mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-10 14:43:54 +08:00
7523ceed42
If an RTC alarm fires just as suspend is happening, it is possible for suspend to complete and the alarm to be missed. To avoid the race, we must register the event with the PM core. As the event is made visible to userspace through a thread which is only scheduled by the interrupt, we need a pm_stay_awake/pm_relax pair preventing suspend from the interrupt until the thread completes its work. This makes the pm_wakeup_event() call in cmos_interrupt unnecessary as it provides suspend protection for all RTCs that use rtc_update_irq. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
1198 lines
29 KiB
C
1198 lines
29 KiB
C
/*
|
|
* RTC class driver for "CMOS RTC": PCs, ACPI, etc
|
|
*
|
|
* Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
|
|
* Copyright (C) 2006 David Brownell (convert to new framework)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
/*
|
|
* The original "cmos clock" chip was an MC146818 chip, now obsolete.
|
|
* That defined the register interface now provided by all PCs, some
|
|
* non-PC systems, and incorporated into ACPI. Modern PC chipsets
|
|
* integrate an MC146818 clone in their southbridge, and boards use
|
|
* that instead of discrete clones like the DS12887 or M48T86. There
|
|
* are also clones that connect using the LPC bus.
|
|
*
|
|
* That register API is also used directly by various other drivers
|
|
* (notably for integrated NVRAM), infrastructure (x86 has code to
|
|
* bypass the RTC framework, directly reading the RTC during boot
|
|
* and updating minutes/seconds for systems using NTP synch) and
|
|
* utilities (like userspace 'hwclock', if no /dev node exists).
|
|
*
|
|
* So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
|
|
* interrupts disabled, holding the global rtc_lock, to exclude those
|
|
* other drivers and utilities on correctly configured systems.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_platform.h>
|
|
|
|
/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
|
|
#include <asm-generic/rtc.h>
|
|
|
|
struct cmos_rtc {
|
|
struct rtc_device *rtc;
|
|
struct device *dev;
|
|
int irq;
|
|
struct resource *iomem;
|
|
|
|
void (*wake_on)(struct device *);
|
|
void (*wake_off)(struct device *);
|
|
|
|
u8 enabled_wake;
|
|
u8 suspend_ctrl;
|
|
|
|
/* newer hardware extends the original register set */
|
|
u8 day_alrm;
|
|
u8 mon_alrm;
|
|
u8 century;
|
|
};
|
|
|
|
/* both platform and pnp busses use negative numbers for invalid irqs */
|
|
#define is_valid_irq(n) ((n) > 0)
|
|
|
|
static const char driver_name[] = "rtc_cmos";
|
|
|
|
/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
|
|
* always mask it against the irq enable bits in RTC_CONTROL. Bit values
|
|
* are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
|
|
*/
|
|
#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
|
|
|
|
static inline int is_intr(u8 rtc_intr)
|
|
{
|
|
if (!(rtc_intr & RTC_IRQF))
|
|
return 0;
|
|
return rtc_intr & RTC_IRQMASK;
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
|
|
* many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
|
|
* used in a broken "legacy replacement" mode. The breakage includes
|
|
* HPET #1 hijacking the IRQ for this RTC, and being unavailable for
|
|
* other (better) use.
|
|
*
|
|
* When that broken mode is in use, platform glue provides a partial
|
|
* emulation of hardware RTC IRQ facilities using HPET #1. We don't
|
|
* want to use HPET for anything except those IRQs though...
|
|
*/
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
#include <asm/hpet.h>
|
|
#else
|
|
|
|
static inline int is_hpet_enabled(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int hpet_set_rtc_irq_bit(unsigned long mask)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int hpet_set_periodic_freq(unsigned long freq)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int hpet_rtc_dropped_irq(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int hpet_rtc_timer_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
extern irq_handler_t hpet_rtc_interrupt;
|
|
|
|
static inline int hpet_register_irq_handler(irq_handler_t handler)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int hpet_unregister_irq_handler(irq_handler_t handler)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
#ifdef RTC_PORT
|
|
|
|
/* Most newer x86 systems have two register banks, the first used
|
|
* for RTC and NVRAM and the second only for NVRAM. Caller must
|
|
* own rtc_lock ... and we won't worry about access during NMI.
|
|
*/
|
|
#define can_bank2 true
|
|
|
|
static inline unsigned char cmos_read_bank2(unsigned char addr)
|
|
{
|
|
outb(addr, RTC_PORT(2));
|
|
return inb(RTC_PORT(3));
|
|
}
|
|
|
|
static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
|
|
{
|
|
outb(addr, RTC_PORT(2));
|
|
outb(val, RTC_PORT(3));
|
|
}
|
|
|
|
#else
|
|
|
|
#define can_bank2 false
|
|
|
|
static inline unsigned char cmos_read_bank2(unsigned char addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static int cmos_read_time(struct device *dev, struct rtc_time *t)
|
|
{
|
|
/* REVISIT: if the clock has a "century" register, use
|
|
* that instead of the heuristic in get_rtc_time().
