ext4_fsblk_t freeb, avefreec;
|
|
unsigned int ndirs;
|
|
int max_dirs, min_inodes;
|
|
ext4_grpblk_t min_clusters;
|
|
ext4_group_t i, grp, g, ngroups;
|
|
struct ext4_group_desc *desc;
|
|
struct orlov_stats stats;
|
|
int flex_size = ext4_flex_bg_size(sbi);
|
|
struct dx_hash_info hinfo;
|
|
|
|
ngroups = real_ngroups;
|
|
if (flex_size > 1) {
|
|
ngroups = (real_ngroups + flex_size - 1) >>
|
|
sbi->s_log_groups_per_flex;
|
|
parent_group >>= sbi->s_log_groups_per_flex;
|
|
}
|
|
|
|
freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
|
|
avefreei = freei / ngroups;
|
|
freeb = EXT4_C2B(sbi,
|
|
percpu_counter_read_positive(&sbi->s_freeclusters_counter));
|
|
avefreec = freeb;
|
|
do_div(avefreec, ngroups);
|
|
ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
|
|
|
|
if (S_ISDIR(mode) &&
|
|
((parent == d_inode(sb->s_root)) ||
|
|
(ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
|
|
int best_ndir = inodes_per_group;
|
|
int ret = -1;
|
|
|
|
if (qstr) {
|
|
hinfo.hash_version = DX_HASH_HALF_MD4;
|
|
hinfo.seed = sbi->s_hash_seed;
|
|
ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
|
|
grp = hinfo.hash;
|
|
} else
|
|
grp = prandom_u32();
|
|
parent_group = (unsigned)grp % ngroups;
|
|
for (i = 0; i < ngroups; i++) {
|
|
g = (parent_group + i) % ngroups;
|
|
get_orlov_stats(sb, g, flex_size, &stats);
|
|
if (!stats.free_inodes)
|
|
continue;
|
|
if (stats.used_dirs >= best_ndir)
|
|
continue;
|
|
if (stats.free_inodes < avefreei)
|
|
continue;
|
|
if (stats.free_clusters < avefreec)
|
|
continue;
|
|
grp = g;
|
|
ret = 0;
|
|
best_ndir = stats.used_dirs;
|
|
}
|
|
if (ret)
|
|
goto fallback;
|
|
found_flex_bg:
|
|
if (flex_size == 1) {
|
|
*group = grp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We pack inodes at the beginning of the flexgroup's
|
|
* inode tables. Block allocation decisions will do
|
|
* something similar, although regular files will
|
|
* start at 2nd block group of the flexgroup. See
|
|
* ext4_ext_find_goal() and ext4_find_near().
|
|
*/
|
|
grp *= flex_size;
|
|
for (i = 0; i < flex_size; i++) {
|
|
if (grp+i >= real_ngroups)
|
|
break;
|
|
desc = ext4_get_group_desc(sb, grp+i, NULL);
|
|
if (desc && ext4_free_inodes_count(sb, desc)) {
|
|
*group = grp+i;
|
|
return 0;
|
|
}
|
|
}
|
|
goto fallback;
|
|
}
|
|
|
|
max_dirs = ndirs / ngroups + inodes_per_group / 16;
|
|
min_inodes = avefreei - inodes_per_group*flex_size / 4;
|
|
if (min_inodes < 1)
|
|
min_inodes = 1;
|
|
min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
|
|
|
|
/*
|
|
* Start looking in the flex group where we last allocated an
|
|
* inode for this parent directory
|
|
*/
|
|
if (EXT4_I(parent)->i_last_alloc_group != ~0) {
|
|
parent_group = EXT4_I(parent)->i_last_alloc_group;
|
|
if (flex_size > 1)
|
|
parent_group >>= sbi->s_log_groups_per_flex;
|
|
}
|
|
|
|
for (i = 0; i < ngroups; i++) {
|
|
grp = (parent_group + i) % ngroups;
|
|
get_orlov_stats(sb, grp, flex_size, &stats);
|
|
if (stats.used_dirs >= max_dirs)
|
|
continue;
|
|
if (stats.free_inodes < min_inodes)
|
|
continue;
|
|
if (stats.free_clusters < min_clusters)
|
|
continue;
|
|
goto found_flex_bg;
|
|
}
|
|
|
|
fallback:
|
|
ngroups = real_ngroups;
|
|
avefreei = freei / ngroups;
|
|
fallback_retry:
|
|
parent_group = EXT4_I(parent)->i_block_group;
|
|
for (i = 0; i < ngroups; i++) {
|
|
grp = (parent_group + i) % ngroups;
|
|
desc = ext4_get_group_desc(sb, grp, NULL);
|
|
if (desc) {
|
|
grp_free = ext4_free_inodes_count(sb, desc);
|
|
if (grp_free && grp_free >= avefreei) {
|
|
*group = grp;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (avefreei) {
|
|
/*
|
|
* The free-inodes counter is approximate, and for really small
|
|
* filesystems the above test can fail to find any blockgroups
|
|
*/
|
|
avefreei = 0;
|
|
goto fallback_retry;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int find_group_other(struct super_block *sb, struct inode *parent,
|
|
ext4_group_t *group, umode_t mode)
|
|
{
|
|
ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
|
|
ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
|
|
struct ext4_group_desc *desc;
|
|
int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
|
|
|
|
/*
|
|
* Try to place the inode is the same flex group as its
|
|
* parent. If we can't find space, use the Orlov algorithm to
|
|
* find another flex group, and store that information in the
|
|
* parent directory's inode information so that use that flex
|
|
* group for future allocations.
