mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 15:44:01 +08:00
8f8d37b253
That's the naming convention followed in most of opp core, but few routines didn't follow this, fix them. Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Shawn Guo <shawnguo@kernel.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
528 lines
14 KiB
C
528 lines
14 KiB
C
/*
|
|
* Copyright (c) 2015 Linaro Ltd.
|
|
* Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpu_cooling.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_opp.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/thermal.h>
|
|
|
|
#define MIN_VOLT_SHIFT (100000)
|
|
#define MAX_VOLT_SHIFT (200000)
|
|
#define MAX_VOLT_LIMIT (1150000)
|
|
#define VOLT_TOL (10000)
|
|
|
|
/*
|
|
* The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
|
|
* on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
|
|
* Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
|
|
* voltage inputs need to be controlled under a hardware limitation:
|
|
* 100mV < Vsram - Vproc < 200mV
|
|
*
|
|
* When scaling the clock frequency of a CPU clock domain, the clock source
|
|
* needs to be switched to another stable PLL clock temporarily until
|
|
* the original PLL becomes stable at target frequency.
|
|
*/
|
|
struct mtk_cpu_dvfs_info {
|
|
struct device *cpu_dev;
|
|
struct regulator *proc_reg;
|
|
struct regulator *sram_reg;
|
|
struct clk *cpu_clk;
|
|
struct clk *inter_clk;
|
|
struct thermal_cooling_device *cdev;
|
|
int intermediate_voltage;
|
|
bool need_voltage_tracking;
|
|
};
|
|
|
|
static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
|
|
int new_vproc)
|
|
{
|
|
struct regulator *proc_reg = info->proc_reg;
|
|
struct regulator *sram_reg = info->sram_reg;
|
|
int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
|
|
|
|
old_vproc = regulator_get_voltage(proc_reg);
|
|
old_vsram = regulator_get_voltage(sram_reg);
|
|
/* Vsram should not exceed the maximum allowed voltage of SoC. */
|
|
new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
|
|
|
|
if (old_vproc < new_vproc) {
|
|
/*
|
|
* When scaling up voltages, Vsram and Vproc scale up step
|
|
* by step. At each step, set Vsram to (Vproc + 200mV) first,
|
|
* then set Vproc to (Vsram - 100mV).
|
|
* Keep doing it until Vsram and Vproc hit target voltages.
|
|
*/
|
|
do {
|
|
old_vsram = regulator_get_voltage(sram_reg);
|
|
old_vproc = regulator_get_voltage(proc_reg);
|
|
|
|
vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
|
|
|
|
if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
|
|
vsram = MAX_VOLT_LIMIT;
|
|
|
|
/*
|
|
* If the target Vsram hits the maximum voltage,
|
|
* try to set the exact voltage value first.
|
|
*/
|
|
ret = regulator_set_voltage(sram_reg, vsram,
|
|
vsram);
|
|
if (ret)
|
|
ret = regulator_set_voltage(sram_reg,
|
|
vsram - VOLT_TOL,
|
|
vsram);
|
|
|
|
vproc = new_vproc;
|
|
} else {
|
|
ret = regulator_set_voltage(sram_reg, vsram,
|
|
vsram + VOLT_TOL);
|
|
|
|
vproc = vsram - MIN_VOLT_SHIFT;
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regulator_set_voltage(proc_reg, vproc,
|
|
vproc + VOLT_TOL);
|
|
if (ret) {
|
|
regulator_set_voltage(sram_reg, old_vsram,
|
|
old_vsram);
|
|
return ret;
|
|
}
|
|
} while (vproc < new_vproc || vsram < new_vsram);
|
|
} else if (old_vproc > new_vproc) {
|
|
/*
|
|
* When scaling down voltages, Vsram and Vproc scale down step
|
|
* by step. At each step, set Vproc to (Vsram - 200mV) first,
|
|
* then set Vproc to (Vproc + 100mV).
|
|
* Keep doing it until Vsram and Vproc hit target voltages.
|
|
*/
|
|
do {
|
|
old_vproc = regulator_get_voltage(proc_reg);
|
|
old_vsram = regulator_get_voltage(sram_reg);
|
|
|
|
vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
|
|
ret = regulator_set_voltage(proc_reg, vproc,
|
|
vproc + VOLT_TOL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (vproc == new_vproc)
|
|
vsram = new_vsram;
|
|
else
|
|
vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
|
|
|
|
if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
|
|
vsram = MAX_VOLT_LIMIT;
|
|
|
|
/*
|
|
* If the target Vsram hits the maximum voltage,
|
|
* try to set the exact voltage value first.
