2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 06:34:11 +08:00
linux-next/drivers/net/ethernet/silan/sc92031.c
Peter Hüwe 61c951503b net/ethernet/silan/sc92031: Use module_pci_driver to register driver
Removing some boilerplate by using module_pci_driver instead of calling
register and unregister in the otherwise empty init/exit functions.

Signed-off-by: Peter Huewe <peterhuewe@gmx.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-05-22 14:35:03 -07:00

1585 lines
39 KiB
C

/* Silan SC92031 PCI Fast Ethernet Adapter driver
*
* Based on vendor drivers:
* Silan Fast Ethernet Netcard Driver:
* MODULE_AUTHOR ("gaoyonghong");
* MODULE_DESCRIPTION ("SILAN Fast Ethernet driver");
* MODULE_LICENSE("GPL");
* 8139D Fast Ethernet driver:
* (C) 2002 by gaoyonghong
* MODULE_AUTHOR ("gaoyonghong");
* MODULE_DESCRIPTION ("Rsltek 8139D PCI Fast Ethernet Adapter driver");
* MODULE_LICENSE("GPL");
* Both are almost identical and seem to be based on pci-skeleton.c
*
* Rewritten for 2.6 by Cesar Eduardo Barros
*
* A datasheet for this chip can be found at
* http://www.silan.com.cn/english/product/pdf/SC92031AY.pdf
*/
/* Note about set_mac_address: I don't know how to change the hardware
* matching, so you need to enable IFF_PROMISC when using it.
*/
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/crc32.h>
#include <asm/irq.h>
#define SC92031_NAME "sc92031"
/* BAR 0 is MMIO, BAR 1 is PIO */
#define SC92031_USE_PIO 0
/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
static int multicast_filter_limit = 64;
module_param(multicast_filter_limit, int, 0);
MODULE_PARM_DESC(multicast_filter_limit,
"Maximum number of filtered multicast addresses");
static int media;
module_param(media, int, 0);
MODULE_PARM_DESC(media, "Media type (0x00 = autodetect,"
" 0x01 = 10M half, 0x02 = 10M full,"
" 0x04 = 100M half, 0x08 = 100M full)");
/* Size of the in-memory receive ring. */
#define RX_BUF_LEN_IDX 3 /* 0==8K, 1==16K, 2==32K, 3==64K ,4==128K*/
#define RX_BUF_LEN (8192 << RX_BUF_LEN_IDX)
/* Number of Tx descriptor registers. */
#define NUM_TX_DESC 4
/* max supported ethernet frame size -- must be at least (dev->mtu+14+4).*/
#define MAX_ETH_FRAME_SIZE 1536
/* Size of the Tx bounce buffers -- must be at least (dev->mtu+14+4). */
#define TX_BUF_SIZE MAX_ETH_FRAME_SIZE
#define TX_BUF_TOT_LEN (TX_BUF_SIZE * NUM_TX_DESC)
/* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
#define RX_FIFO_THRESH 7 /* Rx buffer level before first PCI xfer. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (4*HZ)
#define SILAN_STATS_NUM 2 /* number of ETHTOOL_GSTATS */
/* media options */
#define AUTOSELECT 0x00
#define M10_HALF 0x01
#define M10_FULL 0x02
#define M100_HALF 0x04
#define M100_FULL 0x08
/* Symbolic offsets to registers. */
enum silan_registers {
Config0 = 0x00, // Config0
Config1 = 0x04, // Config1
RxBufWPtr = 0x08, // Rx buffer writer poiter
IntrStatus = 0x0C, // Interrupt status
IntrMask = 0x10, // Interrupt mask
RxbufAddr = 0x14, // Rx buffer start address
RxBufRPtr = 0x18, // Rx buffer read pointer
Txstatusall = 0x1C, // Transmit status of all descriptors
TxStatus0 = 0x20, // Transmit status (Four 32bit registers).
TxAddr0 = 0x30, // Tx descriptors (also four 32bit).
RxConfig = 0x40, // Rx configuration
MAC0 = 0x44, // Ethernet hardware address.
MAR0 = 0x4C, // Multicast filter.
RxStatus0 = 0x54, // Rx status
TxConfig = 0x5C, // Tx configuration
PhyCtrl = 0x60, // physical control
FlowCtrlConfig = 0x64, // flow control
Miicmd0 = 0x68, // Mii command0 register
Miicmd1 = 0x6C, // Mii command1 register
Miistatus = 0x70, // Mii status register
Timercnt = 0x74, // Timer counter register
TimerIntr = 0x78, // Timer interrupt register
PMConfig = 0x7C, // Power Manager configuration
CRC0 = 0x80, // Power Manager CRC ( Two 32bit regisers)
Wakeup0 = 0x88, // power Manager wakeup( Eight 64bit regiser)
LSBCRC0 = 0xC8, // power Manager LSBCRC(Two 32bit regiser)
TestD0 = 0xD0,
TestD4 = 0xD4,
TestD8 = 0xD8,
};
#define MII_JAB 16
#define MII_OutputStatus 24
#define PHY_16_JAB_ENB 0x1000
#define PHY_16_PORT_ENB 0x1
enum IntrStatusBits {
LinkFail = 0x80000000,
LinkOK = 0x40000000,
TimeOut = 0x20000000,
RxOverflow = 0x0040,
RxOK = 0x0020,
TxOK = 0x0001,
IntrBits = LinkFail|LinkOK|TimeOut|RxOverflow|RxOK|TxOK,
