2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 05:04:04 +08:00
linux-next/drivers/hwmon/nct7904.c
Jason Baron 8aebbbb2d5 hwmon: (nct7904) Correct divide by 0
We hit a kernel panic due to a divide by 0 in nct7904_read_fan() for
the hwmon_fan_min case. Extend the check to hwmon_fan_input case as well
for safety.

[ 1656.545650] divide error: 0000 [#1] SMP PTI
[ 1656.545779] CPU: 12 PID: 18010 Comm: sensors Not tainted 5.4.47 #1
[ 1656.546065] RIP: 0010:nct7904_read+0x1e9/0x510 [nct7904]
...
[ 1656.546549] RAX: 0000000000149970 RBX: ffffbd6b86bcbe08 RCX: 0000000000000000
...
[ 1656.547548] Call Trace:
[ 1656.547665]  hwmon_attr_show+0x32/0xd0 [hwmon]
[ 1656.547783]  dev_attr_show+0x18/0x50
[ 1656.547898]  sysfs_kf_seq_show+0x99/0x120
[ 1656.548013]  seq_read+0xd8/0x3e0
[ 1656.548127]  vfs_read+0x89/0x130
[ 1656.548234]  ksys_read+0x7d/0xb0
[ 1656.548342]  do_syscall_64+0x48/0x110
[ 1656.548451]  entry_SYSCALL_64_after_hwframe+0x44/0xa9

Fixes: d65a5102a9 ("hwmon: (nct7904) Convert to use new hwmon registration API")
Signed-off-by: Jason Baron <jbaron@akamai.com>
Link: https://lore.kernel.org/r/1598026814-2604-1-git-send-email-jbaron@akamai.com
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2020-08-21 11:26:35 -07:00

1186 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* nct7904.c - driver for Nuvoton NCT7904D.
*
* Copyright (c) 2015 Kontron
* Author: Vadim V. Vlasov <vvlasov@dev.rtsoft.ru>
*
* Copyright (c) 2019 Advantech
* Author: Amy.Shih <amy.shih@advantech.com.tw>
*
* Copyright (c) 2020 Advantech
* Author: Yuechao Zhao <yuechao.zhao@advantech.com.cn>
*
* Supports the following chips:
*
* Chip #vin #fan #pwm #temp #dts chip ID
* nct7904d 20 12 4 5 8 0xc5
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/mutex.h>
#include <linux/hwmon.h>
#include <linux/watchdog.h>
#define VENDOR_ID_REG 0x7A /* Any bank */
#define NUVOTON_ID 0x50
#define CHIP_ID_REG 0x7B /* Any bank */
#define NCT7904_ID 0xC5
#define DEVICE_ID_REG 0x7C /* Any bank */
#define BANK_SEL_REG 0xFF
#define BANK_0 0x00
#define BANK_1 0x01
#define BANK_2 0x02
#define BANK_3 0x03
#define BANK_4 0x04
#define BANK_MAX 0x04
#define FANIN_MAX 12 /* Counted from 1 */
#define VSEN_MAX 21 /* VSEN1..14, 3VDD, VBAT, V3VSB,
LTD (not a voltage), VSEN17..19 */
#define FANCTL_MAX 4 /* Counted from 1 */
#define TCPU_MAX 8 /* Counted from 1 */
#define TEMP_MAX 4 /* Counted from 1 */
#define SMI_STS_MAX 10 /* Counted from 1 */
#define VT_ADC_CTRL0_REG 0x20 /* Bank 0 */
#define VT_ADC_CTRL1_REG 0x21 /* Bank 0 */
#define VT_ADC_CTRL2_REG 0x22 /* Bank 0 */
#define FANIN_CTRL0_REG 0x24
#define FANIN_CTRL1_REG 0x25
#define DTS_T_CTRL0_REG 0x26
#define DTS_T_CTRL1_REG 0x27
#define VT_ADC_MD_REG 0x2E
#define VSEN1_HV_LL_REG 0x02 /* Bank 1; 2 regs (HV/LV) per sensor */
#define VSEN1_LV_LL_REG 0x03 /* Bank 1; 2 regs (HV/LV) per sensor */
#define VSEN1_HV_HL_REG 0x00 /* Bank 1; 2 regs (HV/LV) per sensor */
#define VSEN1_LV_HL_REG 0x01 /* Bank 1; 2 regs (HV/LV) per sensor */
#define SMI_STS1_REG 0xC1 /* Bank 0; SMI Status Register */
#define SMI_STS3_REG 0xC3 /* Bank 0; SMI Status Register */
#define SMI_STS5_REG 0xC5 /* Bank 0; SMI Status Register */
#define SMI_STS7_REG 0xC7 /* Bank 0; SMI Status Register */
#define SMI_STS8_REG 0xC8 /* Bank 0; SMI Status Register */
#define VSEN1_HV_REG 0x40 /* Bank 0; 2 regs (HV/LV) per sensor */
#define TEMP_CH1_HV_REG 0x42 /* Bank 0; same as VSEN2_HV */
#define LTD_HV_REG 0x62 /* Bank 0; 2 regs in VSEN range */