|
|
*/
|
|
if (flex_size > 1) {
|
|
int retry = 0;
|
|
|
|
try_again:
|
|
parent_group &= ~(flex_size-1);
|
|
last = parent_group + flex_size;
|
|
if (last > ngroups)
|
|
last = ngroups;
|
|
for (i = parent_group; i < last; i++) {
|
|
desc = ext4_get_group_desc(sb, i, NULL);
|
|
if (desc && ext4_free_inodes_count(sb, desc)) {
|
|
*group = i;
|
|
return 0;
|
|
}
|
|
}
|
|
if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
|
|
retry = 1;
|
|
parent_group = EXT4_I(parent)->i_last_alloc_group;
|
|
goto try_again;
|
|
}
|
|
/*
|
|
* If this didn't work, use the Orlov search algorithm
|
|
* to find a new flex group; we pass in the mode to
|
|
* avoid the topdir algorithms.
|
|
*/
|
|
*group = parent_group + flex_size;
|
|
if (*group > ngroups)
|
|
*group = 0;
|
|
return find_group_orlov(sb, parent, group, mode, NULL);
|
|
}
|
|
|
|
/*
|
|
* Try to place the inode in its parent directory
|
|
*/
|
|
*group = parent_group;
|
|
desc = ext4_get_group_desc(sb, *group, NULL);
|
|
if (desc && ext4_free_inodes_count(sb, desc) &&
|
|
ext4_free_group_clusters(sb, desc))
|
|
return 0;
|
|
|
|
/*
|
|
* We're going to place this inode in a different blockgroup from its
|
|
* parent. We want to cause files in a common directory to all land in
|
|
* the same blockgroup. But we want files which are in a different
|
|
* directory which shares a blockgroup with our parent to land in a
|
|
* different blockgroup.
|
|
*
|
|
* So add our directory's i_ino into the starting point for the hash.
|
|
*/
|
|
*group = (*group + parent->i_ino) % ngroups;
|
|
|
|
/*
|
|
* Use a quadratic hash to find a group with a free inode and some free
|
|
* blocks.
|
|
*/
|
|
for (i = 1; i < ngroups; i <<= 1) {
|
|
*group += i;
|
|
if (*group >= ngroups)
|
|
*group -= ngroups;
|
|
desc = ext4_get_group_desc(sb, *group, NULL);
|
|
if (desc && ext4_free_inodes_count(sb, desc) &&
|
|
ext4_free_group_clusters(sb, desc))
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* That failed: try linear search for a free inode, even if that group
|
|
* has no free blocks.
|
|
*/
|
|
*group = parent_group;
|
|
for (i = 0; i < ngroups; i++) {
|
|
if (++*group >= ngroups)
|
|
*group = 0;
|
|
desc = ext4_get_group_desc(sb, *group, NULL);
|
|
if (desc && ext4_free_inodes_count(sb, desc))
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* In no journal mode, if an inode has recently been deleted, we want
|
|
* to avoid reusing it until we're reasonably sure the inode table
|
|
* block has been written back to disk. (Yes, these values are
|
|
* somewhat arbitrary...)
|
|
*/
|
|
#define RECENTCY_MIN 60
|
|
#define RECENTCY_DIRTY 300
|
|
|
|
static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
|
|
{
|
|
struct ext4_group_desc *gdp;
|
|
struct ext4_inode *raw_inode;
|
|
struct buffer_head *bh;
|
|
int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
|
|
int offset, ret = 0;
|
|
int recentcy = RECENTCY_MIN;
|
|
u32 dtime, now;
|
|
|
|
gdp = ext4_get_group_desc(sb, group, NULL);
|
|
if (unlikely(!gdp))
|
|
return 0;
|
|
|
|
bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
|
|
(ino / inodes_per_block));
|
|
if (!bh || !buffer_uptodate(bh))
|
|
/*
|
|
* If the block is not in the buffer cache, then it
|
|
* must have been written out.
