2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/drivers/mmc/host/dw_mmc-k3.c
Shawn Lin 0d84b9e563 mmc: dw_mmc: Fix out-of-bounds access for slot's caps
Add num_caps field for dw_mci_drv_data to validate the controller
id from DT alias and non-DT ways.

Reported-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Shawn Lin <shawn.lin@rock-chips.com>
Fixes: 800d78bfcc ("mmc: dw_mmc: add support for implementation specific callbacks")
Cc: <stable@vger.kernel.org>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2018-02-27 15:12:25 +01:00

490 lines
12 KiB
C

/*
* Copyright (c) 2013 Linaro Ltd.
* Copyright (c) 2013 Hisilicon Limited.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/bitops.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/mfd/syscon.h>
#include <linux/mmc/host.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include "dw_mmc.h"
#include "dw_mmc-pltfm.h"
/*
* hi6220 sd only support io voltage 1.8v and 3v
* Also need config AO_SCTRL_SEL18 accordingly
*/
#define AO_SCTRL_SEL18 BIT(10)
#define AO_SCTRL_CTRL3 0x40C
#define DWMMC_SDIO_ID 2
#define SOC_SCTRL_SCPERCTRL5 (0x314)
#define SDCARD_IO_SEL18 BIT(2)
#define SDCARD_RD_THRESHOLD (512)
#define GENCLK_DIV (7)
#define GPIO_CLK_ENABLE BIT(16)
#define GPIO_CLK_DIV_MASK GENMASK(11, 8)
#define GPIO_USE_SAMPLE_DLY_MASK GENMASK(13, 13)
#define UHS_REG_EXT_SAMPLE_PHASE_MASK GENMASK(20, 16)
#define UHS_REG_EXT_SAMPLE_DRVPHASE_MASK GENMASK(25, 21)
#define UHS_REG_EXT_SAMPLE_DLY_MASK GENMASK(30, 26)
#define TIMING_MODE 3
#define TIMING_CFG_NUM 10
#define NUM_PHASES (40)
#define ENABLE_SHIFT_MIN_SMPL (4)
#define ENABLE_SHIFT_MAX_SMPL (12)
#define USE_DLY_MIN_SMPL (11)
#define USE_DLY_MAX_SMPL (14)
struct k3_priv {
int ctrl_id;
u32 cur_speed;
struct regmap *reg;
};
static unsigned long dw_mci_hi6220_caps[] = {
MMC_CAP_CMD23,
MMC_CAP_CMD23,
0
};
struct hs_timing {
u32 drv_phase;
u32 smpl_dly;
u32 smpl_phase_max;
u32 smpl_phase_min;
};
static struct hs_timing hs_timing_cfg[TIMING_MODE][TIMING_CFG_NUM] = {
{ /* reserved */ },
{ /* SD */
{7, 0, 15, 15,}, /* 0: LEGACY 400k */
{6, 0, 4, 4,}, /* 1: MMC_HS */
{6, 0, 3, 3,}, /* 2: SD_HS */
{6, 0, 15, 15,}, /* 3: SDR12 */
{6, 0, 2, 2,}, /* 4: SDR25 */
{4, 0, 11, 0,}, /* 5: SDR50 */
{6, 4, 15, 0,}, /* 6: SDR104 */
{0}, /* 7: DDR50 */
{0}, /* 8: DDR52 */
{0}, /* 9: HS200 */
},
{ /* SDIO */
{7, 0, 15, 15,}, /* 0: LEGACY 400k */
{0}, /* 1: MMC_HS */
{6, 0, 15, 15,}, /* 2: SD_HS */
{6, 0, 15, 15,}, /* 3: SDR12 */
{6, 0, 0, 0,}, /* 4: SDR25 */
{4, 0, 12, 0,}, /* 5: SDR50 */
{5, 4, 15, 0,}, /* 6: SDR104 */
{0}, /* 7: DDR50 */
{0}, /* 8: DDR52 */
{0}, /* 9: HS200 */
}
};
static void dw_mci_k3_set_ios(struct dw_mci *host, struct mmc_ios *ios)
