mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-21 11:44:01 +08:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
761 lines
20 KiB
C
761 lines
20 KiB
C
/*
|
|
* Chassis LCD/LED driver for HP-PARISC workstations
|
|
*
|
|
* (c) Copyright 2000 Red Hat Software
|
|
* (c) Copyright 2000 Helge Deller <hdeller@redhat.com>
|
|
* (c) Copyright 2001-2004 Helge Deller <deller@gmx.de>
|
|
* (c) Copyright 2001 Randolph Chung <tausq@debian.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* TODO:
|
|
* - speed-up calculations with inlined assembler
|
|
* - interface to write to second row of LCD from /proc (if technically possible)
|
|
*
|
|
* Changes:
|
|
* - Audit copy_from_user in led_proc_write.
|
|
* Daniele Bellucci <bellucda@tiscali.it>
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/stddef.h> /* for offsetof() */
|
|
#include <linux/init.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/inetdevice.h>
|
|
#include <linux/in.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/blkdev.h>
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/hardware.h>
|
|
#include <asm/param.h> /* HZ */
|
|
#include <asm/led.h>
|
|
#include <asm/pdc.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
/* The control of the LEDs and LCDs on PARISC-machines have to be done
|
|
completely in software. The necessary calculations are done in a tasklet
|
|
which is scheduled at every timer interrupt and since the calculations
|
|
may consume relatively much CPU-time some of the calculations can be
|
|
turned off with the following variables (controlled via procfs) */
|
|
|
|
static int led_type = -1;
|
|
static int led_heartbeat = 1;
|
|
static int led_diskio = 1;
|
|
static int led_lanrxtx = 1;
|
|
static char lcd_text[32];
|
|
static char lcd_text_default[32];
|
|
|
|
#if 0
|
|
#define DPRINTK(x) printk x
|
|
#else
|
|
#define DPRINTK(x)
|
|
#endif
|
|
|
|
|
|
struct lcd_block {
|
|
unsigned char command; /* stores the command byte */
|
|
unsigned char on; /* value for turning LED on */
|
|
unsigned char off; /* value for turning LED off */
|
|
};
|
|
|
|
/* Structure returned by PDC_RETURN_CHASSIS_INFO */
|
|
/* NOTE: we use unsigned long:16 two times, since the following member
|
|
lcd_cmd_reg_addr needs to be 64bit aligned on 64bit PA2.0-machines */
|
|
struct pdc_chassis_lcd_info_ret_block {
|
|
unsigned long model:16; /* DISPLAY_MODEL_XXXX */
|
|
unsigned long lcd_width:16; /* width of the LCD in chars (DISPLAY_MODEL_LCD only) */
|
|
unsigned long lcd_cmd_reg_addr; /* ptr to LCD cmd-register & data ptr for LED */
|
|
unsigned long lcd_data_reg_addr; /* ptr to LCD data-register (LCD only) */
|
|
unsigned int min_cmd_delay; /* delay in uS after cmd-write (LCD only) */
|
|
unsigned char reset_cmd1; /* command #1 for writing LCD string (LCD only) */
|
|
unsigned char reset_cmd2; /* command #2 for writing LCD string (LCD only) */
|
|