|
|
*/
|
|
goto out;
|
|
|
|
offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
|
|
raw_inode = (struct ext4_inode *) (bh->b_data + offset);
|
|
|
|
/* i_dtime is only 32 bits on disk, but we only care about relative
|
|
* times in the range of a few minutes (i.e. long enough to sync a
|
|
* recently-deleted inode to disk), so using the low 32 bits of the
|
|
* clock (a 68 year range) is enough, see time_before32() */
|
|
dtime = le32_to_cpu(raw_inode->i_dtime);
|
|
now = ktime_get_real_seconds();
|
|
if (buffer_dirty(bh))
|
|
recentcy += RECENTCY_DIRTY;
|
|
|
|
if (dtime && time_before32(dtime, now) &&
|
|
time_before32(now, dtime + recentcy))
|
|
ret = 1;
|
|
out:
|
|
brelse(bh);
|
|
return ret;
|
|
}
|
|
|
|
static int find_inode_bit(struct super_block *sb, ext4_group_t group,
|
|
struct buffer_head *bitmap, unsigned long *ino)
|
|
{
|
|
bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL;
|
|
unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb);
|
|
|
|
next:
|
|
*ino = ext4_find_next_zero_bit((unsigned long *)
|
|
bitmap->b_data,
|
|
EXT4_INODES_PER_GROUP(sb), *ino);
|
|
if (*ino >= EXT4_INODES_PER_GROUP(sb))
|
|
goto not_found;
|
|
|
|
if (check_recently_deleted && recently_deleted(sb, group, *ino)) {
|
|
recently_deleted_ino = *ino;
|
|
*ino = *ino + 1;
|
|
if (*ino < EXT4_INODES_PER_GROUP(sb))
|
|
goto next;
|
|
goto not_found;
|
|
}
|
|
return 1;
|
|
not_found:
|
|
if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb))
|
|
return 0;
|
|
/*
|
|
* Not reusing recently deleted inodes is mostly a preference. We don't
|
|
* want to report ENOSPC or skew allocation patterns because of that.
|
|
* So return even recently deleted inode if we could find better in the
|
|
* given range.
|
|
*/
|
|
*ino = recently_deleted_ino;
|
|
return 1;
|
|
}
|
|
|
|
int ext4_mark_inode_used(struct super_block *sb, int ino)
|
|
{
|
|
unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
|
|
struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL;
|
|
struct ext4_group_desc *gdp;
|
|
ext4_group_t group;
|
|
int bit;
|
|
int err = -EFSCORRUPTED;
|
|
|
|
if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
|
|
goto out;
|
|
|
|
group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
|
|
bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
|
|
inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
|
|
if (IS_ERR(inode_bitmap_bh))
|
|
return PTR_ERR(inode_bitmap_bh);
|
|
|
|
if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) {
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
|
|
gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
|
|
if (!gdp || !group_desc_bh) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ext4_set_bit(bit, inode_bitmap_bh->b_data);
|
|
|
|
BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
|
|
err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh);
|
|
if (err) {
|
|
ext4_std_error(sb, err);
|
|
goto out;
|
|
}
|
|
err = sync_dirty_buffer(inode_bitmap_bh);
|
|
if (err) {
|
|
ext4_std_error(sb, err);
|
|
goto out;
|
|
}
|
|
|
|
/* We may have to initialize the block bitmap if it isn't already */
|
|
if (ext4_has_group_desc_csum(sb) &&
|
|
gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
|
|
struct buffer_head *block_bitmap_bh;
|
|
|
|
block_bitmap_bh = ext4_read_block_bitmap(sb, group);
|
|
if (IS_ERR(block_bitmap_bh)) {
|
|
err = PTR_ERR(block_bitmap_bh);
|
|
goto out;
|
|
}
|
|
|
|
BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
|
|
err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh);
|
|
sync_dirty_buffer(block_bitmap_bh);
|
|
|
|
/* recheck and clear flag under lock if we still need to */
|
|
ext4_lock_group(sb, group);
|
|
if (ext4_has_group_desc_csum(sb) &&
|
|
(gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
|
|
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
|
|
ext4_free_group_clusters_set(sb, gdp,
|
|
ext4_free_clusters_after_init(sb, group, gdp));
|
|
ext4_block_bitmap_csum_set(sb, group, gdp,
|
|
block_bitmap_bh);
|
|
ext4_group_desc_csum_set(sb, group, gdp);
|
|
}
|
|
ext4_unlock_group(sb, group);
|
|
brelse(block_bitmap_bh);
|
|
|
|
if (err) {
|
|
ext4_std_error(sb, err);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Update the relevant bg descriptor fields */
|
|
if (ext4_has_group_desc_csum(sb)) {
|
|
int free;
|
|
|
|
ext4_lock_group(sb, group); /* while we modify the bg desc */
|
|
free = EXT4_INODES_PER_GROUP(sb) -
|
|
ext4_itable_unused_count(sb, gdp);
|
|
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
|
|
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
|
|
free = 0;
|
|
}
|
|
|
|
/*
|
|
* Check the relative inode number against the last used
|
|
* relative inode number in this group. if it is greater
|
|
* we need to update the bg_itable_unused count
|
|
*/
|
|
if (bit >= free)
|
|
ext4_itable_unused_set(sb, gdp,
|
|
(EXT4_INODES_PER_GROUP(sb) - bit - 1));
|
|
} else {
|
|
ext4_lock_group(sb, group);
|
|
}
|
|
|
|
ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
|
|
if (ext4_has_group_desc_csum(sb)) {
|
|
ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
|
|
EXT4_INODES_PER_GROUP(sb) / 8);
|
|
ext4_group_desc_csum_set(sb, group, gdp);
|
|
}
|
|
|
|
ext4_unlock_group(sb, group);
|
|
err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh);
|
|
sync_dirty_buffer(group_desc_bh);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode,
|
|
bool encrypt)
|
|
{
|
|
struct super_block *sb = dir->i_sb;
|
|
int nblocks = 0;
|
|
#ifdef CONFIG_EXT4_FS_POSIX_ACL
|
|
struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
|
|
|
|
if (IS_ERR(p))
|
|
return PTR_ERR(p);
|
|
if (p) {
|
|
int acl_size = p->a_count * sizeof(ext4_acl_entry);
|
|
|
|
nblocks += (S_ISDIR(mode) ? 2 : 1) *
|
|
__ext4_xattr_set_credits(sb, NULL /* inode */,
|
|
NULL /* block_bh */, acl_size,
|
|
true /* is_create */);
|
|
posix_acl_release(p);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SECURITY
|
|
{
|
|
int num_security_xattrs = 1;
|
|
|
|
#ifdef CONFIG_INTEGRITY
|
|
num_security_xattrs++;
|
|
#endif
|
|
/*
|
|
* We assume that security xattrs are never more than 1k.