|
|
* That'll make Y3K compatility (year > 2070) easy!
|
|
*/
|
|
get_rtc_time(t);
|
|
return 0;
|
|
}
|
|
|
|
static int cmos_set_time(struct device *dev, struct rtc_time *t)
|
|
{
|
|
/* REVISIT: set the "century" register if available
|
|
*
|
|
* NOTE: this ignores the issue whereby updating the seconds
|
|
* takes effect exactly 500ms after we write the register.
|
|
* (Also queueing and other delays before we get this far.)
|
|
*/
|
|
return set_rtc_time(t);
|
|
}
|
|
|
|
static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
|
|
{
|
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
|
unsigned char rtc_control;
|
|
|
|
if (!is_valid_irq(cmos->irq))
|
|
return -EIO;
|
|
|
|
/* Basic alarms only support hour, minute, and seconds fields.
|
|
* Some also support day and month, for alarms up to a year in
|
|
* the future.
|
|
*/
|
|
t->time.tm_mday = -1;
|
|
t->time.tm_mon = -1;
|
|
|
|
spin_lock_irq(&rtc_lock);
|
|
t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
|
|
t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
|
|
t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
|
|
|
|
if (cmos->day_alrm) {
|
|
/* ignore upper bits on readback per ACPI spec */
|
|
t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
|
|
if (!t->time.tm_mday)
|
|
t->time.tm_mday = -1;
|
|
|
|
if (cmos->mon_alrm) {
|
|
t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
|
|
if (!t->time.tm_mon)
|
|
t->time.tm_mon = -1;
|
|
}
|
|
}
|
|
|
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
|
spin_unlock_irq(&rtc_lock);
|
|
|
|
if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
|
if (((unsigned)t->time.tm_sec) < 0x60)
|
|
t->time.tm_sec = bcd2bin(t->time.tm_sec);
|
|
else
|
|
t->time.tm_sec = -1;
|
|
if (((unsigned)t->time.tm_min) < 0x60)
|
|
t->time.tm_min = bcd2bin(t->time.tm_min);
|
|
else
|
|
t->time.tm_min = -1;
|
|
if (((unsigned)t->time.tm_hour) < 0x24)
|
|
t->time.tm_hour = bcd2bin(t->time.tm_hour);
|
|
else
|
|
t->time.tm_hour = -1;
|
|
|
|
if (cmos->day_alrm) {
|
|
if (((unsigned)t->time.tm_mday) <= 0x31)
|
|
t->time.tm_mday = bcd2bin(t->time.tm_mday);
|
|
else
|
|
t->time.tm_mday = -1;
|
|
|
|
if (cmos->mon_alrm) {
|
|
if (((unsigned)t->time.tm_mon) <= 0x12)
|
|
t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
|
|
else
|
|
t->time.tm_mon = -1;
|
|
}
|
|
}
|
|
}
|
|
t->time.tm_year = -1;
|
|
|
|
t->enabled = !!(rtc_control & RTC_AIE);
|
|
t->pending = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
|
|
{
|
|
unsigned char rtc_intr;
|
|
|
|
/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
|
|
* allegedly some older rtcs need that to handle irqs properly
|
|
*/
|
|
rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
|
|
|
|
if (is_hpet_enabled())
|
|
return;
|
|
|
|
rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
|
|
if (is_intr(rtc_intr))
|
|
rtc_update_irq(cmos->rtc, 1, rtc_intr);
|
|
}
|
|
|
|
static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
|
|
{
|
|
unsigned char rtc_control;
|
|
|
|
/* flush any pending IRQ status, notably for update irqs,
|
|
* before we enable new IRQs
|
|
*/
|
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
|
cmos_checkintr(cmos, rtc_control);
|
|
|
|
rtc_control |= mask;
|
|
CMOS_WRITE(rtc_control, RTC_CONTROL);
|
|
hpet_set_rtc_irq_bit(mask);
|
|
|
|
cmos_checkintr(cmos, rtc_control);
|
|
}
|
|
|
|
static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
|
|
{
|
|
unsigned char rtc_control;
|
|
|
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
|
rtc_control &= ~mask;
|
|
CMOS_WRITE(rtc_control, RTC_CONTROL);
|
|
hpet_mask_rtc_irq_bit(mask);
|
|
|
|
cmos_checkintr(cmos, rtc_control);
|
|
}
|
|
|
|
static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
|
|
{
|
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
|
unsigned char mon, mday, hrs, min, sec, rtc_control;
|
|
|
|
if (!is_valid_irq(cmos->irq))
|
|
return -EIO;
|
|
|
|
mon = t->time.tm_mon + 1;
|
|
mday = t->time.tm_mday;
|
|
hrs = t->time.tm_hour;
|
|
min = t->time.tm_min;
|
|
sec = t->time.tm_sec;
|
|
|
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
|
if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
|
/* Writing 0xff means "don't care" or "match all". */
|
|
mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
|
|
mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
|
|
hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
|
|
min = (min < 60) ? bin2bcd(min) : 0xff;
|
|
sec = (sec < 60) ? bin2bcd(sec) : 0xff;
|
|
}
|
|
|
|
spin_lock_irq(&rtc_lock);
|
|
|
|
/* next rtc irq must not be from previous alarm setting */
|
|
cmos_irq_disable(cmos, RTC_AIE);
|
|
|
|
/* update alarm */
|
|
CMOS_WRITE(hrs, RTC_HOURS_ALARM);
|
|
CMOS_WRITE(min, RTC_MINUTES_ALARM);
|
|
CMOS_WRITE(sec, RTC_SECONDS_ALARM);
|
|
|
|
/* the system may support an "enhanced" alarm */
|
|
if (cmos->day_alrm) {
|
|
CMOS_WRITE(mday, cmos->day_alrm);
|
|
if (cmos->mon_alrm)
|
|
CMOS_WRITE(mon, cmos->mon_alrm);
|
|
}
|
|
|
|
/* FIXME the HPET alarm glue currently ignores day_alrm
|
|
* and mon_alrm ...