unsigned char act_enable; /* 0 = no activity (LCD only) */
|
|
struct lcd_block heartbeat;
|
|
struct lcd_block disk_io;
|
|
struct lcd_block lan_rcv;
|
|
struct lcd_block lan_tx;
|
|
char _pad;
|
|
};
|
|
|
|
|
|
/* LCD_CMD and LCD_DATA for KittyHawk machines */
|
|
#define KITTYHAWK_LCD_CMD F_EXTEND(0xf0190000UL) /* 64bit-ready */
|
|
#define KITTYHAWK_LCD_DATA (KITTYHAWK_LCD_CMD+1)
|
|
|
|
/* lcd_info is pre-initialized to the values needed to program KittyHawk LCD's
|
|
* HP seems to have used Sharp/Hitachi HD44780 LCDs most of the time. */
|
|
static struct pdc_chassis_lcd_info_ret_block
|
|
lcd_info __attribute__((aligned(8))) =
|
|
{
|
|
.model = DISPLAY_MODEL_LCD,
|
|
.lcd_width = 16,
|
|
.lcd_cmd_reg_addr = KITTYHAWK_LCD_CMD,
|
|
.lcd_data_reg_addr = KITTYHAWK_LCD_DATA,
|
|
.min_cmd_delay = 40,
|
|
.reset_cmd1 = 0x80,
|
|
.reset_cmd2 = 0xc0,
|
|
};
|
|
|
|
|
|
/* direct access to some of the lcd_info variables */
|
|
#define LCD_CMD_REG lcd_info.lcd_cmd_reg_addr
|
|
#define LCD_DATA_REG lcd_info.lcd_data_reg_addr
|
|
#define LED_DATA_REG lcd_info.lcd_cmd_reg_addr /* LASI & ASP only */
|
|
|
|
|
|
/* ptr to LCD/LED-specific function */
|
|
static void (*led_func_ptr) (unsigned char);
|
|
|
|
#define LED_HASLCD 1
|
|
#define LED_NOLCD 0
|
|
#ifdef CONFIG_PROC_FS
|
|
static int led_proc_read(char *page, char **start, off_t off, int count,
|
|
int *eof, void *data)
|
|
{
|
|
char *out = page;
|
|
int len;
|
|
|
|
switch ((long)data)
|
|
{
|
|
case LED_NOLCD:
|
|
out += sprintf(out, "Heartbeat: %d\n", led_heartbeat);
|
|
out += sprintf(out, "Disk IO: %d\n", led_diskio);
|
|
out += sprintf(out, "LAN Rx/Tx: %d\n", led_lanrxtx);
|
|
break;
|
|
case LED_HASLCD:
|
|
out += sprintf(out, "%s\n", lcd_text);
|
|
break;
|
|
default:
|
|
*eof = 1;
|
|
return 0;
|
|
}
|
|
|
|
len = out - page - off;
|
|
if (len < count) {
|
|
*eof = 1;
|
|
if (len <= 0) return 0;
|
|
} else {
|
|
len = count;
|
|
}
|
|
*start = page + off;
|
|
return len;
|
|
}
|
|
|
|
static int led_proc_write(struct file *file, const char *buf,
|
|
unsigned long count, void *data)
|
|
{
|
|
char *cur, lbuf[count + 1];
|
|
int d;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
memset(lbuf, 0, count + 1);
|
|
|
|
if (copy_from_user(lbuf, buf, count))
|
|
return -EFAULT;
|
|
|
|
cur = lbuf;
|
|
|
|
/* skip initial spaces */
|
|
while (*cur && isspace(*cur))
|
|
{
|
|
cur++;
|
|
}
|
|
|
|
switch ((long)data)
|
|
{
|
|
case LED_NOLCD:
|
|
d = *cur++ - '0';
|
|
if (d != 0 && d != 1) goto parse_error;
|
|
led_heartbeat = d;
|
|
|
|
if (*cur++ != ' ') goto parse_error;
|
|
|
|
d = *cur++ - '0';
|
|
if (d != 0 && d != 1) goto parse_error;
|
|
led_diskio = d;
|
|
|
|
if (*cur++ != ' ') goto parse_error;
|
|
|
|
d = *cur++ - '0';
|
|
if (d != 0 && d != 1) goto parse_error;
|
|
led_lanrxtx = d;
|
|
|
|
break;
|
|
case LED_HASLCD:
|
|
if (*cur && cur[strlen(cur)-1] == '\n')
|
|
cur[strlen(cur)-1] = 0;
|
|
if (*cur == 0)
|