};
enum TxStatusBits {
TxCarrierLost = 0x20000000,
TxAborted = 0x10000000,
TxOutOfWindow = 0x08000000,
TxNccShift = 22,
EarlyTxThresShift = 16,
TxStatOK = 0x8000,
TxUnderrun = 0x4000,
TxOwn = 0x2000,
};
enum RxStatusBits {
RxStatesOK = 0x80000,
RxBadAlign = 0x40000,
RxHugeFrame = 0x20000,
RxSmallFrame = 0x10000,
RxCRCOK = 0x8000,
RxCrlFrame = 0x4000,
Rx_Broadcast = 0x2000,
Rx_Multicast = 0x1000,
RxAddrMatch = 0x0800,
MiiErr = 0x0400,
};
enum RxConfigBits {
RxFullDx = 0x80000000,
RxEnb = 0x40000000,
RxSmall = 0x20000000,
RxHuge = 0x10000000,
RxErr = 0x08000000,
RxAllphys = 0x04000000,
RxMulticast = 0x02000000,
RxBroadcast = 0x01000000,
RxLoopBack = (1 << 23) | (1 << 22),
LowThresholdShift = 12,
HighThresholdShift = 2,
};
enum TxConfigBits {
TxFullDx = 0x80000000,
TxEnb = 0x40000000,
TxEnbPad = 0x20000000,
TxEnbHuge = 0x10000000,
TxEnbFCS = 0x08000000,
TxNoBackOff = 0x04000000,
TxEnbPrem = 0x02000000,
TxCareLostCrs = 0x1000000,
TxExdCollNum = 0xf00000,
TxDataRate = 0x80000,
};
enum PhyCtrlconfigbits {
PhyCtrlAne = 0x80000000,
PhyCtrlSpd100 = 0x40000000,
PhyCtrlSpd10 = 0x20000000,
PhyCtrlPhyBaseAddr = 0x1f000000,
PhyCtrlDux = 0x800000,
PhyCtrlReset = 0x400000,
};
enum FlowCtrlConfigBits {
FlowCtrlFullDX = 0x80000000,
FlowCtrlEnb = 0x40000000,
};
enum Config0Bits {
Cfg0_Reset = 0x80000000,
Cfg0_Anaoff = 0x40000000,
Cfg0_LDPS = 0x20000000,
};
enum Config1Bits {
Cfg1_EarlyRx = 1 << 31,
Cfg1_EarlyTx = 1 << 30,
//rx buffer size
Cfg1_Rcv8K = 0x0,
Cfg1_Rcv16K = 0x1,
Cfg1_Rcv32K = 0x3,
Cfg1_Rcv64K = 0x7,
Cfg1_Rcv128K = 0xf,
};
enum MiiCmd0Bits {
Mii_Divider = 0x20000000,
Mii_WRITE = 0x400000,
Mii_READ = 0x200000,
Mii_SCAN = 0x100000,
Mii_Tamod = 0x80000,
Mii_Drvmod = 0x40000,
Mii_mdc = 0x20000,
Mii_mdoen = 0x10000,
Mii_mdo = 0x8000,
Mii_mdi = 0x4000,
};
enum MiiStatusBits {
Mii_StatusBusy = 0x80000000,
};
enum PMConfigBits {
PM_Enable = 1 << 31,
PM_LongWF = 1 << 30,
PM_Magic = 1 << 29,
PM_LANWake = 1 << 28,
PM_LWPTN = (1 << 27 | 1<< 26),
PM_LinkUp = 1 << 25,
PM_WakeUp = 1 << 24,
};
/* Locking rules:
* priv->lock protects most of the fields of priv and most of the
* hardware registers. It does not have to protect against softirqs
* between sc92031_disable_interrupts and sc92031_enable_interrupts;
* it also does not need to be used in ->open and ->stop while the
* device interrupts are off.
* Not having to protect against softirqs is very useful due to heavy
* use of mdelay() at _sc92031_reset.
* Functions prefixed with _sc92031_ must be called with the lock held;
* functions prefixed with sc92031_ must be called without the lock held.
* Use mmiowb() before unlocking if the hardware was written to.
*/
/* Locking rules for the interrupt:
* - the interrupt and the tasklet never run at the same time
* - neither run between sc92031_disable_interrupts and
* sc92031_enable_interrupt
*/
struct sc92031_priv {
spinlock_t lock;
/* iomap.h cookie */
void __iomem *port_base;
/* pci device structure */
struct pci_dev *pdev;
/* tasklet */
struct tasklet_struct tasklet;
/* CPU address of rx ring */
void *rx_ring;
/* PCI address of rx ring */
dma_addr_t rx_ring_dma_addr;
/* PCI address of rx ring read pointer */
dma_addr_t rx_ring_tail;
/* tx ring write index */
unsigned tx_head;
/* tx ring read index */
unsigned tx_tail;
/* CPU address of tx bounce buffer */
void *tx_bufs;
/* PCI address of tx bounce buffer */
dma_addr_t tx_bufs_dma_addr;
/* copies of some hardware registers */
u32 intr_status;
atomic_t intr_mask;
u32 rx_config;
u32 tx_config;
u32 pm_config;
/* copy of some flags from dev->flags */
unsigned int mc_flags;
/* for ETHTOOL_GSTATS */
u64 tx_timeouts;
u64 rx_loss;
/* for dev->get_stats */
long rx_value;
};
/* I don't know which registers can be safely read; however, I can guess
* MAC0 is one of them. */
static inline void _sc92031_dummy_read(void __iomem *port_base)
{
ioread32(port_base + MAC0);
}
static u32 _sc92031_mii_wait(void __iomem *port_base)
{
u32 mii_status;
do {
udelay(10);
mii_status = ioread32(port_base + Miistatus);
} while (mii_status & Mii_StatusBusy);
return mii_status;
}
static u32 _sc92031_mii_cmd(void __iomem *port_base, u32 cmd0, u32 cmd1)
{
iowrite32(Mii_Divider, port_base + Miicmd0);
_sc92031_mii_wait(port_base);
iowrite32(cmd1, port_base + Miicmd1);