|
|
*/
|
|
hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
|
|
|
|
if (t->enabled)
|
|
cmos_irq_enable(cmos, RTC_AIE);
|
|
|
|
spin_unlock_irq(&rtc_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
|
|
{
|
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
|
unsigned long flags;
|
|
|
|
if (!is_valid_irq(cmos->irq))
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
|
|
if (enabled)
|
|
cmos_irq_enable(cmos, RTC_AIE);
|
|
else
|
|
cmos_irq_disable(cmos, RTC_AIE);
|
|
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
|
|
|
|
static int cmos_procfs(struct device *dev, struct seq_file *seq)
|
|
{
|
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
|
unsigned char rtc_control, valid;
|
|
|
|
spin_lock_irq(&rtc_lock);
|
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
|
valid = CMOS_READ(RTC_VALID);
|
|
spin_unlock_irq(&rtc_lock);
|
|
|
|
/* NOTE: at least ICH6 reports battery status using a different
|
|
* (non-RTC) bit; and SQWE is ignored on many current systems.
|
|
*/
|
|
return seq_printf(seq,
|
|
"periodic_IRQ\t: %s\n"
|
|
"update_IRQ\t: %s\n"
|
|
"HPET_emulated\t: %s\n"
|
|
// "square_wave\t: %s\n"
|
|
"BCD\t\t: %s\n"
|
|
"DST_enable\t: %s\n"
|
|
"periodic_freq\t: %d\n"
|
|
"batt_status\t: %s\n",
|
|
(rtc_control & RTC_PIE) ? "yes" : "no",
|
|
(rtc_control & RTC_UIE) ? "yes" : "no",
|
|
is_hpet_enabled() ? "yes" : "no",
|
|
// (rtc_control & RTC_SQWE) ? "yes" : "no",
|
|
(rtc_control & RTC_DM_BINARY) ? "no" : "yes",
|
|
(rtc_control & RTC_DST_EN) ? "yes" : "no",
|
|
cmos->rtc->irq_freq,
|
|
(valid & RTC_VRT) ? "okay" : "dead");
|
|
}
|
|
|
|
#else
|
|
#define cmos_procfs NULL
|
|
#endif
|
|
|
|
static const struct rtc_class_ops cmos_rtc_ops = {
|
|
.read_time = cmos_read_time,
|
|
.set_time = cmos_set_time,
|
|
.read_alarm = cmos_read_alarm,
|
|
.set_alarm = cmos_set_alarm,
|
|
.proc = cmos_procfs,
|
|
.alarm_irq_enable = cmos_alarm_irq_enable,
|
|
};
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* All these chips have at least 64 bytes of address space, shared by
|
|
* RTC registers and NVRAM. Most of those bytes of NVRAM are used
|
|
* by boot firmware. Modern chips have 128 or 256 bytes.