{
int ret;
ret = clk_set_rate(host->ciu_clk, ios->clock);
if (ret)
dev_warn(host->dev, "failed to set rate %uHz\n", ios->clock);
host->bus_hz = clk_get_rate(host->ciu_clk);
}
static const struct dw_mci_drv_data k3_drv_data = {
.set_ios = dw_mci_k3_set_ios,
};
static int dw_mci_hi6220_parse_dt(struct dw_mci *host)
{
struct k3_priv *priv;
priv = devm_kzalloc(host->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->reg = syscon_regmap_lookup_by_phandle(host->dev->of_node,
"hisilicon,peripheral-syscon");
if (IS_ERR(priv->reg))
priv->reg = NULL;
priv->ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
if (priv->ctrl_id < 0)
priv->ctrl_id = 0;
if (priv->ctrl_id >= TIMING_MODE)
return -EINVAL;
host->priv = priv;
return 0;
}
static int dw_mci_hi6220_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct dw_mci_slot *slot = mmc_priv(mmc);
struct k3_priv *priv;
struct dw_mci *host;
int min_uv, max_uv;
int ret;
host = slot->host;
priv = host->priv;
if (!priv || !priv->reg)
return 0;
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
ret = regmap_update_bits(priv->reg, AO_SCTRL_CTRL3,
AO_SCTRL_SEL18, 0);
min_uv = 3000000;
max_uv = 3000000;
} else if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
ret = regmap_update_bits(priv->reg, AO_SCTRL_CTRL3,
AO_SCTRL_SEL18, AO_SCTRL_SEL18);
min_uv = 1800000;
max_uv = 1800000;
} else {
dev_dbg(host->dev, "voltage not supported\n");
return -EINVAL;
}
if (ret) {
dev_dbg(host->dev, "switch voltage failed\n");
return ret;
}
if (IS_ERR_OR_NULL(mmc->supply.vqmmc))
return 0;
ret = regulator_set_voltage(mmc->supply.vqmmc, min_uv, max_uv);
if (ret) {
dev_dbg(host->dev, "Regulator set error %d: %d - %d\n",
ret, min_uv, max_uv);
return ret;
}
return 0;
}
static void dw_mci_hi6220_set_ios(struct dw_mci *host, struct mmc_ios *ios)
{
int ret;
unsigned int clock;
clock = (ios->clock <= 25000000) ? 25000000 : ios->clock;
ret = clk_set_rate(host->biu_clk, clock);
if (ret)
dev_warn(host->dev, "failed to set rate %uHz\n", clock);
host->bus_hz = clk_get_rate(host->biu_clk);
}
static int dw_mci_hi6220_execute_tuning(struct dw_mci_slot *slot, u32 opcode)
{
return 0;
}
static const struct dw_mci_drv_data hi6220_data = {
.caps = dw_mci_hi6220_caps,
.num_caps = ARRAY_SIZE(dw_mci_hi6220_caps),
.switch_voltage = dw_mci_hi6220_switch_voltage,
.set_ios = dw_mci_hi6220_set_ios,
.parse_dt = dw_mci_hi6220_parse_dt,
.execute_tuning = dw_mci_hi6220_execute_tuning,
};
static void dw_mci_hs_set_timing(struct dw_mci *host, int timing,
int smpl_phase)
{
u32 drv_phase;
u32 smpl_dly;
u32 use_smpl_dly = 0;
u32 enable_shift = 0;
u32 reg_value;
int ctrl_id;
struct k3_priv *priv;
priv = host->priv;
ctrl_id = priv->ctrl_id;