iowrite32(Mii_Divider | cmd0, port_base + Miicmd0);
return _sc92031_mii_wait(port_base);
}
static void _sc92031_mii_scan(void __iomem *port_base)
{
_sc92031_mii_cmd(port_base, Mii_SCAN, 0x1 << 6);
}
static u16 _sc92031_mii_read(void __iomem *port_base, unsigned reg)
{
return _sc92031_mii_cmd(port_base, Mii_READ, reg << 6) >> 13;
}
static void _sc92031_mii_write(void __iomem *port_base, unsigned reg, u16 val)
{
_sc92031_mii_cmd(port_base, Mii_WRITE, (reg << 6) | ((u32)val << 11));
}
static void sc92031_disable_interrupts(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
/* tell the tasklet/interrupt not to enable interrupts */
atomic_set(&priv->intr_mask, 0);
wmb();
/* stop interrupts */
iowrite32(0, port_base + IntrMask);
_sc92031_dummy_read(port_base);
mmiowb();
/* wait for any concurrent interrupt/tasklet to finish */
synchronize_irq(priv->pdev->irq);
tasklet_disable(&priv->tasklet);
}
static void sc92031_enable_interrupts(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
tasklet_enable(&priv->tasklet);
atomic_set(&priv->intr_mask, IntrBits);
wmb();
iowrite32(IntrBits, port_base + IntrMask);
mmiowb();
}
static void _sc92031_disable_tx_rx(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
priv->rx_config &= ~RxEnb;
priv->tx_config &= ~TxEnb;
iowrite32(priv->rx_config, port_base + RxConfig);
iowrite32(priv->tx_config, port_base + TxConfig);
}
static void _sc92031_enable_tx_rx(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
priv->rx_config |= RxEnb;
priv->tx_config |= TxEnb;
iowrite32(priv->rx_config, port_base + RxConfig);
iowrite32(priv->tx_config, port_base + TxConfig);
}
static void _sc92031_tx_clear(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
while (priv->tx_head - priv->tx_tail > 0) {
priv->tx_tail++;
dev->stats.tx_dropped++;
}
priv->tx_head = priv->tx_tail = 0;
}
static void _sc92031_set_mar(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
u32 mar0 = 0, mar1 = 0;
if ((dev->flags & IFF_PROMISC) ||
netdev_mc_count(dev) > multicast_filter_limit ||
(dev->flags & IFF_ALLMULTI))
mar0 = mar1 = 0xffffffff;
else if (dev->flags & IFF_MULTICAST) {
struct netdev_hw_addr *ha;
netdev_for_each_mc_addr(ha, dev) {
u32 crc;
unsigned bit = 0;
crc = ~ether_crc(ETH_ALEN, ha->addr);
crc >>= 24;
if (crc & 0x01) bit |= 0x02;
if (crc & 0x02) bit |= 0x01;
if (crc & 0x10) bit |= 0x20;
if (crc & 0x20) bit |= 0x10;
if (crc & 0x40) bit |= 0x08;
if (crc & 0x80) bit |= 0x04;
if (bit > 31)
mar0 |= 0x1 << (bit - 32);
else
mar1 |= 0x1 << bit;
}
}
iowrite32(mar0, port_base + MAR0);
iowrite32(mar1, port_base + MAR0 + 4);
}
static void _sc92031_set_rx_config(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
unsigned int old_mc_flags;
u32 rx_config_bits = 0;
old_mc_flags = priv->mc_flags;
if (dev->flags & IFF_PROMISC)
rx_config_bits |= RxSmall | RxHuge | RxErr | RxBroadcast
| RxMulticast | RxAllphys;
if (dev->flags & (IFF_ALLMULTI | IFF_MULTICAST))
rx_config_bits |= RxMulticast;
if (dev->flags & IFF_BROADCAST)
rx_config_bits |= RxBroadcast;
priv->rx_config &= ~(RxSmall | RxHuge | RxErr | RxBroadcast
| RxMulticast | RxAllphys);
priv->rx_config |= rx_config_bits;
priv->mc_flags = dev->flags & (IFF_PROMISC | IFF_ALLMULTI
| IFF_MULTICAST | IFF_BROADCAST);
if (netif_carrier_ok(dev) && priv->mc_flags != old_mc_flags)
iowrite32(priv->rx_config, port_base + RxConfig);
}
static bool _sc92031_check_media(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
u16 bmsr;
bmsr = _sc92031_mii_read(port_base, MII_BMSR);
rmb();
if (bmsr & BMSR_LSTATUS) {
bool speed_100, duplex_full;
u32 flow_ctrl_config = 0;
u16 output_status = _sc92031_mii_read(port_base,
MII_OutputStatus);
_sc92031_mii_scan(port_base);
speed_100 = output_status & 0x2;
duplex_full = output_status & 0x4;
/* Initial Tx/Rx configuration */
priv->rx_config = (0x40 << LowThresholdShift) | (0x1c0 << HighThresholdShift);
priv->tx_config = 0x48800000;
/* NOTE: vendor driver had dead code here to enable tx padding */
if (!speed_100)
priv->tx_config |= 0x80000;
// configure rx mode
_sc92031_set_rx_config(dev);
if (duplex_full) {
priv->rx_config |= RxFullDx;
priv->tx_config |= TxFullDx;
flow_ctrl_config = FlowCtrlFullDX | FlowCtrlEnb;
} else {
priv->rx_config &= ~RxFullDx;
priv->tx_config &= ~TxFullDx;
}
_sc92031_set_mar(dev);
_sc92031_set_rx_config(dev);