|
cur = lcd_text_default;
|
|
lcd_print(cur);
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return count;
|
|
|
|
parse_error:
|
|
if ((long)data == LED_NOLCD)
|
|
printk(KERN_CRIT "Parse error: expect \"n n n\" (n == 0 or 1) for heartbeat,\ndisk io and lan tx/rx indicators\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int __init led_create_procfs(void)
|
|
{
|
|
struct proc_dir_entry *proc_pdc_root = NULL;
|
|
struct proc_dir_entry *ent;
|
|
|
|
if (led_type == -1) return -1;
|
|
|
|
proc_pdc_root = proc_mkdir("pdc", 0);
|
|
if (!proc_pdc_root) return -1;
|
|
proc_pdc_root->owner = THIS_MODULE;
|
|
ent = create_proc_entry("led", S_IFREG|S_IRUGO|S_IWUSR, proc_pdc_root);
|
|
if (!ent) return -1;
|
|
ent->nlink = 1;
|
|
ent->data = (void *)LED_NOLCD; /* LED */
|
|
ent->read_proc = led_proc_read;
|
|
ent->write_proc = led_proc_write;
|
|
ent->owner = THIS_MODULE;
|
|
|
|
if (led_type == LED_HASLCD)
|
|
{
|
|
ent = create_proc_entry("lcd", S_IFREG|S_IRUGO|S_IWUSR, proc_pdc_root);
|
|
if (!ent) return -1;
|
|
ent->nlink = 1;
|
|
ent->data = (void *)LED_HASLCD; /* LCD */
|
|
ent->read_proc = led_proc_read;
|
|
ent->write_proc = led_proc_write;
|
|
ent->owner = THIS_MODULE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
**
|
|
** led_ASP_driver()
|
|
**
|
|
*/
|
|
#define LED_DATA 0x01 /* data to shift (0:on 1:off) */
|
|
#define LED_STROBE 0x02 /* strobe to clock data */
|
|
static void led_ASP_driver(unsigned char leds)
|
|
{
|
|
int i;
|
|
|
|
leds = ~leds;
|
|
for (i = 0; i < 8; i++) {
|
|
unsigned char value;
|
|
value = (leds & 0x80) >> 7;
|
|
gsc_writeb( value, LED_DATA_REG );
|
|
gsc_writeb( value | LED_STROBE, LED_DATA_REG );
|
|
leds <<= 1;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
**
|
|
** led_LASI_driver()
|
|
**
|
|
*/
|
|
static void led_LASI_driver(unsigned char leds)
|
|
{
|
|
leds = ~leds;
|
|
gsc_writeb( leds, LED_DATA_REG );
|
|
}
|
|
|
|
|
|
/*
|
|
**
|
|
** led_LCD_driver()
|
|
**
|
|
** The logic of the LCD driver is, that we write at every scheduled call
|
|
** only to one of LCD_CMD_REG _or_ LCD_DATA_REG - registers.
|
|
** That way we don't need to let this tasklet busywait for min_cmd_delay
|
|
** milliseconds.
|
|
**
|
|
** TODO: check the value of "min_cmd_delay" against the value of HZ.
|
|
**
|
|
*/
|
|
static void led_LCD_driver(unsigned char leds)
|
|
{
|
|
static int last_index; /* 0:heartbeat, 1:disk, 2:lan_in, 3:lan_out */
|
|
static int last_was_cmd;/* 0: CMD was written last, 1: DATA was last */
|
|
struct lcd_block *block_ptr;
|
|
int value;
|
|
|
|
switch (last_index) {
|
|
case 0: block_ptr = &lcd_info.heartbeat;
|
|
value = leds & LED_HEARTBEAT;
|
|
break;
|
|
case 1: block_ptr = &lcd_info.disk_io;
|
|
value = leds & LED_DISK_IO;
|
|
break;
|
|
case 2: block_ptr = &lcd_info.lan_rcv;
|
|
value = leds & LED_LAN_RCV;
|
|
break;
|
|
case 3: block_ptr = &lcd_info.lan_tx;
|
|
value = leds & LED_LAN_TX;