#define LTD_HV_HL_REG 0x44 /* Bank 1; 1 reg for LTD */
#define LTD_LV_HL_REG 0x45 /* Bank 1; 1 reg for LTD */
#define LTD_HV_LL_REG 0x46 /* Bank 1; 1 reg for LTD */
#define LTD_LV_LL_REG 0x47 /* Bank 1; 1 reg for LTD */
#define TEMP_CH1_CH_REG 0x05 /* Bank 1; 1 reg for LTD */
#define TEMP_CH1_W_REG 0x06 /* Bank 1; 1 reg for LTD */
#define TEMP_CH1_WH_REG 0x07 /* Bank 1; 1 reg for LTD */
#define TEMP_CH1_C_REG 0x04 /* Bank 1; 1 reg per sensor */
#define DTS_T_CPU1_C_REG 0x90 /* Bank 1; 1 reg per sensor */
#define DTS_T_CPU1_CH_REG 0x91 /* Bank 1; 1 reg per sensor */
#define DTS_T_CPU1_W_REG 0x92 /* Bank 1; 1 reg per sensor */
#define DTS_T_CPU1_WH_REG 0x93 /* Bank 1; 1 reg per sensor */
#define FANIN1_HV_REG 0x80 /* Bank 0; 2 regs (HV/LV) per sensor */
#define FANIN1_HV_HL_REG 0x60 /* Bank 1; 2 regs (HV/LV) per sensor */
#define FANIN1_LV_HL_REG 0x61 /* Bank 1; 2 regs (HV/LV) per sensor */
#define T_CPU1_HV_REG 0xA0 /* Bank 0; 2 regs (HV/LV) per sensor */
#define PRTS_REG 0x03 /* Bank 2 */
#define PFE_REG 0x00 /* Bank 2; PECI Function Enable */
#define TSI_CTRL_REG 0x50 /* Bank 2; TSI Control Register */
#define FANCTL1_FMR_REG 0x00 /* Bank 3; 1 reg per channel */
#define FANCTL1_OUT_REG 0x10 /* Bank 3; 1 reg per channel */
#define WDT_LOCK_REG 0xE0 /* W/O Lock Watchdog Register */
#define WDT_EN_REG 0xE1 /* R/O Watchdog Enable Register */
#define WDT_STS_REG 0xE2 /* R/O Watchdog Status Register */
#define WDT_TIMER_REG 0xE3 /* R/W Watchdog Timer Register */
#define WDT_SOFT_EN 0x55 /* Enable soft watchdog timer */
#define WDT_SOFT_DIS 0xAA /* Disable soft watchdog timer */
#define VOLT_MONITOR_MODE 0x0
#define THERMAL_DIODE_MODE 0x1
#define THERMISTOR_MODE 0x3
#define ENABLE_TSI BIT(1)
#define WATCHDOG_TIMEOUT 1 /* 1 minute default timeout */
/*The timeout range is 1-255 minutes*/
#define MIN_TIMEOUT (1 * 60)
#define MAX_TIMEOUT (255 * 60)
static int timeout;
module_param(timeout, int, 0);
MODULE_PARM_DESC(timeout, "Watchdog timeout in minutes. 1 <= timeout <= 255, default="
__MODULE_STRING(WATCHDOG_TIMEOUT) ".");
static bool nowayout = WATCHDOG_NOWAYOUT;
module_param(nowayout, bool, 0);
MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
static const unsigned short normal_i2c[] = {
0x2d, 0x2e, I2C_CLIENT_END
};
struct nct7904_data {
struct i2c_client *client;
struct watchdog_device wdt;
struct mutex bank_lock;
int bank_sel;
u32 fanin_mask;
u32 vsen_mask;
u32 tcpu_mask;
u8 fan_mode[FANCTL_MAX];
u8 enable_dts;
u8 has_dts;
u8 temp_mode; /* 0: TR mode, 1: TD mode */
u8 fan_alarm[2];
u8 vsen_alarm[3];
};
/* Access functions */
static int nct7904_bank_lock(struct nct7904_data *data, unsigned int bank)
{
int ret;
mutex_lock(&data->bank_lock);
if (data->bank_sel == bank)
return 0;
ret = i2c_smbus_write_byte_data(data->client, BANK_SEL_REG, bank);
if (ret == 0)
data->bank_sel = bank;
else
data->bank_sel = -1;
return ret;
}
static inline void nct7904_bank_release(struct nct7904_data *data)
{
mutex_unlock(&data->bank_lock);
}
/* Read 1-byte register. Returns unsigned reg or -ERRNO on error. */
static int nct7904_read_reg(struct nct7904_data *data,
unsigned int bank, unsigned int reg)
{
struct i2c_client *client = data->client;
int ret;
ret = nct7904_bank_lock(data, bank);
if (ret == 0)
ret = i2c_smbus_read_byte_data(client, reg);
nct7904_bank_release(data);
return ret;
}
/*
* Read 2-byte register. Returns register in big-endian format or
* -ERRNO on error.