|
|
*/
|
|
|
|
#define NVRAM_OFFSET (RTC_REG_D + 1)
|
|
|
|
static ssize_t
|
|
cmos_nvram_read(struct file *filp, struct kobject *kobj,
|
|
struct bin_attribute *attr,
|
|
char *buf, loff_t off, size_t count)
|
|
{
|
|
int retval;
|
|
|
|
if (unlikely(off >= attr->size))
|
|
return 0;
|
|
if (unlikely(off < 0))
|
|
return -EINVAL;
|
|
if ((off + count) > attr->size)
|
|
count = attr->size - off;
|
|
|
|
off += NVRAM_OFFSET;
|
|
spin_lock_irq(&rtc_lock);
|
|
for (retval = 0; count; count--, off++, retval++) {
|
|
if (off < 128)
|
|
*buf++ = CMOS_READ(off);
|
|
else if (can_bank2)
|
|
*buf++ = cmos_read_bank2(off);
|
|
else
|
|
break;
|
|
}
|
|
spin_unlock_irq(&rtc_lock);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static ssize_t
|
|
cmos_nvram_write(struct file *filp, struct kobject *kobj,
|
|
struct bin_attribute *attr,
|
|
char *buf, loff_t off, size_t count)
|
|
{
|
|
struct cmos_rtc *cmos;
|
|
int retval;
|
|
|
|
cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
|
|
if (unlikely(off >= attr->size))
|
|
return -EFBIG;
|
|
if (unlikely(off < 0))
|
|
return -EINVAL;
|
|
if ((off + count) > attr->size)
|
|
count = attr->size - off;
|
|
|
|
/* NOTE: on at least PCs and Ataris, the boot firmware uses a
|
|
* checksum on part of the NVRAM data. That's currently ignored
|
|
* here. If userspace is smart enough to know what fields of
|
|
* NVRAM to update, updating checksums is also part of its job.
|
|
*/
|
|
off += NVRAM_OFFSET;
|
|
spin_lock_irq(&rtc_lock);
|
|
for (retval = 0; count; count--, off++, retval++) {
|
|
/* don't trash RTC registers */
|
|
if (off == cmos->day_alrm
|
|
|| off == cmos->mon_alrm
|
|
|| off == cmos->century)
|
|
buf++;
|
|
else if (off < 128)
|
|
CMOS_WRITE(*buf++, off);
|
|
else if (can_bank2)
|
|
cmos_write_bank2(*buf++, off);
|
|
else
|
|
break;
|
|
}
|
|
spin_unlock_irq(&rtc_lock);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static struct bin_attribute nvram = {
|
|
.attr = {
|
|
.name = "nvram",
|
|
.mode = S_IRUGO | S_IWUSR,
|
|
},
|
|
|
|
.read = cmos_nvram_read,
|
|
.write = cmos_nvram_write,
|
|
/* size gets set up later */
|
|
};
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static struct cmos_rtc cmos_rtc;
|
|
|
|
static irqreturn_t cmos_interrupt(int irq, void *p)
|
|
{
|
|
u8 irqstat;
|
|
u8 rtc_control;
|
|
|
|
spin_lock(&rtc_lock);
|
|
|
|
/* When the HPET interrupt handler calls us, the interrupt
|
|
* status is passed as arg1 instead of the irq number. But
|
|
* always clear irq status, even when HPET is in the way.
|
|
*
|
|
* Note that HPET and RTC are almost certainly out of phase,
|
|
* giving different IRQ status ...
|
|
*/
|
|
irqstat = CMOS_READ(RTC_INTR_FLAGS);
|
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
|
if (is_hpet_enabled())
|
|
irqstat = (unsigned long)irq & 0xF0;
|
|
irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
|
|
|
|
/* All Linux RTC alarms should be treated as if they were oneshot.
|
|
* Similar code may be needed in system wakeup paths, in case the
|
|
* alarm woke the system.
|
|
*/
|
|
if (irqstat & RTC_AIE) {
|
|
rtc_control &= ~RTC_AIE;
|
|
CMOS_WRITE(rtc_control, RTC_CONTROL);
|
|
hpet_mask_rtc_irq_bit(RTC_AIE);
|
|
|
|
CMOS_READ(RTC_INTR_FLAGS);
|
|
}
|
|
spin_unlock(&rtc_lock);
|
|
|
|
if (is_intr(irqstat)) {
|
|
rtc_update_irq(p, 1, irqstat);
|
|
return IRQ_HANDLED;
|
|
} else
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
#ifdef CONFIG_PNP
|
|
#define INITSECTION
|
|
|
|
#else
|
|
#define INITSECTION __init
|
|
#endif
|
|
|
|
static int INITSECTION
|
|
cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
|
|
{
|
|
struct cmos_rtc_board_info *info = dev->platform_data;
|
|
int retval = 0;
|
|
unsigned char rtc_control;
|
|
unsigned address_space;
|
|
|
|
/* there can be only one ... */
|
|
if (cmos_rtc.dev)
|
|
return -EBUSY;
|
|
|
|
if (!ports)
|
|
return -ENODEV;
|
|
|
|
/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
|
|
*
|
|
* REVISIT non-x86 systems may instead use memory space resources
|
|
* (needing ioremap etc), not i/o space resources like this ...
|
|
*/
|
|
ports = request_region(ports->start,
|
|
resource_size(ports),
|
|
driver_name);
|
|
if (!ports) {
|
|
dev_dbg(dev, "i/o registers already in use\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
cmos_rtc.irq = rtc_irq;
|
|
cmos_rtc.iomem = ports;
|
|
|
|
/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
|
|
* driver did, but don't reject unknown configs. Old hardware
|
|
* won't address 128 bytes. Newer chips have multiple banks,
|
|
* though they may not be listed in one I/O resource.