|
|
* In practice they are under 128 bytes.
|
|
*/
|
|
nblocks += num_security_xattrs *
|
|
__ext4_xattr_set_credits(sb, NULL /* inode */,
|
|
NULL /* block_bh */, 1024,
|
|
true /* is_create */);
|
|
}
|
|
#endif
|
|
if (encrypt)
|
|
nblocks += __ext4_xattr_set_credits(sb,
|
|
NULL /* inode */,
|
|
NULL /* block_bh */,
|
|
FSCRYPT_SET_CONTEXT_MAX_SIZE,
|
|
true /* is_create */);
|
|
return nblocks;
|
|
}
|
|
|
|
/*
|
|
* There are two policies for allocating an inode. If the new inode is
|
|
* a directory, then a forward search is made for a block group with both
|
|
* free space and a low directory-to-inode ratio; if that fails, then of
|
|
* the groups with above-average free space, that group with the fewest
|
|
* directories already is chosen.
|
|
*
|
|
* For other inodes, search forward from the parent directory's block
|
|
* group to find a free inode.
|
|
*/
|
|
struct inode *__ext4_new_inode(struct user_namespace *mnt_userns,
|
|
handle_t *handle, struct inode *dir,
|
|
umode_t mode, const struct qstr *qstr,
|
|
__u32 goal, uid_t *owner, __u32 i_flags,
|
|
int handle_type, unsigned int line_no,
|
|
int nblocks)
|
|
{
|
|
struct super_block *sb;
|
|
struct buffer_head *inode_bitmap_bh = NULL;
|
|
struct buffer_head *group_desc_bh;
|
|
ext4_group_t ngroups, group = 0;
|
|
unsigned long ino = 0;
|
|
struct inode *inode;
|
|
struct ext4_group_desc *gdp = NULL;
|
|
struct ext4_inode_info *ei;
|
|
struct ext4_sb_info *sbi;
|
|
int ret2, err;
|
|
struct inode *ret;
|
|
ext4_group_t i;
|
|
ext4_group_t flex_group;
|
|
struct ext4_group_info *grp = NULL;
|
|
bool encrypt = false;
|
|
|
|
/* Cannot create files in a deleted directory */
|
|
if (!dir || !dir->i_nlink)
|
|
return ERR_PTR(-EPERM);
|
|
|
|
sb = dir->i_sb;
|
|
sbi = EXT4_SB(sb);
|
|
|
|
if (unlikely(ext4_forced_shutdown(sbi)))
|
|
return ERR_PTR(-EIO);
|
|
|
|
ngroups = ext4_get_groups_count(sb);
|
|
trace_ext4_request_inode(dir, mode);
|
|
inode = new_inode(sb);
|
|
if (!inode)
|
|
return ERR_PTR(-ENOMEM);
|
|
ei = EXT4_I(inode);
|
|
|
|
/*
|
|
* Initialize owners and quota early so that we don't have to account
|
|
* for quota initialization worst case in standard inode creating
|
|
* transaction
|
|
*/
|
|
if (owner) {
|
|
inode->i_mode = mode;
|
|
i_uid_write(inode, owner[0]);
|
|
i_gid_write(inode, owner[1]);
|
|
} else if (test_opt(sb, GRPID)) {
|
|
inode->i_mode = mode;
|
|
inode->i_uid = fsuid_into_mnt(mnt_userns);
|
|
inode->i_gid = dir->i_gid;
|
|
} else
|
|
inode_init_owner(mnt_userns, inode, dir, mode);
|
|
|
|
if (ext4_has_feature_project(sb) &&
|
|
ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
|
|
ei->i_projid = EXT4_I(dir)->i_projid;
|
|
else
|
|
ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
|
|
|
|
if (!(i_flags & EXT4_EA_INODE_FL)) {
|
|
err = fscrypt_prepare_new_inode(dir, inode, &encrypt);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
err = dquot_initialize(inode);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
|
|
ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt);
|
|
if (ret2 < 0) {
|
|
err = ret2;
|
|
goto out;
|
|
}
|
|
nblocks += ret2;
|
|
}
|
|
|
|
if (!goal)
|
|
goal = sbi->s_inode_goal;
|
|
|
|
if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
|
|
group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
|
|
ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
|
|
ret2 = 0;
|
|
goto got_group;
|
|
}
|
|
|
|
if (S_ISDIR(mode))
|
|
ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
|
|
else
|
|
ret2 = find_group_other(sb, dir, &group, mode);
|
|
|
|
got_group:
|
|
EXT4_I(dir)->i_last_alloc_group = group;
|
|
err = -ENOSPC;
|
|
if (ret2 == -1)
|
|
goto out;
|
|
|
|
/*
|
|
* Normally we will only go through one pass of this loop,
|
|
* unless we get unlucky and it turns out the group we selected
|
|
* had its last inode grabbed by someone else.