_sc92031_enable_tx_rx(dev);
iowrite32(flow_ctrl_config, port_base + FlowCtrlConfig);
netif_carrier_on(dev);
if (printk_ratelimit())
printk(KERN_INFO "%s: link up, %sMbps, %s-duplex\n",
dev->name,
speed_100 ? "100" : "10",
duplex_full ? "full" : "half");
return true;
} else {
_sc92031_mii_scan(port_base);
netif_carrier_off(dev);
_sc92031_disable_tx_rx(dev);
if (printk_ratelimit())
printk(KERN_INFO "%s: link down\n", dev->name);
return false;
}
}
static void _sc92031_phy_reset(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
u32 phy_ctrl;
phy_ctrl = ioread32(port_base + PhyCtrl);
phy_ctrl &= ~(PhyCtrlDux | PhyCtrlSpd100 | PhyCtrlSpd10);
phy_ctrl |= PhyCtrlAne | PhyCtrlReset;
switch (media) {
default:
case AUTOSELECT:
phy_ctrl |= PhyCtrlDux | PhyCtrlSpd100 | PhyCtrlSpd10;
break;
case M10_HALF:
phy_ctrl |= PhyCtrlSpd10;
break;
case M10_FULL:
phy_ctrl |= PhyCtrlDux | PhyCtrlSpd10;
break;
case M100_HALF:
phy_ctrl |= PhyCtrlSpd100;
break;
case M100_FULL:
phy_ctrl |= PhyCtrlDux | PhyCtrlSpd100;
break;
}
iowrite32(phy_ctrl, port_base + PhyCtrl);
mdelay(10);
phy_ctrl &= ~PhyCtrlReset;
iowrite32(phy_ctrl, port_base + PhyCtrl);
mdelay(1);
_sc92031_mii_write(port_base, MII_JAB,
PHY_16_JAB_ENB | PHY_16_PORT_ENB);
_sc92031_mii_scan(port_base);
netif_carrier_off(dev);
netif_stop_queue(dev);
}
static void _sc92031_reset(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
/* disable PM */
iowrite32(0, port_base + PMConfig);
/* soft reset the chip */
iowrite32(Cfg0_Reset, port_base + Config0);
mdelay(200);
iowrite32(0, port_base + Config0);
mdelay(10);
/* disable interrupts */
iowrite32(0, port_base + IntrMask);
/* clear multicast address */
iowrite32(0, port_base + MAR0);
iowrite32(0, port_base + MAR0 + 4);
/* init rx ring */
iowrite32(priv->rx_ring_dma_addr, port_base + RxbufAddr);
priv->rx_ring_tail = priv->rx_ring_dma_addr;
/* init tx ring */
_sc92031_tx_clear(dev);
/* clear old register values */
priv->intr_status = 0;
atomic_set(&priv->intr_mask, 0);
priv->rx_config = 0;
priv->tx_config = 0;
priv->mc_flags = 0;
/* configure rx buffer size */
/* NOTE: vendor driver had dead code here to enable early tx/rx */
iowrite32(Cfg1_Rcv64K, port_base + Config1);
_sc92031_phy_reset(dev);
_sc92031_check_media(dev);
/* calculate rx fifo overflow */
priv->rx_value = 0;
/* enable PM */
iowrite32(priv->pm_config, port_base + PMConfig);
/* clear intr register */
ioread32(port_base + IntrStatus);
}
static void _sc92031_tx_tasklet(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
unsigned old_tx_tail;
unsigned entry;
u32 tx_status;
old_tx_tail = priv->tx_tail;
while (priv->tx_head - priv->tx_tail > 0) {
entry = priv->tx_tail % NUM_TX_DESC;
tx_status = ioread32(port_base + TxStatus0 + entry * 4);
if (!(tx_status & (TxStatOK | TxUnderrun | TxAborted)))
break;
priv->tx_tail++;
if (tx_status & TxStatOK) {
dev->stats.tx_bytes += tx_status & 0x1fff;
dev->stats.tx_packets++;
/* Note: TxCarrierLost is always asserted at 100mbps. */
dev->stats.collisions += (tx_status >> 22) & 0xf;
}
if (tx_status & (TxOutOfWindow | TxAborted)) {
dev->stats.tx_errors++;
if (tx_status & TxAborted)
dev->stats.tx_aborted_errors++;
if (tx_status & TxCarrierLost)
dev->stats.tx_carrier_errors++;
if (tx_status & TxOutOfWindow)
dev->stats.tx_window_errors++;
}
if (tx_status & TxUnderrun)
dev->stats.tx_fifo_errors++;
}
if (priv->tx_tail != old_tx_tail)
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
}
static void _sc92031_rx_tasklet_error(struct net_device *dev,
u32 rx_status, unsigned rx_size)
{
if(rx_size > (MAX_ETH_FRAME_SIZE + 4) || rx_size < 16) {
dev->stats.rx_errors++;
dev->stats.rx_length_errors++;
}
if (!(rx_status & RxStatesOK)) {
dev->stats.rx_errors++;
if (rx_status & (RxHugeFrame | RxSmallFrame))
dev->stats.rx_length_errors++;
if (rx_status & RxBadAlign)
dev->stats.rx_frame_errors++;
if (!(rx_status & RxCRCOK))
dev->stats.rx_crc_errors++;
} else {
struct sc92031_priv *priv = netdev_priv(dev);
priv->rx_loss++;
}
}
static void _sc92031_rx_tasklet(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
dma_addr_t rx_ring_head;
unsigned rx_len;
unsigned rx_ring_offset;
void *rx_ring = priv->rx_ring;
rx_ring_head = ioread32(port_base + RxBufWPtr);
rmb();
/* rx_ring_head is only 17 bits in the RxBufWPtr register.