drv_phase = hs_timing_cfg[ctrl_id][timing].drv_phase;
smpl_dly = hs_timing_cfg[ctrl_id][timing].smpl_dly;
if (smpl_phase == -1)
smpl_phase = (hs_timing_cfg[ctrl_id][timing].smpl_phase_max +
hs_timing_cfg[ctrl_id][timing].smpl_phase_min) / 2;
switch (timing) {
case MMC_TIMING_UHS_SDR104:
if (smpl_phase >= USE_DLY_MIN_SMPL &&
smpl_phase <= USE_DLY_MAX_SMPL)
use_smpl_dly = 1;
/* fallthrough */
case MMC_TIMING_UHS_SDR50:
if (smpl_phase >= ENABLE_SHIFT_MIN_SMPL &&
smpl_phase <= ENABLE_SHIFT_MAX_SMPL)
enable_shift = 1;
break;
}
mci_writel(host, GPIO, 0x0);
usleep_range(5, 10);
reg_value = FIELD_PREP(UHS_REG_EXT_SAMPLE_PHASE_MASK, smpl_phase) |
FIELD_PREP(UHS_REG_EXT_SAMPLE_DLY_MASK, smpl_dly) |
FIELD_PREP(UHS_REG_EXT_SAMPLE_DRVPHASE_MASK, drv_phase);
mci_writel(host, UHS_REG_EXT, reg_value);
mci_writel(host, ENABLE_SHIFT, enable_shift);
reg_value = FIELD_PREP(GPIO_CLK_DIV_MASK, GENCLK_DIV) |
FIELD_PREP(GPIO_USE_SAMPLE_DLY_MASK, use_smpl_dly);
mci_writel(host, GPIO, (unsigned int)reg_value | GPIO_CLK_ENABLE);
/* We should delay 1ms wait for timing setting finished. */
usleep_range(1000, 2000);
}
static int dw_mci_hi3660_init(struct dw_mci *host)
{
mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(SDCARD_RD_THRESHOLD,
SDMMC_CARD_RD_THR_EN));
dw_mci_hs_set_timing(host, MMC_TIMING_LEGACY, -1);
host->bus_hz /= (GENCLK_DIV + 1);
return 0;
}
static int dw_mci_set_sel18(struct dw_mci *host, bool set)
{
int ret;
unsigned int val;
struct k3_priv *priv;
priv = host->priv;
val = set ? SDCARD_IO_SEL18 : 0;
ret = regmap_update_bits(priv->reg, SOC_SCTRL_SCPERCTRL5,
SDCARD_IO_SEL18, val);
if (ret) {
dev_err(host->dev, "sel18 %u error\n", val);
return ret;
}
return 0;
}
static void dw_mci_hi3660_set_ios(struct dw_mci *host, struct mmc_ios *ios)
{
int ret;
unsigned long wanted;
unsigned long actual;
struct k3_priv *priv = host->priv;
if (!ios->clock || ios->clock == priv->cur_speed)
return;
wanted = ios->clock * (GENCLK_DIV + 1);
ret = clk_set_rate(host->ciu_clk, wanted);
if (ret) {
dev_err(host->dev, "failed to set rate %luHz\n", wanted);
return;
}
actual = clk_get_rate(host->ciu_clk);
dw_mci_hs_set_timing(host, ios->timing, -1);
host->bus_hz = actual / (GENCLK_DIV + 1);
host->current_speed = 0;
priv->cur_speed = host->bus_hz;
}
static int dw_mci_get_best_clksmpl(unsigned int sample_flag)
{
int i;
int interval;
unsigned int v;
unsigned int len;
unsigned int range_start = 0;
unsigned int range_length = 0;
unsigned int middle_range = 0;
if (!sample_flag)
return -EIO;
if (~sample_flag == 0)
return 0;
i = ffs(sample_flag) - 1;
/*
* A clock cycle is divided into 32 phases,
* each of which is represented by a bit,
* finding the optimal phase.