|
|
*/
|
|
for (i = 0; i < ngroups; i++, ino = 0) {
|
|
err = -EIO;
|
|
|
|
gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
|
|
if (!gdp)
|
|
goto out;
|
|
|
|
/*
|
|
* Check free inodes count before loading bitmap.
|
|
*/
|
|
if (ext4_free_inodes_count(sb, gdp) == 0)
|
|
goto next_group;
|
|
|
|
if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
|
|
grp = ext4_get_group_info(sb, group);
|
|
/*
|
|
* Skip groups with already-known suspicious inode
|
|
* tables
|
|
*/
|
|
if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
|
|
goto next_group;
|
|
}
|
|
|
|
brelse(inode_bitmap_bh);
|
|
inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
|
|
/* Skip groups with suspicious inode tables */
|
|
if (((!(sbi->s_mount_state & EXT4_FC_REPLAY))
|
|
&& EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) ||
|
|
IS_ERR(inode_bitmap_bh)) {
|
|
inode_bitmap_bh = NULL;
|
|
goto next_group;
|
|
}
|
|
|
|
repeat_in_this_group:
|
|
ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
|
|
if (!ret2)
|
|
goto next_group;
|
|
|
|
if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
|
|
ext4_error(sb, "reserved inode found cleared - "
|
|
"inode=%lu", ino + 1);
|
|
ext4_mark_group_bitmap_corrupted(sb, group,
|
|
EXT4_GROUP_INFO_IBITMAP_CORRUPT);
|
|
goto next_group;
|
|
}
|
|
|
|
if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) {
|
|
BUG_ON(nblocks <= 0);
|
|
handle = __ext4_journal_start_sb(dir->i_sb, line_no,
|
|
handle_type, nblocks, 0,
|
|
ext4_trans_default_revoke_credits(sb));
|
|
if (IS_ERR(handle)) {
|
|
err = PTR_ERR(handle);
|
|
ext4_std_error(sb, err);
|
|
goto out;
|
|
}
|
|
}
|
|
BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
|
|
err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
|
|
if (err) {
|
|
ext4_std_error(sb, err);
|
|
goto out;
|
|
}
|
|
ext4_lock_group(sb, group);
|
|
ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
|
|
if (ret2) {
|
|
/* Someone already took the bit. Repeat the search
|
|
* with lock held.
|
|
*/
|
|
ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
|
|
if (ret2) {
|
|
ext4_set_bit(ino, inode_bitmap_bh->b_data);
|
|
ret2 = 0;
|
|
} else {
|
|
ret2 = 1; /* we didn't grab the inode */
|
|
}
|
|
}
|
|
ext4_unlock_group(sb, group);
|
|
ino++; /* the inode bitmap is zero-based */
|
|
if (!ret2)
|
|
goto got; /* we grabbed the inode! */
|
|
|
|
if (ino < EXT4_INODES_PER_GROUP(sb))
|
|
goto repeat_in_this_group;
|
|
next_group:
|
|
if (++group == ngroups)
|
|
group = 0;
|
|
}
|
|
err = -ENOSPC;
|
|
goto out;
|
|
|
|
got:
|
|
BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
|
|
err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
|
|
if (err) {
|
|
ext4_std_error(sb, err);
|
|
goto out;
|
|
}
|
|
|
|
BUFFER_TRACE(group_desc_bh, "get_write_access");
|
|
err = ext4_journal_get_write_access(handle, group_desc_bh);
|
|
if (err) {
|
|
ext4_std_error(sb, err);
|
|
goto out;
|
|
}
|
|
|
|
/* We may have to initialize the block bitmap if it isn't already */
|
|
if (ext4_has_group_desc_csum(sb) &&
|
|
gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
|
|
struct buffer_head *block_bitmap_bh;
|
|
|
|
block_bitmap_bh = ext4_read_block_bitmap(sb, group);
|
|
if (IS_ERR(block_bitmap_bh)) {
|
|
err = PTR_ERR(block_bitmap_bh);
|
|
goto out;
|
|
}
|
|
BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
|
|
err = ext4_journal_get_write_access(handle, block_bitmap_bh);
|
|
if (err) {
|
|
brelse(block_bitmap_bh);
|
|
ext4_std_error(sb, err);
|
|
goto out;
|
|
}
|
|
|
|
BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
|
|
err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
|
|
|
|
/* recheck and clear flag under lock if we still need to */
|
|
ext4_lock_group(sb, group);
|
|
if (ext4_has_group_desc_csum(sb) &&
|
|
(gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
|
|
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
|
|
ext4_free_group_clusters_set(sb, gdp,
|
|
ext4_free_clusters_after_init(sb, group, gdp));
|
|
ext4_block_bitmap_csum_set(sb, group, gdp,
|
|
block_bitmap_bh);
|
|
ext4_group_desc_csum_set(sb, group, gdp);
|
|
}
|
|
ext4_unlock_group(sb, group);
|
|
brelse(block_bitmap_bh);
|
|
|
|
if (err) {
|
|