|
|
break;
|
|
default: /* should never happen: */
|
|
return;
|
|
}
|
|
|
|
if (last_was_cmd) {
|
|
/* write the value to the LCD data port */
|
|
gsc_writeb( value ? block_ptr->on : block_ptr->off, LCD_DATA_REG );
|
|
} else {
|
|
/* write the command-byte to the LCD command register */
|
|
gsc_writeb( block_ptr->command, LCD_CMD_REG );
|
|
}
|
|
|
|
/* now update the vars for the next interrupt iteration */
|
|
if (++last_was_cmd == 2) { /* switch between cmd & data */
|
|
last_was_cmd = 0;
|
|
if (++last_index == 4)
|
|
last_index = 0; /* switch back to heartbeat index */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
**
|
|
** led_get_net_activity()
|
|
**
|
|
** calculate if there was TX- or RX-troughput on the network interfaces
|
|
** (analog to dev_get_info() from net/core/dev.c)
|
|
**
|
|
*/
|
|
static __inline__ int led_get_net_activity(void)
|
|
{
|
|
#ifndef CONFIG_NET
|
|
return 0;
|
|
#else
|
|
static unsigned long rx_total_last, tx_total_last;
|
|
unsigned long rx_total, tx_total;
|
|
struct net_device *dev;
|
|
int retval;
|
|
|
|
rx_total = tx_total = 0;
|
|
|
|
/* we are running as tasklet, so locking dev_base
|
|
* for reading should be OK */
|
|
read_lock(&dev_base_lock);
|
|
for (dev = dev_base; dev; dev = dev->next) {
|
|
struct net_device_stats *stats;
|
|
struct in_device *in_dev = __in_dev_get(dev);
|
|
if (!in_dev || !in_dev->ifa_list)
|
|
continue;
|
|
if (LOOPBACK(in_dev->ifa_list->ifa_local))
|
|
continue;
|
|
if (!dev->get_stats)
|
|
continue;
|
|
stats = dev->get_stats(dev);
|
|
rx_total += stats->rx_packets;
|
|
tx_total += stats->tx_packets;
|
|
}
|
|
read_unlock(&dev_base_lock);
|
|
|
|
retval = 0;
|
|
|
|
if (rx_total != rx_total_last) {
|
|
rx_total_last = rx_total;
|
|
retval |= LED_LAN_RCV;
|
|
}
|
|
|
|
if (tx_total != tx_total_last) {
|
|
tx_total_last = tx_total;
|
|
retval |= LED_LAN_TX;
|
|
}
|
|
|
|
return retval;
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
**
|
|
** led_get_diskio_activity()
|
|
**
|
|
** calculate if there was disk-io in the system
|
|
**
|
|
*/
|
|
static __inline__ int led_get_diskio_activity(void)
|
|
{
|
|
static unsigned long last_pgpgin, last_pgpgout;
|
|
struct page_state pgstat;
|
|
int changed;
|
|
|
|
get_full_page_state(&pgstat); /* get no of sectors in & out */
|
|
|
|
/* Just use a very simple calculation here. Do not care about overflow,
|
|
since we only want to know if there was activity or not. */
|
|
changed = (pgstat.pgpgin != last_pgpgin) || (pgstat.pgpgout != last_pgpgout);
|
|
last_pgpgin = pgstat.pgpgin;
|
|
last_pgpgout = pgstat.pgpgout;
|
|
|
|
return (changed ? LED_DISK_IO : 0);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** led_tasklet_func()
|
|
**
|
|
** is scheduled at every timer interrupt from time.c and
|
|
** updates the chassis LCD/LED
|
|
|
|
TODO:
|
|
- display load average (older machines like 715/64 have 4 "free" LED's for that)