*/
static int nct7904_read_reg16(struct nct7904_data *data,
unsigned int bank, unsigned int reg)
{
struct i2c_client *client = data->client;
int ret, hi;
ret = nct7904_bank_lock(data, bank);
if (ret == 0) {
ret = i2c_smbus_read_byte_data(client, reg);
if (ret >= 0) {
hi = ret;
ret = i2c_smbus_read_byte_data(client, reg + 1);
if (ret >= 0)
ret |= hi << 8;
}
}
nct7904_bank_release(data);
return ret;
}
/* Write 1-byte register. Returns 0 or -ERRNO on error. */
static int nct7904_write_reg(struct nct7904_data *data,
unsigned int bank, unsigned int reg, u8 val)
{
struct i2c_client *client = data->client;
int ret;
ret = nct7904_bank_lock(data, bank);
if (ret == 0)
ret = i2c_smbus_write_byte_data(client, reg, val);
nct7904_bank_release(data);
return ret;
}
static int nct7904_read_fan(struct device *dev, u32 attr, int channel,
long *val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
unsigned int cnt, rpm;
int ret;
switch (attr) {
case hwmon_fan_input:
ret = nct7904_read_reg16(data, BANK_0,
FANIN1_HV_REG + channel * 2);
if (ret < 0)
return ret;
cnt = ((ret & 0xff00) >> 3) | (ret & 0x1f);
if (cnt == 0 || cnt == 0x1fff)
rpm = 0;
else
rpm = 1350000 / cnt;
*val = rpm;
return 0;
case hwmon_fan_min:
ret = nct7904_read_reg16(data, BANK_1,
FANIN1_HV_HL_REG + channel * 2);
if (ret < 0)
return ret;
cnt = ((ret & 0xff00) >> 3) | (ret & 0x1f);
if (cnt == 0 || cnt == 0x1fff)
rpm = 0;
else
rpm = 1350000 / cnt;
*val = rpm;
return 0;
case hwmon_fan_alarm:
ret = nct7904_read_reg(data, BANK_0,
SMI_STS5_REG + (channel >> 3));
if (ret < 0)
return ret;
if (!data->fan_alarm[channel >> 3])
data->fan_alarm[channel >> 3] = ret & 0xff;
else
/* If there is new alarm showing up */
data->fan_alarm[channel >> 3] |= (ret & 0xff);
*val = (data->fan_alarm[channel >> 3] >> (channel & 0x07)) & 1;
/* Needs to clean the alarm if alarm existing */
if (*val)
data->fan_alarm[channel >> 3] ^= 1 << (channel & 0x07);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t nct7904_fan_is_visible(const void *_data, u32 attr, int channel)
{
const struct nct7904_data *data = _data;
switch (attr) {
case hwmon_fan_input:
case hwmon_fan_alarm:
if (data->fanin_mask & (1 << channel))
return 0444;
break;
case hwmon_fan_min:
if (data->fanin_mask & (1 << channel))
return 0644;
break;
default:
break;
}
return 0;
}
static u8 nct7904_chan_to_index[] = {
0, /* Not used */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
18, 19, 20, 16
};
static int nct7904_read_in(struct device *dev, u32 attr, int channel,
long *val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret, volt, index;
index = nct7904_chan_to_index[channel];
switch (attr) {
case hwmon_in_input:
ret = nct7904_read_reg16(data, BANK_0,
VSEN1_HV_REG + index * 2);
if (ret < 0)
return ret;
volt = ((ret & 0xff00) >> 5) | (ret & 0x7);
if (index < 14)
volt *= 2; /* 0.002V scale */
else
volt *= 6; /* 0.006V scale */
*val = volt;
return 0;
case hwmon_in_min:
ret = nct7904_read_reg16(data, BANK_1,
VSEN1_HV_LL_REG + index * 4);
if (ret < 0)
return ret;
volt = ((ret & 0xff00) >> 5) | (ret & 0x7);