|
|
*/
|
|
ret = regulator_set_voltage(sram_reg, vsram,
|
|
vsram);
|
|
if (ret)
|
|
ret = regulator_set_voltage(sram_reg,
|
|
vsram - VOLT_TOL,
|
|
vsram);
|
|
} else {
|
|
ret = regulator_set_voltage(sram_reg, vsram,
|
|
vsram + VOLT_TOL);
|
|
}
|
|
|
|
if (ret) {
|
|
regulator_set_voltage(proc_reg, old_vproc,
|
|
old_vproc);
|
|
return ret;
|
|
}
|
|
} while (vproc > new_vproc + VOLT_TOL ||
|
|
vsram > new_vsram + VOLT_TOL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
|
|
{
|
|
if (info->need_voltage_tracking)
|
|
return mtk_cpufreq_voltage_tracking(info, vproc);
|
|
else
|
|
return regulator_set_voltage(info->proc_reg, vproc,
|
|
vproc + VOLT_TOL);
|
|
}
|
|
|
|
static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
|
|
unsigned int index)
|
|
{
|
|
struct cpufreq_frequency_table *freq_table = policy->freq_table;
|
|
struct clk *cpu_clk = policy->clk;
|
|
struct clk *armpll = clk_get_parent(cpu_clk);
|
|
struct mtk_cpu_dvfs_info *info = policy->driver_data;
|
|
struct device *cpu_dev = info->cpu_dev;
|
|
struct dev_pm_opp *opp;
|
|
long freq_hz, old_freq_hz;
|
|
int vproc, old_vproc, inter_vproc, target_vproc, ret;
|
|
|
|
inter_vproc = info->intermediate_voltage;
|
|
|
|
old_freq_hz = clk_get_rate(cpu_clk);
|
|
old_vproc = regulator_get_voltage(info->proc_reg);
|
|
|
|
freq_hz = freq_table[index].frequency * 1000;
|
|
|
|
rcu_read_lock();
|
|
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
|
|
if (IS_ERR(opp)) {
|
|
rcu_read_unlock();
|
|
pr_err("cpu%d: failed to find OPP for %ld\n",
|
|
policy->cpu, freq_hz);
|
|
return PTR_ERR(opp);
|
|
}
|
|
vproc = dev_pm_opp_get_voltage(opp);
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* If the new voltage or the intermediate voltage is higher than the
|
|
* current voltage, scale up voltage first.
|
|
*/
|
|
target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
|
|
if (old_vproc < target_vproc) {
|
|
ret = mtk_cpufreq_set_voltage(info, target_vproc);
|
|
if (ret) {
|
|
pr_err("cpu%d: failed to scale up voltage!\n",
|
|
policy->cpu);
|
|
mtk_cpufreq_set_voltage(info, old_vproc);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Reparent the CPU clock to intermediate clock. */
|
|
ret = clk_set_parent(cpu_clk, info->inter_clk);
|
|
if (ret) {
|
|
pr_err("cpu%d: failed to re-parent cpu clock!\n",
|
|
policy->cpu);
|
|
mtk_cpufreq_set_voltage(info, old_vproc);
|
|
WARN_ON(1);
|
|
return ret;
|
|
}
|
|
|
|
/* Set the original PLL to target rate. */
|
|
ret = clk_set_rate(armpll, freq_hz);
|
|
if (ret) {
|
|
pr_err("cpu%d: failed to scale cpu clock rate!\n",
|
|
policy->cpu);
|
|
clk_set_parent(cpu_clk, armpll);
|
|
mtk_cpufreq_set_voltage(info, old_vproc);
|
|
return ret;
|
|
}
|
|
|
|
/* Set parent of CPU clock back to the original PLL. */
|
|
ret = clk_set_parent(cpu_clk, armpll);
|
|
if (ret) {
|
|
pr_err("cpu%d: failed to re-parent cpu clock!\n",
|
|
policy->cpu);
|
|
mtk_cpufreq_set_voltage(info, inter_vproc);
|
|
WARN_ON(1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If the new voltage is lower than the intermediate voltage or the
|
|
* original voltage, scale down to the new voltage.