*/
while (i < 32) {
v = ror32(sample_flag, i);
len = ffs(~v) - 1;
if (len > range_length) {
range_length = len;
range_start = i;
}
interval = ffs(v >> len) - 1;
if (interval < 0)
break;
i += len + interval;
}
middle_range = range_start + range_length / 2;
if (middle_range >= 32)
middle_range %= 32;
return middle_range;
}
static int dw_mci_hi3660_execute_tuning(struct dw_mci_slot *slot, u32 opcode)
{
int i = 0;
struct dw_mci *host = slot->host;
struct mmc_host *mmc = slot->mmc;
int smpl_phase = 0;
u32 tuning_sample_flag = 0;
int best_clksmpl = 0;
for (i = 0; i < NUM_PHASES; ++i, ++smpl_phase) {
smpl_phase %= 32;
mci_writel(host, TMOUT, ~0);
dw_mci_hs_set_timing(host, mmc->ios.timing, smpl_phase);
if (!mmc_send_tuning(mmc, opcode, NULL))
tuning_sample_flag |= (1 << smpl_phase);
else
tuning_sample_flag &= ~(1 << smpl_phase);
}
best_clksmpl = dw_mci_get_best_clksmpl(tuning_sample_flag);
if (best_clksmpl < 0) {
dev_err(host->dev, "All phases bad!\n");
return -EIO;
}
dw_mci_hs_set_timing(host, mmc->ios.timing, best_clksmpl);
dev_info(host->dev, "tuning ok best_clksmpl %u tuning_sample_flag %x\n",
best_clksmpl, tuning_sample_flag);
return 0;
}
static int dw_mci_hi3660_switch_voltage(struct mmc_host *mmc,
struct mmc_ios *ios)
{
int ret = 0;
struct dw_mci_slot *slot = mmc_priv(mmc);
struct k3_priv *priv;
struct dw_mci *host;
host = slot->host;
priv = host->priv;
if (!priv || !priv->reg)
return 0;
if (priv->ctrl_id == DWMMC_SDIO_ID)
return 0;
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
ret = dw_mci_set_sel18(host, 0);
else if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180)
ret = dw_mci_set_sel18(host, 1);
if (ret)
return ret;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret) {
dev_err(host->dev, "Regulator set error %d\n", ret);
return ret;
}
}
return 0;
}
static const struct dw_mci_drv_data hi3660_data = {
.init = dw_mci_hi3660_init,
.set_ios = dw_mci_hi3660_set_ios,
.parse_dt = dw_mci_hi6220_parse_dt,
.execute_tuning = dw_mci_hi3660_execute_tuning,
.switch_voltage = dw_mci_hi3660_switch_voltage,
};
static const struct of_device_id dw_mci_k3_match[] = {
{ .compatible = "hisilicon,hi3660-dw-mshc", .data = &hi3660_data, },
{ .compatible = "hisilicon,hi4511-dw-mshc", .data = &k3_drv_data, },
{ .compatible = "hisilicon,hi6220-dw-mshc", .data = &hi6220_data, },
{},
};
MODULE_DEVICE_TABLE(of, dw_mci_k3_match);
static int dw_mci_k3_probe(struct platform_device *pdev)
{
const struct dw_mci_drv_data *drv_data;
const struct of_device_id *match;
match = of_match_node(dw_mci_k3_match, pdev->dev.of_node);
drv_data = match->data;
return dw_mci_pltfm_register(pdev, drv_data);
}
static const struct dev_pm_ops dw_mci_k3_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(dw_mci_runtime_suspend,
dw_mci_runtime_resume,
NULL)
};
static struct platform_driver dw_mci_k3_pltfm_driver = {
.probe = dw_mci_k3_probe,
.remove = dw_mci_pltfm_remove,
.driver = {
.name = "dwmmc_k3",
.of_match_table = dw_mci_k3_match,
.pm = &dw_mci_k3_dev_pm_ops,
},
};
module_platform_driver(dw_mci_k3_pltfm_driver);
MODULE_DESCRIPTION("K3 Specific DW-MSHC Driver Extension");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:dwmmc_k3");