|
|
- optimizations
|
|
*/
|
|
|
|
#define HEARTBEAT_LEN (HZ*6/100)
|
|
#define HEARTBEAT_2ND_RANGE_START (HZ*22/100)
|
|
#define HEARTBEAT_2ND_RANGE_END (HEARTBEAT_2ND_RANGE_START + HEARTBEAT_LEN)
|
|
|
|
#define NORMALIZED_COUNT(count) (count/(HZ/100))
|
|
|
|
static void led_tasklet_func(unsigned long unused)
|
|
{
|
|
static unsigned char lastleds;
|
|
unsigned char currentleds; /* stores current value of the LEDs */
|
|
static unsigned long count; /* static incremented value, not wrapped */
|
|
static unsigned long count_HZ; /* counter in range 0..HZ */
|
|
|
|
/* exit if not initialized */
|
|
if (!led_func_ptr)
|
|
return;
|
|
|
|
/* increment the local counters */
|
|
++count;
|
|
if (++count_HZ == HZ)
|
|
count_HZ = 0;
|
|
|
|
currentleds = lastleds;
|
|
|
|
if (led_heartbeat)
|
|
{
|
|
/* flash heartbeat-LED like a real heart (2 x short then a long delay) */
|
|
if (count_HZ<HEARTBEAT_LEN ||
|
|
(count_HZ>=HEARTBEAT_2ND_RANGE_START && count_HZ<HEARTBEAT_2ND_RANGE_END))
|
|
currentleds |= LED_HEARTBEAT;
|
|
else
|
|
currentleds &= ~LED_HEARTBEAT;
|
|
}
|
|
|
|
/* look for network activity and flash LEDs respectively */
|
|
if (led_lanrxtx && ((NORMALIZED_COUNT(count)+(8/2)) & 7) == 0)
|
|
{
|
|
currentleds &= ~(LED_LAN_RCV | LED_LAN_TX);
|
|
currentleds |= led_get_net_activity();
|
|
}
|
|
|
|
/* avoid to calculate diskio-stats at same irq as netio-stats */
|
|
if (led_diskio && (NORMALIZED_COUNT(count) & 7) == 0)
|
|
{
|
|
currentleds &= ~LED_DISK_IO;
|
|
currentleds |= led_get_diskio_activity();
|
|
}
|
|
|
|
/* blink all LEDs twice a second if we got an Oops (HPMC) */
|
|
if (oops_in_progress) {
|
|
currentleds = (count_HZ<=(HZ/2)) ? 0 : 0xff;
|
|
}
|
|
|
|
/* update the LCD/LEDs */
|
|
if (currentleds != lastleds) {
|
|
led_func_ptr(currentleds);
|
|
lastleds = currentleds;
|
|
}
|
|
}
|
|
|
|
/* main led tasklet struct (scheduled from time.c) */
|
|
DECLARE_TASKLET_DISABLED(led_tasklet, led_tasklet_func, 0);
|
|
|
|
|
|
/*
|
|
** led_halt()
|
|
**
|
|
** called by the reboot notifier chain at shutdown and stops all
|
|
** LED/LCD activities.
|
|
**
|
|
*/
|
|
|
|
static int led_halt(struct notifier_block *, unsigned long, void *);
|
|
|
|
static struct notifier_block led_notifier = {
|
|
.notifier_call = led_halt,
|
|
};
|
|
|
|
static int led_halt(struct notifier_block *nb, unsigned long event, void *buf)
|
|
{
|
|
char *txt;
|
|
|
|
switch (event) {
|
|
case SYS_RESTART: txt = "SYSTEM RESTART";
|
|
break;
|
|
case SYS_HALT: txt = "SYSTEM HALT";
|
|
break;
|
|
case SYS_POWER_OFF: txt = "SYSTEM POWER OFF";
|
|
break;
|
|
default: return NOTIFY_DONE;
|
|
}
|
|
|
|
/* completely stop the LED/LCD tasklet */
|
|
tasklet_disable(&led_tasklet);
|
|
|
|
if (lcd_info.model == DISPLAY_MODEL_LCD)
|
|
lcd_print(txt);
|
|
else
|
|
if (led_func_ptr)
|
|
led_func_ptr(0xff); /* turn all LEDs ON */
|
|
|
|
unregister_reboot_notifier(&led_notifier);