|
|
*/
|
|
#if defined(CONFIG_ATARI)
|
|
address_space = 64;
|
|
#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
|
|
|| defined(__sparc__) || defined(__mips__) \
|
|
|| defined(__powerpc__)
|
|
address_space = 128;
|
|
#else
|
|
#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
|
|
address_space = 128;
|
|
#endif
|
|
if (can_bank2 && ports->end > (ports->start + 1))
|
|
address_space = 256;
|
|
|
|
/* For ACPI systems extension info comes from the FADT. On others,
|
|
* board specific setup provides it as appropriate. Systems where
|
|
* the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
|
|
* some almost-clones) can provide hooks to make that behave.
|
|
*
|
|
* Note that ACPI doesn't preclude putting these registers into
|
|
* "extended" areas of the chip, including some that we won't yet
|
|
* expect CMOS_READ and friends to handle.
|
|
*/
|
|
if (info) {
|
|
if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
|
|
cmos_rtc.day_alrm = info->rtc_day_alarm;
|
|
if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
|
|
cmos_rtc.mon_alrm = info->rtc_mon_alarm;
|
|
if (info->rtc_century && info->rtc_century < 128)
|
|
cmos_rtc.century = info->rtc_century;
|
|
|
|
if (info->wake_on && info->wake_off) {
|
|
cmos_rtc.wake_on = info->wake_on;
|
|
cmos_rtc.wake_off = info->wake_off;
|
|
}
|
|
}
|
|
|
|
cmos_rtc.dev = dev;
|
|
dev_set_drvdata(dev, &cmos_rtc);
|
|
|
|
cmos_rtc.rtc = rtc_device_register(driver_name, dev,
|
|
&cmos_rtc_ops, THIS_MODULE);
|
|
if (IS_ERR(cmos_rtc.rtc)) {
|
|
retval = PTR_ERR(cmos_rtc.rtc);
|
|
goto cleanup0;
|
|
}
|
|
|
|
rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
|
|
|
|
spin_lock_irq(&rtc_lock);
|
|
|
|
/* force periodic irq to CMOS reset default of 1024Hz;
|
|
*
|
|
* REVISIT it's been reported that at least one x86_64 ALI mobo
|
|
* doesn't use 32KHz here ... for portability we might need to
|
|
* do something about other clock frequencies.
|
|
*/
|
|
cmos_rtc.rtc->irq_freq = 1024;
|
|
hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
|
|
CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
|
|
|
|
/* disable irqs */
|
|
cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
|
|
|
|
rtc_control = CMOS_READ(RTC_CONTROL);
|
|
|
|
spin_unlock_irq(&rtc_lock);
|
|
|
|
/* FIXME:
|
|
* <asm-generic/rtc.h> doesn't know 12-hour mode either.
|
|
*/
|
|
if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
|
|
dev_warn(dev, "only 24-hr supported\n");
|
|
retval = -ENXIO;
|
|
goto cleanup1;
|
|
}
|
|
|
|
if (is_valid_irq(rtc_irq)) {
|
|
irq_handler_t rtc_cmos_int_handler;
|
|
|
|
if (is_hpet_enabled()) {
|
|
int err;
|
|
|
|
rtc_cmos_int_handler = hpet_rtc_interrupt;
|
|
err = hpet_register_irq_handler(cmos_interrupt);
|
|
if (err != 0) {
|
|
printk(KERN_WARNING "hpet_register_irq_handler "
|
|
" failed in rtc_init().");
|
|
goto cleanup1;
|
|
}
|
|
} else
|
|
rtc_cmos_int_handler = cmos_interrupt;
|
|
|
|
retval = request_irq(rtc_irq, rtc_cmos_int_handler,
|
|
0, dev_name(&cmos_rtc.rtc->dev),
|
|
cmos_rtc.rtc);
|
|
if (retval < 0) {
|
|
dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
|
|
goto cleanup1;
|
|
}
|
|
}
|
|
hpet_rtc_timer_init();
|
|
|
|
/* export at least the first block of NVRAM */
|
|
nvram.size = address_space - NVRAM_OFFSET;
|
|
retval = sysfs_create_bin_file(&dev->kobj, &nvram);
|
|
if (retval < 0) {
|
|
dev_dbg(dev, "can't create nvram file? %d\n", retval);
|
|
goto cleanup2;
|
|
}
|
|
|
|
pr_info("%s: %s%s, %zd bytes nvram%s\n",
|
|
dev_name(&cmos_rtc.rtc->dev),
|
|
!is_valid_irq(rtc_irq) ? "no alarms" :
|
|
cmos_rtc.mon_alrm ? "alarms up to one year" :
|
|
cmos_rtc.day_alrm ? "alarms up to one month" :
|
|
"alarms up to one day",
|
|
cmos_rtc.century ? ", y3k" : "",
|
|
nvram.size,
|
|
is_hpet_enabled() ? ", hpet irqs" : "");
|
|
|
|
return 0;
|
|
|
|
cleanup2:
|
|