if (index < 14)
volt *= 2; /* 0.002V scale */
else
volt *= 6; /* 0.006V scale */
*val = volt;
return 0;
case hwmon_in_max:
ret = nct7904_read_reg16(data, BANK_1,
VSEN1_HV_HL_REG + index * 4);
if (ret < 0)
return ret;
volt = ((ret & 0xff00) >> 5) | (ret & 0x7);
if (index < 14)
volt *= 2; /* 0.002V scale */
else
volt *= 6; /* 0.006V scale */
*val = volt;
return 0;
case hwmon_in_alarm:
ret = nct7904_read_reg(data, BANK_0,
SMI_STS1_REG + (index >> 3));
if (ret < 0)
return ret;
if (!data->vsen_alarm[index >> 3])
data->vsen_alarm[index >> 3] = ret & 0xff;
else
/* If there is new alarm showing up */
data->vsen_alarm[index >> 3] |= (ret & 0xff);
*val = (data->vsen_alarm[index >> 3] >> (index & 0x07)) & 1;
/* Needs to clean the alarm if alarm existing */
if (*val)
data->vsen_alarm[index >> 3] ^= 1 << (index & 0x07);
return 0;
default:
return -EOPNOTSUPP;
}
}
static umode_t nct7904_in_is_visible(const void *_data, u32 attr, int channel)
{
const struct nct7904_data *data = _data;
int index = nct7904_chan_to_index[channel];
switch (attr) {
case hwmon_in_input:
case hwmon_in_alarm:
if (channel > 0 && (data->vsen_mask & BIT(index)))
return 0444;
break;
case hwmon_in_min:
case hwmon_in_max:
if (channel > 0 && (data->vsen_mask & BIT(index)))
return 0644;
break;
default:
break;
}
return 0;
}
static int nct7904_read_temp(struct device *dev, u32 attr, int channel,
long *val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret, temp;
unsigned int reg1, reg2, reg3;
s8 temps;
switch (attr) {
case hwmon_temp_input:
if (channel == 4)
ret = nct7904_read_reg16(data, BANK_0, LTD_HV_REG);
else if (channel < 5)
ret = nct7904_read_reg16(data, BANK_0,
TEMP_CH1_HV_REG + channel * 4);
else
ret = nct7904_read_reg16(data, BANK_0,
T_CPU1_HV_REG + (channel - 5)
* 2);
if (ret < 0)
return ret;
temp = ((ret & 0xff00) >> 5) | (ret & 0x7);
*val = sign_extend32(temp, 10) * 125;
return 0;
case hwmon_temp_alarm:
if (channel == 4) {
ret = nct7904_read_reg(data, BANK_0,
SMI_STS3_REG);
if (ret < 0)
return ret;
*val = (ret >> 1) & 1;
} else if (channel < 4) {
ret = nct7904_read_reg(data, BANK_0,
SMI_STS1_REG);
if (ret < 0)
return ret;
*val = (ret >> (((channel * 2) + 1) & 0x07)) & 1;
} else {
if ((channel - 5) < 4) {
ret = nct7904_read_reg(data, BANK_0,
SMI_STS7_REG +
((channel - 5) >> 3));
if (ret < 0)
return ret;
*val = (ret >> ((channel - 5) & 0x07)) & 1;
} else {
ret = nct7904_read_reg(data, BANK_0,
SMI_STS8_REG +
((channel - 5) >> 3));
if (ret < 0)
return ret;
*val = (ret >> (((channel - 5) & 0x07) - 4))
& 1;
}
}
return 0;
case hwmon_temp_type:
if (channel < 5) {
if ((data->tcpu_mask >> channel) & 0x01) {
if ((data->temp_mode >> channel) & 0x01)
*val = 3; /* TD */
else
*val = 4; /* TR */
} else {
*val = 0;
}
} else {
if ((data->has_dts >> (channel - 5)) & 0x01) {
if (data->enable_dts & ENABLE_TSI)
*val = 5; /* TSI */
else
*val = 6; /* PECI */
} else {
*val = 0;
}
}
return 0;
case hwmon_temp_max:
reg1 = LTD_HV_LL_REG;
reg2 = TEMP_CH1_W_REG;
reg3 = DTS_T_CPU1_W_REG;
break;
case hwmon_temp_max_hyst:
reg1 = LTD_LV_LL_REG;