* we need to change it to 32 bits physical address
*/
rx_ring_head &= (dma_addr_t)(RX_BUF_LEN - 1);
rx_ring_head |= priv->rx_ring_dma_addr & ~(dma_addr_t)(RX_BUF_LEN - 1);
if (rx_ring_head < priv->rx_ring_dma_addr)
rx_ring_head += RX_BUF_LEN;
if (rx_ring_head >= priv->rx_ring_tail)
rx_len = rx_ring_head - priv->rx_ring_tail;
else
rx_len = RX_BUF_LEN - (priv->rx_ring_tail - rx_ring_head);
if (!rx_len)
return;
if (unlikely(rx_len > RX_BUF_LEN)) {
if (printk_ratelimit())
printk(KERN_ERR "%s: rx packets length > rx buffer\n",
dev->name);
return;
}
rx_ring_offset = (priv->rx_ring_tail - priv->rx_ring_dma_addr) % RX_BUF_LEN;
while (rx_len) {
u32 rx_status;
unsigned rx_size, rx_size_align, pkt_size;
struct sk_buff *skb;
rx_status = le32_to_cpup((__le32 *)(rx_ring + rx_ring_offset));
rmb();
rx_size = rx_status >> 20;
rx_size_align = (rx_size + 3) & ~3; // for 4 bytes aligned
pkt_size = rx_size - 4; // Omit the four octet CRC from the length.
rx_ring_offset = (rx_ring_offset + 4) % RX_BUF_LEN;
if (unlikely(rx_status == 0 ||
rx_size > (MAX_ETH_FRAME_SIZE + 4) ||
rx_size < 16 ||
!(rx_status & RxStatesOK))) {
_sc92031_rx_tasklet_error(dev, rx_status, rx_size);
break;
}
if (unlikely(rx_size_align + 4 > rx_len)) {
if (printk_ratelimit())
printk(KERN_ERR "%s: rx_len is too small\n", dev->name);
break;
}
rx_len -= rx_size_align + 4;
skb = netdev_alloc_skb_ip_align(dev, pkt_size);
if (unlikely(!skb)) {
if (printk_ratelimit())
printk(KERN_ERR "%s: Couldn't allocate a skb_buff for a packet of size %u\n",
dev->name, pkt_size);
goto next;
}
if ((rx_ring_offset + pkt_size) > RX_BUF_LEN) {
memcpy(skb_put(skb, RX_BUF_LEN - rx_ring_offset),
rx_ring + rx_ring_offset, RX_BUF_LEN - rx_ring_offset);
memcpy(skb_put(skb, pkt_size - (RX_BUF_LEN - rx_ring_offset)),
rx_ring, pkt_size - (RX_BUF_LEN - rx_ring_offset));
} else {
memcpy(skb_put(skb, pkt_size), rx_ring + rx_ring_offset, pkt_size);
}
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->stats.rx_bytes += pkt_size;
dev->stats.rx_packets++;
if (rx_status & Rx_Multicast)
dev->stats.multicast++;
next:
rx_ring_offset = (rx_ring_offset + rx_size_align) % RX_BUF_LEN;
}
mb();
priv->rx_ring_tail = rx_ring_head;
iowrite32(priv->rx_ring_tail, port_base + RxBufRPtr);
}
static void _sc92031_link_tasklet(struct net_device *dev)
{
if (_sc92031_check_media(dev))
netif_wake_queue(dev);
else {
netif_stop_queue(dev);
dev->stats.tx_carrier_errors++;
}
}
static void sc92031_tasklet(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
u32 intr_status, intr_mask;
intr_status = priv->intr_status;
spin_lock(&priv->lock);
if (unlikely(!netif_running(dev)))
goto out;
if (intr_status & TxOK)
_sc92031_tx_tasklet(dev);
if (intr_status & RxOK)
_sc92031_rx_tasklet(dev);
if (intr_status & RxOverflow)
dev->stats.rx_errors++;
if (intr_status & TimeOut) {
dev->stats.rx_errors++;
dev->stats.rx_length_errors++;
}
if (intr_status & (LinkFail | LinkOK))
_sc92031_link_tasklet(dev);
out:
intr_mask = atomic_read(&priv->intr_mask);
rmb();
iowrite32(intr_mask, port_base + IntrMask);
mmiowb();
spin_unlock(&priv->lock);
}
static irqreturn_t sc92031_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
u32 intr_status, intr_mask;
/* mask interrupts before clearing IntrStatus */
iowrite32(0, port_base + IntrMask);
_sc92031_dummy_read(port_base);
intr_status = ioread32(port_base + IntrStatus);
if (unlikely(intr_status == 0xffffffff))
return IRQ_NONE; // hardware has gone missing
intr_status &= IntrBits;
if (!intr_status)
goto out_none;
priv->intr_status = intr_status;
tasklet_schedule(&priv->tasklet);
return IRQ_HANDLED;
out_none:
intr_mask = atomic_read(&priv->intr_mask);
rmb();
iowrite32(intr_mask, port_base + IntrMask);
mmiowb();
return IRQ_NONE;
}
static struct net_device_stats *sc92031_get_stats(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
// FIXME I do not understand what is this trying to do.