|
|
*/
|
|
if (vproc < inter_vproc || vproc < old_vproc) {
|
|
ret = mtk_cpufreq_set_voltage(info, vproc);
|
|
if (ret) {
|
|
pr_err("cpu%d: failed to scale down voltage!\n",
|
|
policy->cpu);
|
|
clk_set_parent(cpu_clk, info->inter_clk);
|
|
clk_set_rate(armpll, old_freq_hz);
|
|
clk_set_parent(cpu_clk, armpll);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mtk_cpufreq_ready(struct cpufreq_policy *policy)
|
|
{
|
|
struct mtk_cpu_dvfs_info *info = policy->driver_data;
|
|
struct device_node *np = of_node_get(info->cpu_dev->of_node);
|
|
|
|
if (WARN_ON(!np))
|
|
return;
|
|
|
|
if (of_find_property(np, "#cooling-cells", NULL)) {
|
|
info->cdev = of_cpufreq_cooling_register(np,
|
|
policy->related_cpus);
|
|
|
|
if (IS_ERR(info->cdev)) {
|
|
dev_err(info->cpu_dev,
|
|
"running cpufreq without cooling device: %ld\n",
|
|
PTR_ERR(info->cdev));
|
|
|
|
info->cdev = NULL;
|
|
}
|
|
}
|
|
|
|
of_node_put(np);
|
|
}
|
|
|
|
static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
|
|
{
|
|
struct device *cpu_dev;
|
|
struct regulator *proc_reg = ERR_PTR(-ENODEV);
|
|
struct regulator *sram_reg = ERR_PTR(-ENODEV);
|
|
struct clk *cpu_clk = ERR_PTR(-ENODEV);
|
|
struct clk *inter_clk = ERR_PTR(-ENODEV);
|
|
struct dev_pm_opp *opp;
|
|
unsigned long rate;
|
|
int ret;
|
|
|
|
cpu_dev = get_cpu_device(cpu);
|
|
if (!cpu_dev) {
|
|
pr_err("failed to get cpu%d device\n", cpu);
|
|
return -ENODEV;
|
|
}
|
|
|
|
cpu_clk = clk_get(cpu_dev, "cpu");
|
|
if (IS_ERR(cpu_clk)) {
|
|
if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
|
|
pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
|
|
else
|
|
pr_err("failed to get cpu clk for cpu%d\n", cpu);
|
|
|
|
ret = PTR_ERR(cpu_clk);
|
|
return ret;
|
|
}
|
|
|
|
inter_clk = clk_get(cpu_dev, "intermediate");
|
|
if (IS_ERR(inter_clk)) {
|
|
if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
|
|
pr_warn("intermediate clk for cpu%d not ready, retry.\n",
|
|
cpu);
|
|
else
|
|
pr_err("failed to get intermediate clk for cpu%d\n",
|
|
cpu);
|
|
|
|
ret = PTR_ERR(inter_clk);
|
|
goto out_free_resources;
|
|
}
|
|
|
|
proc_reg = regulator_get_exclusive(cpu_dev, "proc");
|
|
if (IS_ERR(proc_reg)) {
|
|
if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
|
|
pr_warn("proc regulator for cpu%d not ready, retry.\n",
|
|
cpu);
|
|
else
|
|
pr_err("failed to get proc regulator for cpu%d\n",
|
|
cpu);
|
|
|
|
ret = PTR_ERR(proc_reg);
|
|
goto out_free_resources;
|
|
}
|
|
|
|
/* Both presence and absence of sram regulator are valid cases. */
|
|
sram_reg = regulator_get_exclusive(cpu_dev, "sram");
|
|
|
|
ret = dev_pm_opp_of_add_table(cpu_dev);
|
|
if (ret) {
|
|
pr_warn("no OPP table for cpu%d\n", cpu);
|
|
goto out_free_resources;
|
|
}
|
|
|
|
/* Search a safe voltage for intermediate frequency. */
|
|
rate = clk_get_rate(inter_clk);
|
|
rcu_read_lock();
|
|
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
|
|
if (IS_ERR(opp)) {
|
|
rcu_read_unlock();
|
|
pr_err("failed to get intermediate opp for cpu%d\n", cpu);
|
|
ret = PTR_ERR(opp);
|
|
goto out_free_opp_table;
|
|
}
|
|
info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
|
|
rcu_read_unlock();
|
|
|
|
info->cpu_dev = cpu_dev;
|
|
info->proc_reg = proc_reg;
|
|
info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
|
|
info->cpu_clk = cpu_clk;
|
|
info->inter_clk = inter_clk;
|
|
|
|
/*
|
|
* If SRAM regulator is present, software "voltage tracking" is needed
|
|
* for this CPU power domain.