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
/*
|
|
** register_led_driver()
|
|
**
|
|
** registers an external LED or LCD for usage by this driver.
|
|
** currently only LCD-, LASI- and ASP-style LCD/LED's are supported.
|
|
**
|
|
*/
|
|
|
|
int __init register_led_driver(int model, unsigned long cmd_reg, unsigned long data_reg)
|
|
{
|
|
static int initialized;
|
|
|
|
if (initialized || !data_reg)
|
|
return 1;
|
|
|
|
lcd_info.model = model; /* store the values */
|
|
LCD_CMD_REG = (cmd_reg == LED_CMD_REG_NONE) ? 0 : cmd_reg;
|
|
|
|
switch (lcd_info.model) {
|
|
case DISPLAY_MODEL_LCD:
|
|
LCD_DATA_REG = data_reg;
|
|
printk(KERN_INFO "LCD display at %lx,%lx registered\n",
|
|
LCD_CMD_REG , LCD_DATA_REG);
|
|
led_func_ptr = led_LCD_driver;
|
|
lcd_print( lcd_text_default );
|
|
led_type = LED_HASLCD;
|
|
break;
|
|
|
|
case DISPLAY_MODEL_LASI:
|
|
LED_DATA_REG = data_reg;
|
|
led_func_ptr = led_LASI_driver;
|
|
printk(KERN_INFO "LED display at %lx registered\n", LED_DATA_REG);
|
|
led_type = LED_NOLCD;
|
|
break;
|
|
|
|
case DISPLAY_MODEL_OLD_ASP:
|
|
LED_DATA_REG = data_reg;
|
|
led_func_ptr = led_ASP_driver;
|
|
printk(KERN_INFO "LED (ASP-style) display at %lx registered\n",
|
|
LED_DATA_REG);
|
|
led_type = LED_NOLCD;
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_ERR "%s: Wrong LCD/LED model %d !\n",
|
|
__FUNCTION__, lcd_info.model);
|
|
return 1;
|
|
}
|
|
|
|
/* mark the LCD/LED driver now as initialized and
|
|
* register to the reboot notifier chain */
|
|
initialized++;
|
|
register_reboot_notifier(&led_notifier);
|
|
|
|
/* start the led tasklet for the first time */
|
|
tasklet_enable(&led_tasklet);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** register_led_regions()
|
|
**
|
|
** register_led_regions() registers the LCD/LED regions for /procfs.
|
|
** At bootup - where the initialisation of the LCD/LED normally happens -
|
|
** not all internal structures of request_region() are properly set up,
|
|
** so that we delay the led-registration until after busdevices_init()
|
|
** has been executed.
|
|
**
|
|
*/
|
|
|
|
void __init register_led_regions(void)
|
|
{
|
|
switch (lcd_info.model) {
|
|
case DISPLAY_MODEL_LCD:
|
|
request_mem_region((unsigned long)LCD_CMD_REG, 1, "lcd_cmd");
|
|
request_mem_region((unsigned long)LCD_DATA_REG, 1, "lcd_data");
|
|
break;
|
|
case DISPLAY_MODEL_LASI:
|
|
case DISPLAY_MODEL_OLD_ASP:
|
|
request_mem_region((unsigned long)LED_DATA_REG, 1, "led_data");
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
**
|
|
** lcd_print()
|
|
**
|
|
** Displays the given string on the LCD-Display of newer machines.
|
|
** lcd_print() disables the timer-based led tasklet during its
|
|
** execution and enables it afterwards again.
|
|
**
|
|
*/
|
|
int lcd_print( char *str )
|
|
{
|
|
int i;
|
|
|
|
if (!led_func_ptr || lcd_info.model != DISPLAY_MODEL_LCD)
|
|
return 0;
|
|
|
|
/* temporarily disable the led tasklet */
|
|
tasklet_disable(&led_tasklet);
|
|
|
|
/* copy display string to buffer for procfs */
|
|
strlcpy(lcd_text, str, sizeof(lcd_text));
|
|
|
|
/* Set LCD Cursor to 1st character */
|
|
gsc_writeb(lcd_info.reset_cmd1, LCD_CMD_REG);
|
|
udelay(lcd_info.min_cmd_delay);
|
|
|
|
/* Print the string */
|
|
for (i=0; i < lcd_info.lcd_width; i++) {
|
|
if (str && *str)
|
|
gsc_writeb(*str++, LCD_DATA_REG);
|
|
else
|
|
gsc_writeb(' ', LCD_DATA_REG);
|
|
udelay(lcd_info.min_cmd_delay);
|
|
}
|
|
|
|
/* re-enable the led tasklet */
|
|
tasklet_enable(&led_tasklet);
|
|
|
|
return lcd_info.lcd_width;