if (netif_running(dev)) {
int temp;
spin_lock_bh(&priv->lock);
/* Update the error count. */
temp = (ioread32(port_base + RxStatus0) >> 16) & 0xffff;
if (temp == 0xffff) {
priv->rx_value += temp;
dev->stats.rx_fifo_errors = priv->rx_value;
} else
dev->stats.rx_fifo_errors = temp + priv->rx_value;
spin_unlock_bh(&priv->lock);
}
return &dev->stats;
}
static netdev_tx_t sc92031_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
unsigned len;
unsigned entry;
u32 tx_status;
if (unlikely(skb->len > TX_BUF_SIZE)) {
dev->stats.tx_dropped++;
goto out;
}
spin_lock(&priv->lock);
if (unlikely(!netif_carrier_ok(dev))) {
dev->stats.tx_dropped++;
goto out_unlock;
}
BUG_ON(priv->tx_head - priv->tx_tail >= NUM_TX_DESC);
entry = priv->tx_head++ % NUM_TX_DESC;
skb_copy_and_csum_dev(skb, priv->tx_bufs + entry * TX_BUF_SIZE);
len = skb->len;
if (len < ETH_ZLEN) {
memset(priv->tx_bufs + entry * TX_BUF_SIZE + len,
0, ETH_ZLEN - len);
len = ETH_ZLEN;
}
wmb();
if (len < 100)
tx_status = len;
else if (len < 300)
tx_status = 0x30000 | len;
else
tx_status = 0x50000 | len;
iowrite32(priv->tx_bufs_dma_addr + entry * TX_BUF_SIZE,
port_base + TxAddr0 + entry * 4);
iowrite32(tx_status, port_base + TxStatus0 + entry * 4);
mmiowb();
if (priv->tx_head - priv->tx_tail >= NUM_TX_DESC)
netif_stop_queue(dev);
out_unlock:
spin_unlock(&priv->lock);
out:
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static int sc92031_open(struct net_device *dev)
{
int err;
struct sc92031_priv *priv = netdev_priv(dev);
struct pci_dev *pdev = priv->pdev;
priv->rx_ring = pci_alloc_consistent(pdev, RX_BUF_LEN,
&priv->rx_ring_dma_addr);
if (unlikely(!priv->rx_ring)) {
err = -ENOMEM;
goto out_alloc_rx_ring;
}
priv->tx_bufs = pci_alloc_consistent(pdev, TX_BUF_TOT_LEN,
&priv->tx_bufs_dma_addr);
if (unlikely(!priv->tx_bufs)) {
err = -ENOMEM;
goto out_alloc_tx_bufs;
}
priv->tx_head = priv->tx_tail = 0;
err = request_irq(pdev->irq, sc92031_interrupt,
IRQF_SHARED, dev->name, dev);
if (unlikely(err < 0))
goto out_request_irq;
priv->pm_config = 0;
/* Interrupts already disabled by sc92031_stop or sc92031_probe */
spin_lock_bh(&priv->lock);
_sc92031_reset(dev);
mmiowb();
spin_unlock_bh(&priv->lock);
sc92031_enable_interrupts(dev);
if (netif_carrier_ok(dev))
netif_start_queue(dev);
else
netif_tx_disable(dev);
return 0;
out_request_irq:
pci_free_consistent(pdev, TX_BUF_TOT_LEN, priv->tx_bufs,
priv->tx_bufs_dma_addr);
out_alloc_tx_bufs:
pci_free_consistent(pdev, RX_BUF_LEN, priv->rx_ring,
priv->rx_ring_dma_addr);
out_alloc_rx_ring:
return err;
}
static int sc92031_stop(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
struct pci_dev *pdev = priv->pdev;
netif_tx_disable(dev);
/* Disable interrupts, stop Tx and Rx. */
sc92031_disable_interrupts(dev);
spin_lock_bh(&priv->lock);
_sc92031_disable_tx_rx(dev);
_sc92031_tx_clear(dev);
mmiowb();
spin_unlock_bh(&priv->lock);
free_irq(pdev->irq, dev);
pci_free_consistent(pdev, TX_BUF_TOT_LEN, priv->tx_bufs,
priv->tx_bufs_dma_addr);
pci_free_consistent(pdev, RX_BUF_LEN, priv->rx_ring,
priv->rx_ring_dma_addr);
return 0;
}
static void sc92031_set_multicast_list(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
spin_lock_bh(&priv->lock);
_sc92031_set_mar(dev);
_sc92031_set_rx_config(dev);
mmiowb();
spin_unlock_bh(&priv->lock);
}
static void sc92031_tx_timeout(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
/* Disable interrupts by clearing the interrupt mask.*/
sc92031_disable_interrupts(dev);
spin_lock(&priv->lock);
priv->tx_timeouts++;
_sc92031_reset(dev);
mmiowb();
spin_unlock(&priv->lock);
/* enable interrupts */
sc92031_enable_interrupts(dev);
if (netif_carrier_ok(dev))
netif_wake_queue(dev);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void sc92031_poll_controller(struct net_device *dev)
{
struct sc92031_priv *priv = netdev_priv(dev);
const int irq = priv->pdev->irq;
disable_irq(irq);
if (sc92031_interrupt(irq, dev) != IRQ_NONE)
sc92031_tasklet((unsigned long)dev);
enable_irq(irq);
}
#endif
static int sc92031_ethtool_get_settings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
u8 phy_address;
u32 phy_ctrl;
u16 output_status;
spin_lock_bh(&priv->lock);
phy_address = ioread32(port_base + Miicmd1) >> 27;
phy_ctrl = ioread32(port_base + PhyCtrl);
output_status = _sc92031_mii_read(port_base, MII_OutputStatus);
_sc92031_mii_scan(port_base);
mmiowb();
spin_unlock_bh(&priv->lock);
cmd->supported = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full
| SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII;
cmd->advertising = ADVERTISED_TP | ADVERTISED_MII;
if ((phy_ctrl & (PhyCtrlDux | PhyCtrlSpd100 | PhyCtrlSpd10))
== (PhyCtrlDux | PhyCtrlSpd100 | PhyCtrlSpd10))
cmd->advertising |= ADVERTISED_Autoneg;
if ((phy_ctrl & PhyCtrlSpd10) == PhyCtrlSpd10)
cmd->advertising |= ADVERTISED_10baseT_Half;
if ((phy_ctrl & (PhyCtrlSpd10 | PhyCtrlDux))
== (PhyCtrlSpd10 | PhyCtrlDux))
cmd->advertising |= ADVERTISED_10baseT_Full;