reg2 = TEMP_CH1_WH_REG;
reg3 = DTS_T_CPU1_WH_REG;
break;
case hwmon_temp_crit:
reg1 = LTD_HV_HL_REG;
reg2 = TEMP_CH1_C_REG;
reg3 = DTS_T_CPU1_C_REG;
break;
case hwmon_temp_crit_hyst:
reg1 = LTD_LV_HL_REG;
reg2 = TEMP_CH1_CH_REG;
reg3 = DTS_T_CPU1_CH_REG;
break;
default:
return -EOPNOTSUPP;
}
if (channel == 4)
ret = nct7904_read_reg(data, BANK_1, reg1);
else if (channel < 5)
ret = nct7904_read_reg(data, BANK_1,
reg2 + channel * 8);
else
ret = nct7904_read_reg(data, BANK_1,
reg3 + (channel - 5) * 4);
if (ret < 0)
return ret;
temps = ret;
*val = temps * 1000;
return 0;
}
static umode_t nct7904_temp_is_visible(const void *_data, u32 attr, int channel)
{
const struct nct7904_data *data = _data;
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_alarm:
case hwmon_temp_type:
if (channel < 5) {
if (data->tcpu_mask & BIT(channel))
return 0444;
} else {
if (data->has_dts & BIT(channel - 5))
return 0444;
}
break;
case hwmon_temp_max:
case hwmon_temp_max_hyst:
case hwmon_temp_crit:
case hwmon_temp_crit_hyst:
if (channel < 5) {
if (data->tcpu_mask & BIT(channel))
return 0644;
} else {
if (data->has_dts & BIT(channel - 5))
return 0644;
}
break;
default:
break;
}
return 0;
}
static int nct7904_read_pwm(struct device *dev, u32 attr, int channel,
long *val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret;
switch (attr) {
case hwmon_pwm_input:
ret = nct7904_read_reg(data, BANK_3, FANCTL1_OUT_REG + channel);
if (ret < 0)
return ret;
*val = ret;
return 0;
case hwmon_pwm_enable:
ret = nct7904_read_reg(data, BANK_3, FANCTL1_FMR_REG + channel);
if (ret < 0)
return ret;
*val = ret ? 2 : 1;
return 0;
default:
return -EOPNOTSUPP;
}
}
static int nct7904_write_temp(struct device *dev, u32 attr, int channel,
long val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret;
unsigned int reg1, reg2, reg3;
val = clamp_val(val / 1000, -128, 127);
switch (attr) {
case hwmon_temp_max:
reg1 = LTD_HV_LL_REG;
reg2 = TEMP_CH1_W_REG;
reg3 = DTS_T_CPU1_W_REG;
break;
case hwmon_temp_max_hyst:
reg1 = LTD_LV_LL_REG;
reg2 = TEMP_CH1_WH_REG;
reg3 = DTS_T_CPU1_WH_REG;
break;
case hwmon_temp_crit:
reg1 = LTD_HV_HL_REG;
reg2 = TEMP_CH1_C_REG;
reg3 = DTS_T_CPU1_C_REG;
break;
case hwmon_temp_crit_hyst:
reg1 = LTD_LV_HL_REG;
reg2 = TEMP_CH1_CH_REG;
reg3 = DTS_T_CPU1_CH_REG;
break;
default:
return -EOPNOTSUPP;
}
if (channel == 4)
ret = nct7904_write_reg(data, BANK_1, reg1, val);
else if (channel < 5)
ret = nct7904_write_reg(data, BANK_1,
reg2 + channel * 8, val);
else
ret = nct7904_write_reg(data, BANK_1,
reg3 + (channel - 5) * 4, val);
return ret;
}
static int nct7904_write_fan(struct device *dev, u32 attr, int channel,
long val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret;
u8 tmp;
switch (attr) {
case hwmon_fan_min:
if (val <= 0)
return -EINVAL;
val = clamp_val(DIV_ROUND_CLOSEST(1350000, val), 1, 0x1fff);
tmp = (val >> 5) & 0xff;
ret = nct7904_write_reg(data, BANK_1,
FANIN1_HV_HL_REG + channel * 2, tmp);
if (ret < 0)
return ret;
tmp = val & 0x1f;
ret = nct7904_write_reg(data, BANK_1,