if (is_valid_irq(rtc_irq))
|
|
free_irq(rtc_irq, cmos_rtc.rtc);
|
|
cleanup1:
|
|
cmos_rtc.dev = NULL;
|
|
rtc_device_unregister(cmos_rtc.rtc);
|
|
cleanup0:
|
|
release_region(ports->start, resource_size(ports));
|
|
return retval;
|
|
}
|
|
|
|
static void cmos_do_shutdown(void)
|
|
{
|
|
spin_lock_irq(&rtc_lock);
|
|
cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
|
|
spin_unlock_irq(&rtc_lock);
|
|
}
|
|
|
|
static void __exit cmos_do_remove(struct device *dev)
|
|
{
|
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
|
struct resource *ports;
|
|
|
|
cmos_do_shutdown();
|
|
|
|
sysfs_remove_bin_file(&dev->kobj, &nvram);
|
|
|
|
if (is_valid_irq(cmos->irq)) {
|
|
free_irq(cmos->irq, cmos->rtc);
|
|
hpet_unregister_irq_handler(cmos_interrupt);
|
|
}
|
|
|
|
rtc_device_unregister(cmos->rtc);
|
|
cmos->rtc = NULL;
|
|
|
|
ports = cmos->iomem;
|
|
release_region(ports->start, resource_size(ports));
|
|
cmos->iomem = NULL;
|
|
|
|
cmos->dev = NULL;
|
|
dev_set_drvdata(dev, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
static int cmos_suspend(struct device *dev)
|
|
{
|
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
|
unsigned char tmp;
|
|
|
|
/* only the alarm might be a wakeup event source */
|
|
spin_lock_irq(&rtc_lock);
|
|
cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
|
|
if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
|
|
unsigned char mask;
|
|
|
|
if (device_may_wakeup(dev))
|
|
mask = RTC_IRQMASK & ~RTC_AIE;
|
|
else
|
|
mask = RTC_IRQMASK;
|
|
tmp &= ~mask;
|
|
CMOS_WRITE(tmp, RTC_CONTROL);
|
|
|
|
/* shut down hpet emulation - we don't need it for alarm */
|
|
hpet_mask_rtc_irq_bit(RTC_PIE|RTC_AIE|RTC_UIE);
|
|
cmos_checkintr(cmos, tmp);
|
|
}
|
|
spin_unlock_irq(&rtc_lock);
|
|
|
|
if (tmp & RTC_AIE) {
|
|
cmos->enabled_wake = 1;
|
|
if (cmos->wake_on)
|
|
cmos->wake_on(dev);
|
|
else
|
|
enable_irq_wake(cmos->irq);
|
|
}
|
|
|
|
pr_debug("%s: suspend%s, ctrl %02x\n",
|
|
dev_name(&cmos_rtc.rtc->dev),
|
|
(tmp & RTC_AIE) ? ", alarm may wake" : "",
|
|
tmp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
|
|
* after a detour through G3 "mechanical off", although the ACPI spec
|
|
* says wakeup should only work from G1/S4 "hibernate". To most users,
|
|
* distinctions between S4 and S5 are pointless. So when the hardware
|
|
* allows, don't draw that distinction.
|
|
*/
|
|
static inline int cmos_poweroff(struct device *dev)
|
|
{
|
|
return cmos_suspend(dev);
|
|
}
|
|
|
|
static int cmos_resume(struct device *dev)
|
|
{
|
|
struct cmos_rtc *cmos = dev_get_drvdata(dev);
|
|
unsigned char tmp = cmos->suspend_ctrl;
|
|
|
|
/* re-enable any irqs previously active */
|
|
if (tmp & RTC_IRQMASK) {
|
|
unsigned char mask;
|
|
|
|
if (cmos->enabled_wake) {
|
|
if (cmos->wake_off)
|
|
cmos->wake_off(dev);
|
|
else
|
|
disable_irq_wake(cmos->irq);
|
|
cmos->enabled_wake = 0;
|
|
}
|
|
|
|
spin_lock_irq(&rtc_lock);
|
|
do {
|
|
CMOS_WRITE(tmp, RTC_CONTROL);
|
|
hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
|
|
|
|
mask = CMOS_READ(RTC_INTR_FLAGS);
|
|
mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
|
|
if (!is_hpet_enabled() || !is_intr(mask))
|
|
break;
|
|
|
|
/* force one-shot behavior if HPET blocked
|
|
* the wake alarm's irq
|
|
*/
|
|
rtc_update_irq(cmos->rtc, 1, mask);
|
|
tmp &= ~RTC_AIE;
|
|
hpet_mask_rtc_irq_bit(RTC_AIE);
|
|
} while (mask & RTC_AIE);
|
|
spin_unlock_irq(&rtc_lock);
|
|
}
|
|
|
|
pr_debug("%s: resume, ctrl %02x\n",
|
|
dev_name(&cmos_rtc.rtc->dev),
|
|
tmp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
|
|
|
|
#else
|
|
|
|
static inline int cmos_poweroff(struct device *dev)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
|
|
* ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
|
|
* probably list them in similar PNPBIOS tables; so PNP is more common.