if ((phy_ctrl & PhyCtrlSpd100) == PhyCtrlSpd100)
cmd->advertising |= ADVERTISED_100baseT_Half;
if ((phy_ctrl & (PhyCtrlSpd100 | PhyCtrlDux))
== (PhyCtrlSpd100 | PhyCtrlDux))
cmd->advertising |= ADVERTISED_100baseT_Full;
if (phy_ctrl & PhyCtrlAne)
cmd->advertising |= ADVERTISED_Autoneg;
ethtool_cmd_speed_set(cmd,
(output_status & 0x2) ? SPEED_100 : SPEED_10);
cmd->duplex = (output_status & 0x4) ? DUPLEX_FULL : DUPLEX_HALF;
cmd->port = PORT_MII;
cmd->phy_address = phy_address;
cmd->transceiver = XCVR_INTERNAL;
cmd->autoneg = (phy_ctrl & PhyCtrlAne) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
return 0;
}
static int sc92031_ethtool_set_settings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
u32 speed = ethtool_cmd_speed(cmd);
u32 phy_ctrl;
u32 old_phy_ctrl;
if (!(speed == SPEED_10 || speed == SPEED_100))
return -EINVAL;
if (!(cmd->duplex == DUPLEX_HALF || cmd->duplex == DUPLEX_FULL))
return -EINVAL;
if (!(cmd->port == PORT_MII))
return -EINVAL;
if (!(cmd->phy_address == 0x1f))
return -EINVAL;
if (!(cmd->transceiver == XCVR_INTERNAL))
return -EINVAL;
if (!(cmd->autoneg == AUTONEG_DISABLE || cmd->autoneg == AUTONEG_ENABLE))
return -EINVAL;
if (cmd->autoneg == AUTONEG_ENABLE) {
if (!(cmd->advertising & (ADVERTISED_Autoneg
| ADVERTISED_100baseT_Full
| ADVERTISED_100baseT_Half
| ADVERTISED_10baseT_Full
| ADVERTISED_10baseT_Half)))
return -EINVAL;
phy_ctrl = PhyCtrlAne;
// FIXME: I'm not sure what the original code was trying to do
if (cmd->advertising & ADVERTISED_Autoneg)
phy_ctrl |= PhyCtrlDux | PhyCtrlSpd100 | PhyCtrlSpd10;
if (cmd->advertising & ADVERTISED_100baseT_Full)
phy_ctrl |= PhyCtrlDux | PhyCtrlSpd100;
if (cmd->advertising & ADVERTISED_100baseT_Half)
phy_ctrl |= PhyCtrlSpd100;
if (cmd->advertising & ADVERTISED_10baseT_Full)
phy_ctrl |= PhyCtrlSpd10 | PhyCtrlDux;
if (cmd->advertising & ADVERTISED_10baseT_Half)
phy_ctrl |= PhyCtrlSpd10;
} else {
// FIXME: Whole branch guessed
phy_ctrl = 0;
if (speed == SPEED_10)
phy_ctrl |= PhyCtrlSpd10;
else /* cmd->speed == SPEED_100 */
phy_ctrl |= PhyCtrlSpd100;
if (cmd->duplex == DUPLEX_FULL)
phy_ctrl |= PhyCtrlDux;
}
spin_lock_bh(&priv->lock);
old_phy_ctrl = ioread32(port_base + PhyCtrl);
phy_ctrl |= old_phy_ctrl & ~(PhyCtrlAne | PhyCtrlDux
| PhyCtrlSpd100 | PhyCtrlSpd10);
if (phy_ctrl != old_phy_ctrl)
iowrite32(phy_ctrl, port_base + PhyCtrl);
spin_unlock_bh(&priv->lock);
return 0;
}
static void sc92031_ethtool_get_wol(struct net_device *dev,
struct ethtool_wolinfo *wolinfo)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
u32 pm_config;
spin_lock_bh(&priv->lock);
pm_config = ioread32(port_base + PMConfig);
spin_unlock_bh(&priv->lock);
// FIXME: Guessed
wolinfo->supported = WAKE_PHY | WAKE_MAGIC
| WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;
wolinfo->wolopts = 0;
if (pm_config & PM_LinkUp)
wolinfo->wolopts |= WAKE_PHY;
if (pm_config & PM_Magic)
wolinfo->wolopts |= WAKE_MAGIC;
if (pm_config & PM_WakeUp)
// FIXME: Guessed
wolinfo->wolopts |= WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;
}
static int sc92031_ethtool_set_wol(struct net_device *dev,
struct ethtool_wolinfo *wolinfo)
{
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
u32 pm_config;
spin_lock_bh(&priv->lock);
pm_config = ioread32(port_base + PMConfig)
& ~(PM_LinkUp | PM_Magic | PM_WakeUp);
if (wolinfo->wolopts & WAKE_PHY)
pm_config |= PM_LinkUp;
if (wolinfo->wolopts & WAKE_MAGIC)
pm_config |= PM_Magic;
// FIXME: Guessed
if (wolinfo->wolopts & (WAKE_UCAST | WAKE_MCAST | WAKE_BCAST))
pm_config |= PM_WakeUp;
priv->pm_config = pm_config;
iowrite32(pm_config, port_base + PMConfig);
mmiowb();
spin_unlock_bh(&priv->lock);
return 0;
}
static int sc92031_ethtool_nway_reset(struct net_device *dev)
{
int err = 0;
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem *port_base = priv->port_base;
u16 bmcr;
spin_lock_bh(&priv->lock);
bmcr = _sc92031_mii_read(port_base, MII_BMCR);
if (!(bmcr & BMCR_ANENABLE)) {
err = -EINVAL;
goto out;
}
_sc92031_mii_write(port_base, MII_BMCR, bmcr | BMCR_ANRESTART);
out:
_sc92031_mii_scan(port_base);
mmiowb();
spin_unlock_bh(&priv->lock);
return err;
}
static const char sc92031_ethtool_stats_strings[SILAN_STATS_NUM][ETH_GSTRING_LEN] = {
"tx_timeout",
"rx_loss",
};
static void sc92031_ethtool_get_strings(struct net_device *dev,
u32 stringset, u8 *data)
{
if (stringset == ETH_SS_STATS)
memcpy(data, sc92031_ethtool_stats_strings,
SILAN_STATS_NUM * ETH_GSTRING_LEN);
}
static int sc92031_ethtool_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return SILAN_STATS_NUM;
default:
return -EOPNOTSUPP;
}
}
static void sc92031_ethtool_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct sc92031_priv *priv = netdev_priv(dev);
spin_lock_bh(&priv->lock);
data[0] = priv->tx_timeouts;
data[1] = priv->rx_loss;
spin_unlock_bh(&priv->lock);
}
static const struct ethtool_ops sc92031_ethtool_ops = {
.get_settings = sc92031_ethtool_get_settings,