ext4_std_error(sb, err);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Update the relevant bg descriptor fields */
|
|
if (ext4_has_group_desc_csum(sb)) {
|
|
int free;
|
|
struct ext4_group_info *grp = NULL;
|
|
|
|
if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
|
|
grp = ext4_get_group_info(sb, group);
|
|
down_read(&grp->alloc_sem); /*
|
|
* protect vs itable
|
|
* lazyinit
|
|
*/
|
|
}
|
|
ext4_lock_group(sb, group); /* while we modify the bg desc */
|
|
free = EXT4_INODES_PER_GROUP(sb) -
|
|
ext4_itable_unused_count(sb, gdp);
|
|
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
|
|
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
|
|
free = 0;
|
|
}
|
|
/*
|
|
* Check the relative inode number against the last used
|
|
* relative inode number in this group. if it is greater
|
|
* we need to update the bg_itable_unused count
|
|
*/
|
|
if (ino > free)
|
|
ext4_itable_unused_set(sb, gdp,
|
|
(EXT4_INODES_PER_GROUP(sb) - ino));
|
|
if (!(sbi->s_mount_state & EXT4_FC_REPLAY))
|
|
up_read(&grp->alloc_sem);
|
|
} else {
|
|
ext4_lock_group(sb, group);
|
|
}
|
|
|
|
ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
|
|
if (S_ISDIR(mode)) {
|
|
ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
|
|
if (sbi->s_log_groups_per_flex) {
|
|
ext4_group_t f = ext4_flex_group(sbi, group);
|
|
|
|
atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups,
|
|
f)->used_dirs);
|
|
}
|
|
}
|
|
if (ext4_has_group_desc_csum(sb)) {
|
|
ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
|
|
EXT4_INODES_PER_GROUP(sb) / 8);
|
|
ext4_group_desc_csum_set(sb, group, gdp);
|
|
}
|
|
ext4_unlock_group(sb, group);
|
|
|
|
BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
|
|
err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
|
|
if (err) {
|
|
ext4_std_error(sb, err);
|
|
goto out;
|
|
}
|
|
|
|
percpu_counter_dec(&sbi->s_freeinodes_counter);
|
|
if (S_ISDIR(mode))
|
|
percpu_counter_inc(&sbi->s_dirs_counter);
|
|
|
|
if (sbi->s_log_groups_per_flex) {
|
|
flex_group = ext4_flex_group(sbi, group);
|
|
atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups,
|
|
flex_group)->free_inodes);
|
|
}
|
|
|
|
inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
|
|
/* This is the optimal IO size (for stat), not the fs block size */
|
|
inode->i_blocks = 0;
|
|
inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
|
|
ei->i_crtime = inode->i_mtime;
|
|
|
|
memset(ei->i_data, 0, sizeof(ei->i_data));
|
|
ei->i_dir_start_lookup = 0;
|
|
ei->i_disksize = 0;
|
|
|
|
/* Don't inherit extent flag from directory, amongst others. */
|
|
ei->i_flags =
|
|
ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
|
|
ei->i_flags |= i_flags;
|
|
ei->i_file_acl = 0;
|
|
ei->i_dtime = 0;
|
|
ei->i_block_group = group;
|
|
ei->i_last_alloc_group = ~0;
|
|
|
|
ext4_set_inode_flags(inode, true);
|
|
if (IS_DIRSYNC(inode))
|
|
ext4_handle_sync(handle);
|
|
if (insert_inode_locked(inode) < 0) {
|
|
/*
|
|
* Likely a bitmap corruption causing inode to be allocated
|
|
* twice.
|
|
*/
|
|
err = -EIO;
|
|
ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
|
|
inode->i_ino);
|
|
ext4_mark_group_bitmap_corrupted(sb, group,
|
|
EXT4_GROUP_INFO_IBITMAP_CORRUPT);
|
|
goto out;
|
|
}
|
|
inode->i_generation = prandom_u32();
|
|
|
|
/* Precompute checksum seed for inode metadata */
|
|
if (ext4_has_metadata_csum(sb)) {
|
|
__u32 csum;
|
|
__le32 inum = cpu_to_le32(inode->i_ino);
|
|
__le32 gen = cpu_to_le32(inode->i_generation);
|
|
csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
|
|
sizeof(inum));
|
|
ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
|
|
sizeof(gen));
|
|
}
|
|
|
|
ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
|
|
ext4_set_inode_state(inode, EXT4_STATE_NEW);
|
|
|
|
ei->i_extra_isize = sbi->s_want_extra_isize;
|
|
ei->i_inline_off = 0;
|
|
if (ext4_has_feature_inline_data(sb))
|
|
ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
|
|
ret = inode;
|
|
err = dquot_alloc_inode(inode);
|
|
if (err)
|
|
goto fail_drop;
|
|
|
|
/*
|
|
* Since the encryption xattr will always be unique, create it first so
|
|
* that it's less likely to end up in an external xattr block and
|
|
* prevent its deduplication.