|
|
*/
|
|
info->need_voltage_tracking = !IS_ERR(sram_reg);
|
|
|
|
return 0;
|
|
|
|
out_free_opp_table:
|
|
dev_pm_opp_of_remove_table(cpu_dev);
|
|
|
|
out_free_resources:
|
|
if (!IS_ERR(proc_reg))
|
|
regulator_put(proc_reg);
|
|
if (!IS_ERR(sram_reg))
|
|
regulator_put(sram_reg);
|
|
if (!IS_ERR(cpu_clk))
|
|
clk_put(cpu_clk);
|
|
if (!IS_ERR(inter_clk))
|
|
clk_put(inter_clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
|
|
{
|
|
if (!IS_ERR(info->proc_reg))
|
|
regulator_put(info->proc_reg);
|
|
if (!IS_ERR(info->sram_reg))
|
|
regulator_put(info->sram_reg);
|
|
if (!IS_ERR(info->cpu_clk))
|
|
clk_put(info->cpu_clk);
|
|
if (!IS_ERR(info->inter_clk))
|
|
clk_put(info->inter_clk);
|
|
|
|
dev_pm_opp_of_remove_table(info->cpu_dev);
|
|
}
|
|
|
|
static int mtk_cpufreq_init(struct cpufreq_policy *policy)
|
|
{
|
|
struct mtk_cpu_dvfs_info *info;
|
|
struct cpufreq_frequency_table *freq_table;
|
|
int ret;
|
|
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
ret = mtk_cpu_dvfs_info_init(info, policy->cpu);
|
|
if (ret) {
|
|
pr_err("%s failed to initialize dvfs info for cpu%d\n",
|
|
__func__, policy->cpu);
|
|
goto out_free_dvfs_info;
|
|
}
|
|
|
|
ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
|
|
if (ret) {
|
|
pr_err("failed to init cpufreq table for cpu%d: %d\n",
|
|
policy->cpu, ret);
|
|
goto out_release_dvfs_info;
|
|
}
|
|
|
|
ret = cpufreq_table_validate_and_show(policy, freq_table);
|
|
if (ret) {
|
|
pr_err("%s: invalid frequency table: %d\n", __func__, ret);
|
|
goto out_free_cpufreq_table;
|
|
}
|
|
|
|
/* CPUs in the same cluster share a clock and power domain. */
|
|
cpumask_copy(policy->cpus, &cpu_topology[policy->cpu].core_sibling);
|
|
policy->driver_data = info;
|
|
policy->clk = info->cpu_clk;
|
|
|
|
return 0;
|
|
|
|
out_free_cpufreq_table:
|
|
dev_pm_opp_free_cpufreq_table(info->cpu_dev, &freq_table);
|
|
|
|
out_release_dvfs_info:
|
|
mtk_cpu_dvfs_info_release(info);
|
|
|
|
out_free_dvfs_info:
|
|
kfree(info);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
|
|
{
|
|
struct mtk_cpu_dvfs_info *info = policy->driver_data;
|
|
|
|
cpufreq_cooling_unregister(info->cdev);
|
|
dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
|
|
mtk_cpu_dvfs_info_release(info);
|
|
kfree(info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct cpufreq_driver mt8173_cpufreq_driver = {
|
|
.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
|
|
.verify = cpufreq_generic_frequency_table_verify,
|
|
.target_index = mtk_cpufreq_set_target,
|
|
.get = cpufreq_generic_get,
|
|
.init = mtk_cpufreq_init,
|
|
.exit = mtk_cpufreq_exit,
|
|
.ready = mtk_cpufreq_ready,
|
|
.name = "mtk-cpufreq",
|
|
.attr = cpufreq_generic_attr,
|
|
};
|
|
|
|
static int mt8173_cpufreq_probe(struct platform_device *pdev)
|
|
{
|
|
int ret;
|
|
|
|
ret = cpufreq_register_driver(&mt8173_cpufreq_driver);
|
|
if (ret)
|
|
pr_err("failed to register mtk cpufreq driver\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct platform_driver mt8173_cpufreq_platdrv = {
|
|
.driver = {
|
|
.name = "mt8173-cpufreq",
|
|
},
|
|
.probe = mt8173_cpufreq_probe,
|
|
};
|
|
|
|
static int mt8173_cpufreq_driver_init(void)
|
|
{
|
|
struct platform_device *pdev;
|
|
int err;
|
|
|
|
if (!of_machine_is_compatible("mediatek,mt8173"))
|
|
return -ENODEV;
|
|
|
|
err = platform_driver_register(&mt8173_cpufreq_platdrv);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Since there's no place to hold device registration code and no
|
|
* device tree based way to match cpufreq driver yet, both the driver
|
|
* and the device registration codes are put here to handle defer
|
|
* probing.
|
|
*/
|
|
pdev = platform_device_register_simple("mt8173-cpufreq", -1, NULL, 0);
|
|
if (IS_ERR(pdev)) {
|
|
pr_err("failed to register mtk-cpufreq platform device\n");
|
|
return PTR_ERR(pdev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
device_initcall(mt8173_cpufreq_driver_init);
|