|
|
*
|
|
* We don't use legacy "poke at the hardware" probing. Ancient PCs that
|
|
* predate even PNPBIOS should set up platform_bus devices.
|
|
*/
|
|
|
|
#ifdef CONFIG_ACPI
|
|
|
|
#include <linux/acpi.h>
|
|
|
|
static u32 rtc_handler(void *context)
|
|
{
|
|
struct device *dev = context;
|
|
|
|
pm_wakeup_event(dev, 0);
|
|
acpi_clear_event(ACPI_EVENT_RTC);
|
|
acpi_disable_event(ACPI_EVENT_RTC, 0);
|
|
return ACPI_INTERRUPT_HANDLED;
|
|
}
|
|
|
|
static inline void rtc_wake_setup(struct device *dev)
|
|
{
|
|
acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
|
|
/*
|
|
* After the RTC handler is installed, the Fixed_RTC event should
|
|
* be disabled. Only when the RTC alarm is set will it be enabled.
|
|
*/
|
|
acpi_clear_event(ACPI_EVENT_RTC);
|
|
acpi_disable_event(ACPI_EVENT_RTC, 0);
|
|
}
|
|
|
|
static void rtc_wake_on(struct device *dev)
|
|
{
|
|
acpi_clear_event(ACPI_EVENT_RTC);
|
|
acpi_enable_event(ACPI_EVENT_RTC, 0);
|
|
}
|
|
|
|
static void rtc_wake_off(struct device *dev)
|
|
{
|
|
acpi_disable_event(ACPI_EVENT_RTC, 0);
|
|
}
|
|
|
|
/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
|
|
* its device node and pass extra config data. This helps its driver use
|
|
* capabilities that the now-obsolete mc146818 didn't have, and informs it
|
|
* that this board's RTC is wakeup-capable (per ACPI spec).
|
|
*/
|
|
static struct cmos_rtc_board_info acpi_rtc_info;
|
|
|
|
static void __devinit
|
|
cmos_wake_setup(struct device *dev)
|
|
{
|
|
if (acpi_disabled)
|
|
return;
|
|
|
|
rtc_wake_setup(dev);
|
|
acpi_rtc_info.wake_on = rtc_wake_on;
|
|
acpi_rtc_info.wake_off = rtc_wake_off;
|
|
|
|
/* workaround bug in some ACPI tables */
|
|
if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
|
|
dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
|
|
acpi_gbl_FADT.month_alarm);
|
|
acpi_gbl_FADT.month_alarm = 0;
|
|
}
|
|
|
|
acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
|
|
acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
|
|
acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
|
|
|
|
/* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
|
|
if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
|
|
dev_info(dev, "RTC can wake from S4\n");
|
|
|
|
dev->platform_data = &acpi_rtc_info;
|
|
|
|
/* RTC always wakes from S1/S2/S3, and often S4/STD */
|
|
device_init_wakeup(dev, 1);
|
|
}
|
|
|
|
#else
|
|
|
|
static void __devinit
|
|
cmos_wake_setup(struct device *dev)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_PNP
|
|
|
|
#include <linux/pnp.h>
|
|
|
|
static int __devinit
|
|
cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
|
|
{
|
|
cmos_wake_setup(&pnp->dev);
|
|
|
|
if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
|
|
/* Some machines contain a PNP entry for the RTC, but
|
|
* don't define the IRQ. It should always be safe to
|
|
* hardcode it in these cases
|
|
*/
|
|
return cmos_do_probe(&pnp->dev,
|
|
pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
|
|
else
|
|
return cmos_do_probe(&pnp->dev,
|
|
pnp_get_resource(pnp, IORESOURCE_IO, 0),
|
|
pnp_irq(pnp, 0));
|
|
}
|
|
|
|
static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
|
|
{
|
|
cmos_do_remove(&pnp->dev);
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
|
|
{
|
|
return cmos_suspend(&pnp->dev);
|
|
}
|
|
|
|
static int cmos_pnp_resume(struct pnp_dev *pnp)
|
|
{
|
|
return cmos_resume(&pnp->dev);
|
|
}
|
|
|
|
#else
|
|
#define cmos_pnp_suspend NULL
|
|
#define cmos_pnp_resume NULL
|
|
#endif
|
|
|
|
static void cmos_pnp_shutdown(struct pnp_dev *pnp)
|
|
{
|
|
if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
|
|
return;
|
|
|
|
cmos_do_shutdown();
|
|
}
|
|
|
|
static const struct pnp_device_id rtc_ids[] = {
|
|
{ .id = "PNP0b00", },
|
|
{ .id = "PNP0b01", },
|
|