|
|
*/
|
|
if (encrypt) {
|
|
err = fscrypt_set_context(inode, handle);
|
|
if (err)
|
|
goto fail_free_drop;
|
|
}
|
|
|
|
if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
|
|
err = ext4_init_acl(handle, inode, dir);
|
|
if (err)
|
|
goto fail_free_drop;
|
|
|
|
err = ext4_init_security(handle, inode, dir, qstr);
|
|
if (err)
|
|
goto fail_free_drop;
|
|
}
|
|
|
|
if (ext4_has_feature_extents(sb)) {
|
|
/* set extent flag only for directory, file and normal symlink*/
|
|
if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
|
|
ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
|
|
ext4_ext_tree_init(handle, inode);
|
|
}
|
|
}
|
|
|
|
if (ext4_handle_valid(handle)) {
|
|
ei->i_sync_tid = handle->h_transaction->t_tid;
|
|
ei->i_datasync_tid = handle->h_transaction->t_tid;
|
|
}
|
|
|
|
err = ext4_mark_inode_dirty(handle, inode);
|
|
if (err) {
|
|
ext4_std_error(sb, err);
|
|
goto fail_free_drop;
|
|
}
|
|
|
|
ext4_debug("allocating inode %lu\n", inode->i_ino);
|
|
trace_ext4_allocate_inode(inode, dir, mode);
|
|
brelse(inode_bitmap_bh);
|
|
return ret;
|
|
|
|
fail_free_drop:
|
|
dquot_free_inode(inode);
|
|
fail_drop:
|
|
clear_nlink(inode);
|
|
unlock_new_inode(inode);
|
|
out:
|
|
dquot_drop(inode);
|
|
inode->i_flags |= S_NOQUOTA;
|
|
iput(inode);
|
|
brelse(inode_bitmap_bh);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/* Verify that we are loading a valid orphan from disk */
|
|
struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
|
|
{
|
|
unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
|
|
ext4_group_t block_group;
|
|
int bit;
|
|
struct buffer_head *bitmap_bh = NULL;
|
|
struct inode *inode = NULL;
|
|
int err = -EFSCORRUPTED;
|
|
|
|
if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
|
|
goto bad_orphan;
|
|
|
|
block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
|
|
bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
|
|
bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
|
|
if (IS_ERR(bitmap_bh))
|
|
return ERR_CAST(bitmap_bh);
|
|
|
|
/* Having the inode bit set should be a 100% indicator that this
|
|
* is a valid orphan (no e2fsck run on fs). Orphans also include
|
|
* inodes that were being truncated, so we can't check i_nlink==0.
|
|
*/
|
|
if (!ext4_test_bit(bit, bitmap_bh->b_data))
|
|
goto bad_orphan;
|
|
|
|
inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
|
|
if (IS_ERR(inode)) {
|
|
err = PTR_ERR(inode);
|
|
ext4_error_err(sb, -err,
|
|
"couldn't read orphan inode %lu (err %d)",
|
|
ino, err);
|
|
brelse(bitmap_bh);
|
|
return inode;
|
|
}
|
|
|
|
/*
|
|
* If the orphans has i_nlinks > 0 then it should be able to
|
|
* be truncated, otherwise it won't be removed from the orphan
|
|
* list during processing and an infinite loop will result.
|
|
* Similarly, it must not be a bad inode.
|
|
*/
|
|
if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
|
|
is_bad_inode(inode))
|
|
goto bad_orphan;
|
|
|
|
if (NEXT_ORPHAN(inode) > max_ino)
|
|
goto bad_orphan;
|
|
brelse(bitmap_bh);
|
|
return inode;
|
|
|
|
bad_orphan:
|
|
ext4_error(sb, "bad orphan inode %lu", ino);
|
|
if (bitmap_bh)
|
|
printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
|
|
bit, (unsigned long long)bitmap_bh->b_blocknr,
|
|
ext4_test_bit(bit, bitmap_bh->b_data));
|
|
if (inode) {
|
|
printk(KERN_ERR "is_bad_inode(inode)=%d\n",
|
|
is_bad_inode(inode));
|
|
printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
|
|
NEXT_ORPHAN(inode));
|
|
printk(KERN_ERR "max_ino=%lu\n", max_ino);
|
|
printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
|
|
/* Avoid freeing blocks if we got a bad deleted inode */
|
|
if (inode->i_nlink == 0)
|
|
inode->i_blocks = 0;
|
|
iput(inode);
|
|
}
|
|
brelse(bitmap_bh);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
unsigned long ext4_count_free_inodes(struct super_block *sb)
|
|
{
|
|
unsigned long desc_count;
|
|
struct ext4_group_desc *gdp;
|
|
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
|
|
#ifdef EXT4FS_DEBUG
|
|
struct ext4_super_block *es;
|
|
unsigned long bitmap_count, x;
|
|
struct buffer_head *bitmap_bh = NULL;
|
|
|
|
es = EXT4_SB(sb)->s_es;
|
|
desc_count = 0;
|
|
bitmap_count = 0;
|
|
gdp = NULL;
|
|
for (i = 0; i < ngroups; i++) {
|
|
gdp = ext4_get_group_desc(sb, i, NULL);
|
|
if (!gdp)
|
|
continue;
|
|
desc_count += ext4_free_inodes_count(sb, gdp);
|
|
brelse(bitmap_bh);
|
|
bitmap_bh = ext4_read_inode_bitmap(sb, i);