.set_settings = sc92031_ethtool_set_settings,
.get_wol = sc92031_ethtool_get_wol,
.set_wol = sc92031_ethtool_set_wol,
.nway_reset = sc92031_ethtool_nway_reset,
.get_link = ethtool_op_get_link,
.get_strings = sc92031_ethtool_get_strings,
.get_sset_count = sc92031_ethtool_get_sset_count,
.get_ethtool_stats = sc92031_ethtool_get_ethtool_stats,
};
static const struct net_device_ops sc92031_netdev_ops = {
.ndo_get_stats = sc92031_get_stats,
.ndo_start_xmit = sc92031_start_xmit,
.ndo_open = sc92031_open,
.ndo_stop = sc92031_stop,
.ndo_set_rx_mode = sc92031_set_multicast_list,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
.ndo_tx_timeout = sc92031_tx_timeout,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = sc92031_poll_controller,
#endif
};
static int sc92031_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int err;
void __iomem* port_base;
struct net_device *dev;
struct sc92031_priv *priv;
u32 mac0, mac1;
err = pci_enable_device(pdev);
if (unlikely(err < 0))
goto out_enable_device;
pci_set_master(pdev);
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (unlikely(err < 0))
goto out_set_dma_mask;
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (unlikely(err < 0))
goto out_set_dma_mask;
err = pci_request_regions(pdev, SC92031_NAME);
if (unlikely(err < 0))
goto out_request_regions;
port_base = pci_iomap(pdev, SC92031_USE_PIO, 0);
if (unlikely(!port_base)) {
err = -EIO;
goto out_iomap;
}
dev = alloc_etherdev(sizeof(struct sc92031_priv));
if (unlikely(!dev)) {
err = -ENOMEM;
goto out_alloc_etherdev;
}
pci_set_drvdata(pdev, dev);
SET_NETDEV_DEV(dev, &pdev->dev);
/* faked with skb_copy_and_csum_dev */
dev->features = NETIF_F_SG | NETIF_F_HIGHDMA |
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
dev->netdev_ops = &sc92031_netdev_ops;
dev->watchdog_timeo = TX_TIMEOUT;
dev->ethtool_ops = &sc92031_ethtool_ops;
priv = netdev_priv(dev);
spin_lock_init(&priv->lock);
priv->port_base = port_base;
priv->pdev = pdev;
tasklet_init(&priv->tasklet, sc92031_tasklet, (unsigned long)dev);
/* Fudge tasklet count so the call to sc92031_enable_interrupts at
* sc92031_open will work correctly */
tasklet_disable_nosync(&priv->tasklet);
/* PCI PM Wakeup */
iowrite32((~PM_LongWF & ~PM_LWPTN) | PM_Enable, port_base + PMConfig);
mac0 = ioread32(port_base + MAC0);
mac1 = ioread32(port_base + MAC0 + 4);
dev->dev_addr[0] = mac0 >> 24;
dev->dev_addr[1] = mac0 >> 16;
dev->dev_addr[2] = mac0 >> 8;
dev->dev_addr[3] = mac0;
dev->dev_addr[4] = mac1 >> 8;
dev->dev_addr[5] = mac1;
err = register_netdev(dev);
if (err < 0)
goto out_register_netdev;
printk(KERN_INFO "%s: SC92031 at 0x%lx, %pM, IRQ %d\n", dev->name,
(long)pci_resource_start(pdev, SC92031_USE_PIO), dev->dev_addr,
pdev->irq);
return 0;
out_register_netdev:
free_netdev(dev);
out_alloc_etherdev:
pci_iounmap(pdev, port_base);
out_iomap:
pci_release_regions(pdev);
out_request_regions:
out_set_dma_mask:
pci_disable_device(pdev);
out_enable_device:
return err;
}
static void sc92031_remove(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct sc92031_priv *priv = netdev_priv(dev);
void __iomem* port_base = priv->port_base;
unregister_netdev(dev);
free_netdev(dev);
pci_iounmap(pdev, port_base);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static int sc92031_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct sc92031_priv *priv = netdev_priv(dev);
pci_save_state(pdev);
if (!netif_running(dev))
goto out;
netif_device_detach(dev);
/* Disable interrupts, stop Tx and Rx. */
sc92031_disable_interrupts(dev);
spin_lock_bh(&priv->lock);
_sc92031_disable_tx_rx(dev);
_sc92031_tx_clear(dev);
mmiowb();
spin_unlock_bh(&priv->lock);
out:
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int sc92031_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct sc92031_priv *priv = netdev_priv(dev);
pci_restore_state(pdev);
pci_set_power_state(pdev, PCI_D0);
if (!netif_running(dev))
goto out;
/* Interrupts already disabled by sc92031_suspend */
spin_lock_bh(&priv->lock);
_sc92031_reset(dev);
mmiowb();
spin_unlock_bh(&priv->lock);
sc92031_enable_interrupts(dev);
netif_device_attach(dev);
if (netif_carrier_ok(dev))
netif_wake_queue(dev);
else
netif_tx_disable(dev);
out:
return 0;
}
static DEFINE_PCI_DEVICE_TABLE(sc92031_pci_device_id_table) = {
{ PCI_DEVICE(PCI_VENDOR_ID_SILAN, 0x2031) },
{ PCI_DEVICE(PCI_VENDOR_ID_SILAN, 0x8139) },
{ PCI_DEVICE(0x1088, 0x2031) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, sc92031_pci_device_id_table);
static struct pci_driver sc92031_pci_driver = {
.name = SC92031_NAME,
.id_table = sc92031_pci_device_id_table,
.probe = sc92031_probe,
.remove = sc92031_remove,
.suspend = sc92031_suspend,
.resume = sc92031_resume,
};
module_pci_driver(sc92031_pci_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cesar Eduardo Barros <cesarb@cesarb.net>");
MODULE_DESCRIPTION("Silan SC92031 PCI Fast Ethernet Adapter driver");