{ .id = "PNP0b02", },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(pnp, rtc_ids);
|
|
|
|
static struct pnp_driver cmos_pnp_driver = {
|
|
.name = (char *) driver_name,
|
|
.id_table = rtc_ids,
|
|
.probe = cmos_pnp_probe,
|
|
.remove = __exit_p(cmos_pnp_remove),
|
|
.shutdown = cmos_pnp_shutdown,
|
|
|
|
/* flag ensures resume() gets called, and stops syslog spam */
|
|
.flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
|
|
.suspend = cmos_pnp_suspend,
|
|
.resume = cmos_pnp_resume,
|
|
};
|
|
|
|
#endif /* CONFIG_PNP */
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id of_cmos_match[] = {
|
|
{
|
|
.compatible = "motorola,mc146818",
|
|
},
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, of_cmos_match);
|
|
|
|
static __init void cmos_of_init(struct platform_device *pdev)
|
|
{
|
|
struct device_node *node = pdev->dev.of_node;
|
|
struct rtc_time time;
|
|
int ret;
|
|
const __be32 *val;
|
|
|
|
if (!node)
|
|
return;
|
|
|
|
val = of_get_property(node, "ctrl-reg", NULL);
|
|
if (val)
|
|
CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
|
|
|
|
val = of_get_property(node, "freq-reg", NULL);
|
|
if (val)
|
|
CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
|
|
|
|
get_rtc_time(&time);
|
|
ret = rtc_valid_tm(&time);
|
|
if (ret) {
|
|
struct rtc_time def_time = {
|
|
.tm_year = 1,
|
|
.tm_mday = 1,
|
|
};
|
|
set_rtc_time(&def_time);
|
|
}
|
|
}
|
|
#else
|
|
static inline void cmos_of_init(struct platform_device *pdev) {}
|
|
#define of_cmos_match NULL
|
|
#endif
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/* Platform setup should have set up an RTC device, when PNP is
|
|
* unavailable ... this could happen even on (older) PCs.
|
|
*/
|
|
|
|
static int __init cmos_platform_probe(struct platform_device *pdev)
|
|
{
|
|
cmos_of_init(pdev);
|
|
cmos_wake_setup(&pdev->dev);
|
|
return cmos_do_probe(&pdev->dev,
|
|
platform_get_resource(pdev, IORESOURCE_IO, 0),
|
|
platform_get_irq(pdev, 0));
|
|
}
|
|
|
|
static int __exit cmos_platform_remove(struct platform_device *pdev)
|
|
{
|
|
cmos_do_remove(&pdev->dev);
|
|
return 0;
|
|
}
|
|
|
|
static void cmos_platform_shutdown(struct platform_device *pdev)
|
|
{
|
|
if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
|
|
return;
|
|
|
|
cmos_do_shutdown();
|
|
}
|
|
|
|
/* work with hotplug and coldplug */
|
|
MODULE_ALIAS("platform:rtc_cmos");
|
|
|
|
static struct platform_driver cmos_platform_driver = {
|
|
.remove = __exit_p(cmos_platform_remove),
|
|
.shutdown = cmos_platform_shutdown,
|
|
.driver = {
|
|
.name = (char *) driver_name,
|
|
#ifdef CONFIG_PM
|
|
.pm = &cmos_pm_ops,
|
|
#endif
|
|
.of_match_table = of_cmos_match,
|
|
}
|
|
};
|
|
|
|
#ifdef CONFIG_PNP
|
|
static bool pnp_driver_registered;
|
|
#endif
|
|
static bool platform_driver_registered;
|
|
|
|
static int __init cmos_init(void)
|
|
{
|
|
int retval = 0;
|
|
|
|
#ifdef CONFIG_PNP
|
|
retval = pnp_register_driver(&cmos_pnp_driver);
|
|
if (retval == 0)
|
|
pnp_driver_registered = true;
|
|
#endif
|
|
|
|
if (!cmos_rtc.dev) {
|
|
retval = platform_driver_probe(&cmos_platform_driver,
|
|
cmos_platform_probe);
|
|
if (retval == 0)
|
|
platform_driver_registered = true;
|
|
}
|
|
|
|
if (retval == 0)
|
|
return 0;
|
|
|
|
#ifdef CONFIG_PNP
|
|
if (pnp_driver_registered)
|
|
pnp_unregister_driver(&cmos_pnp_driver);
|
|
#endif
|
|
return retval;
|
|
}
|
|
module_init(cmos_init);
|
|
|
|
static void __exit cmos_exit(void)
|
|
{
|
|
#ifdef CONFIG_PNP
|
|
if (pnp_driver_registered)
|
|
pnp_unregister_driver(&cmos_pnp_driver);
|
|
#endif
|
|
if (platform_driver_registered)
|
|
platform_driver_unregister(&cmos_platform_driver);
|
|
}
|
|
module_exit(cmos_exit);
|
|
|
|
|
|
MODULE_AUTHOR("David Brownell");
|
|
MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
|
|
MODULE_LICENSE("GPL");
|