|
|
if (IS_ERR(bitmap_bh)) {
|
|
bitmap_bh = NULL;
|
|
continue;
|
|
}
|
|
|
|
x = ext4_count_free(bitmap_bh->b_data,
|
|
EXT4_INODES_PER_GROUP(sb) / 8);
|
|
printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
|
|
(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
|
|
bitmap_count += x;
|
|
}
|
|
brelse(bitmap_bh);
|
|
printk(KERN_DEBUG "ext4_count_free_inodes: "
|
|
"stored = %u, computed = %lu, %lu\n",
|
|
le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
|
|
return desc_count;
|
|
#else
|
|
desc_count = 0;
|
|
for (i = 0; i < ngroups; i++) {
|
|
gdp = ext4_get_group_desc(sb, i, NULL);
|
|
if (!gdp)
|
|
continue;
|
|
desc_count += ext4_free_inodes_count(sb, gdp);
|
|
cond_resched();
|
|
}
|
|
return desc_count;
|
|
#endif
|
|
}
|
|
|
|
/* Called at mount-time, super-block is locked */
|
|
unsigned long ext4_count_dirs(struct super_block * sb)
|
|
{
|
|
unsigned long count = 0;
|
|
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
|
|
|
|
for (i = 0; i < ngroups; i++) {
|
|
struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
|
|
if (!gdp)
|
|
continue;
|
|
count += ext4_used_dirs_count(sb, gdp);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Zeroes not yet zeroed inode table - just write zeroes through the whole
|
|
* inode table. Must be called without any spinlock held. The only place
|
|
* where it is called from on active part of filesystem is ext4lazyinit
|
|
* thread, so we do not need any special locks, however we have to prevent
|
|
* inode allocation from the current group, so we take alloc_sem lock, to
|
|
* block ext4_new_inode() until we are finished.
|
|
*/
|
|
int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
|
|
int barrier)
|
|
{
|
|
struct ext4_group_info *grp = ext4_get_group_info(sb, group);
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
struct ext4_group_desc *gdp = NULL;
|
|
struct buffer_head *group_desc_bh;
|
|
handle_t *handle;
|
|
ext4_fsblk_t blk;
|
|
int num, ret = 0, used_blks = 0;
|
|
|
|
/* This should not happen, but just to be sure check this */
|
|
if (sb_rdonly(sb)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
|
|
if (!gdp)
|
|
goto out;
|
|
|
|
/*
|
|
* We do not need to lock this, because we are the only one
|
|
* handling this flag.
|
|
*/
|
|
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
|
|
goto out;
|
|
|
|
handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
goto out;
|
|
}
|
|
|
|
down_write(&grp->alloc_sem);
|
|
/*
|
|
* If inode bitmap was already initialized there may be some
|
|
* used inodes so we need to skip blocks with used inodes in
|
|
* inode table.
|
|
*/
|
|
if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
|
|
used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
|
|
ext4_itable_unused_count(sb, gdp)),
|
|
sbi->s_inodes_per_block);
|
|
|
|
if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
|
|
((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
|
|
ext4_itable_unused_count(sb, gdp)) <
|
|
EXT4_FIRST_INO(sb)))) {
|
|
ext4_error(sb, "Something is wrong with group %u: "
|
|
"used itable blocks: %d; "
|
|
"itable unused count: %u",
|
|
group, used_blks,
|
|
ext4_itable_unused_count(sb, gdp));
|
|
ret = 1;
|
|
goto err_out;
|
|
}
|
|
|
|
blk = ext4_inode_table(sb, gdp) + used_blks;
|
|
num = sbi->s_itb_per_group - used_blks;
|
|
|
|
BUFFER_TRACE(group_desc_bh, "get_write_access");
|
|
ret = ext4_journal_get_write_access(handle,
|
|
group_desc_bh);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
/*
|
|
* Skip zeroout if the inode table is full. But we set the ZEROED
|
|
* flag anyway, because obviously, when it is full it does not need
|
|
* further zeroing.
|
|
*/
|
|
if (unlikely(num == 0))
|
|
goto skip_zeroout;
|
|
|
|
ext4_debug("going to zero out inode table in group %d\n",
|
|
group);
|
|
ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
|
|
if (ret < 0)
|
|
goto err_out;
|
|
if (barrier)
|
|
blkdev_issue_flush(sb->s_bdev);
|
|
|
|
skip_zeroout:
|
|
ext4_lock_group(sb, group);
|
|
gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
|
|
ext4_group_desc_csum_set(sb, group, gdp);
|
|
ext4_unlock_group(sb, group);
|
|
|
|
BUFFER_TRACE(group_desc_bh,
|
|
"call ext4_handle_dirty_metadata");
|
|
ret = ext4_handle_dirty_metadata(handle, NULL,
|
|
group_desc_bh);
|
|
|
|
err_out:
|
|
up_write(&grp->alloc_sem);
|
|
ext4_journal_stop(handle);
|
|
out:
|
|
return ret;
|
|
}
|