|
|
}
|
|
|
|
/*
|
|
** led_init()
|
|
**
|
|
** led_init() is called very early in the bootup-process from setup.c
|
|
** and asks the PDC for an usable chassis LCD or LED.
|
|
** If the PDC doesn't return any info, then the LED
|
|
** is detected by lasi.c or asp.c and registered with the
|
|
** above functions lasi_led_init() or asp_led_init().
|
|
** KittyHawk machines have often a buggy PDC, so that
|
|
** we explicitly check for those machines here.
|
|
*/
|
|
|
|
int __init led_init(void)
|
|
{
|
|
struct pdc_chassis_info chassis_info;
|
|
int ret;
|
|
|
|
snprintf(lcd_text_default, sizeof(lcd_text_default),
|
|
"Linux %s", system_utsname.release);
|
|
|
|
/* Work around the buggy PDC of KittyHawk-machines */
|
|
switch (CPU_HVERSION) {
|
|
case 0x580: /* KittyHawk DC2-100 (K100) */
|
|
case 0x581: /* KittyHawk DC3-120 (K210) */
|
|
case 0x582: /* KittyHawk DC3 100 (K400) */
|
|
case 0x583: /* KittyHawk DC3 120 (K410) */
|
|
case 0x58B: /* KittyHawk DC2 100 (K200) */
|
|
printk(KERN_INFO "%s: KittyHawk-Machine (hversion 0x%x) found, "
|
|
"LED detection skipped.\n", __FILE__, CPU_HVERSION);
|
|
goto found; /* use the preinitialized values of lcd_info */
|
|
}
|
|
|
|
/* initialize the struct, so that we can check for valid return values */
|
|
lcd_info.model = DISPLAY_MODEL_NONE;
|
|
chassis_info.actcnt = chassis_info.maxcnt = 0;
|
|
|
|
ret = pdc_chassis_info(&chassis_info, &lcd_info, sizeof(lcd_info));
|
|
if (ret == PDC_OK) {
|
|
DPRINTK((KERN_INFO "%s: chassis info: model=%d (%s), "
|
|
"lcd_width=%d, cmd_delay=%u,\n"
|
|
"%s: sizecnt=%d, actcnt=%ld, maxcnt=%ld\n",
|
|
__FILE__, lcd_info.model,
|
|
(lcd_info.model==DISPLAY_MODEL_LCD) ? "LCD" :
|
|
(lcd_info.model==DISPLAY_MODEL_LASI) ? "LED" : "unknown",
|
|
lcd_info.lcd_width, lcd_info.min_cmd_delay,
|
|
__FILE__, sizeof(lcd_info),
|
|
chassis_info.actcnt, chassis_info.maxcnt));
|
|
DPRINTK((KERN_INFO "%s: cmd=%p, data=%p, reset1=%x, reset2=%x, act_enable=%d\n",
|
|
__FILE__, lcd_info.lcd_cmd_reg_addr,
|
|
lcd_info.lcd_data_reg_addr, lcd_info.reset_cmd1,
|
|
lcd_info.reset_cmd2, lcd_info.act_enable ));
|
|
|
|
/* check the results. Some machines have a buggy PDC */
|
|
if (chassis_info.actcnt <= 0 || chassis_info.actcnt != chassis_info.maxcnt)
|
|
goto not_found;
|
|
|
|
switch (lcd_info.model) {
|
|
case DISPLAY_MODEL_LCD: /* LCD display */
|
|
if (chassis_info.actcnt <
|
|
offsetof(struct pdc_chassis_lcd_info_ret_block, _pad)-1)
|
|
goto not_found;
|
|
if (!lcd_info.act_enable) {
|
|
DPRINTK((KERN_INFO "PDC prohibited usage of the LCD.\n"));
|
|
goto not_found;
|
|
}
|
|
break;
|
|
|
|
case DISPLAY_MODEL_NONE: /* no LED or LCD available */
|
|
printk(KERN_INFO "PDC reported no LCD or LED.\n");
|
|
goto not_found;
|
|
|
|
case DISPLAY_MODEL_LASI: /* Lasi style 8 bit LED display */
|
|
if (chassis_info.actcnt != 8 && chassis_info.actcnt != 32)
|
|
goto not_found;
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_WARNING "PDC reported unknown LCD/LED model %d\n",
|
|
lcd_info.model);
|
|
goto not_found;
|
|
} /* switch() */
|
|
|
|
found:
|
|
/* register the LCD/LED driver */
|
|
register_led_driver(lcd_info.model, LCD_CMD_REG, LCD_DATA_REG);
|
|
return 0;
|
|
|
|
} else { /* if() */
|
|
DPRINTK((KERN_INFO "pdc_chassis_info call failed with retval = %d\n", ret));
|
|
}
|
|
|
|
not_found:
|
|
lcd_info.model = DISPLAY_MODEL_NONE;
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
module_init(led_create_procfs)
|
|
#endif
|