FANIN1_LV_HL_REG + channel * 2, tmp);
return ret;
default:
return -EOPNOTSUPP;
}
}
static int nct7904_write_in(struct device *dev, u32 attr, int channel,
long val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret, index, tmp;
index = nct7904_chan_to_index[channel];
if (index < 14)
val = val / 2; /* 0.002V scale */
else
val = val / 6; /* 0.006V scale */
val = clamp_val(val, 0, 0x7ff);
switch (attr) {
case hwmon_in_min:
tmp = nct7904_read_reg(data, BANK_1,
VSEN1_LV_LL_REG + index * 4);
if (tmp < 0)
return tmp;
tmp &= ~0x7;
tmp |= val & 0x7;
ret = nct7904_write_reg(data, BANK_1,
VSEN1_LV_LL_REG + index * 4, tmp);
if (ret < 0)
return ret;
tmp = nct7904_read_reg(data, BANK_1,
VSEN1_HV_LL_REG + index * 4);
if (tmp < 0)
return tmp;
tmp = (val >> 3) & 0xff;
ret = nct7904_write_reg(data, BANK_1,
VSEN1_HV_LL_REG + index * 4, tmp);
return ret;
case hwmon_in_max:
tmp = nct7904_read_reg(data, BANK_1,
VSEN1_LV_HL_REG + index * 4);
if (tmp < 0)
return tmp;
tmp &= ~0x7;
tmp |= val & 0x7;
ret = nct7904_write_reg(data, BANK_1,
VSEN1_LV_HL_REG + index * 4, tmp);
if (ret < 0)
return ret;
tmp = nct7904_read_reg(data, BANK_1,
VSEN1_HV_HL_REG + index * 4);
if (tmp < 0)
return tmp;
tmp = (val >> 3) & 0xff;
ret = nct7904_write_reg(data, BANK_1,
VSEN1_HV_HL_REG + index * 4, tmp);
return ret;
default:
return -EOPNOTSUPP;
}
}
static int nct7904_write_pwm(struct device *dev, u32 attr, int channel,
long val)
{
struct nct7904_data *data = dev_get_drvdata(dev);
int ret;
switch (attr) {
case hwmon_pwm_input:
if (val < 0 || val > 255)
return -EINVAL;
ret = nct7904_write_reg(data, BANK_3, FANCTL1_OUT_REG + channel,
val);
return ret;
case hwmon_pwm_enable:
if (val < 1 || val > 2 ||
(val == 2 && !data->fan_mode[channel]))
return -EINVAL;
ret = nct7904_write_reg(data, BANK_3, FANCTL1_FMR_REG + channel,
val == 2 ? data->fan_mode[channel] : 0);
return ret;
default:
return -EOPNOTSUPP;
}
}
static umode_t nct7904_pwm_is_visible(const void *_data, u32 attr, int channel)
{
switch (attr) {
case hwmon_pwm_input:
case hwmon_pwm_enable:
return 0644;
default:
return 0;
}
}
static int nct7904_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_in:
return nct7904_read_in(dev, attr, channel, val);
case hwmon_fan:
return nct7904_read_fan(dev, attr, channel, val);
case hwmon_pwm:
return nct7904_read_pwm(dev, attr, channel, val);
case hwmon_temp:
return nct7904_read_temp(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static int nct7904_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
switch (type) {
case hwmon_in:
return nct7904_write_in(dev, attr, channel, val);
case hwmon_fan:
return nct7904_write_fan(dev, attr, channel, val);
case hwmon_pwm:
return nct7904_write_pwm(dev, attr, channel, val);
case hwmon_temp:
return nct7904_write_temp(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static umode_t nct7904_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_in:
return nct7904_in_is_visible(data, attr, channel);
case hwmon_fan:
return nct7904_fan_is_visible(data, attr, channel);
case hwmon_pwm:
return nct7904_pwm_is_visible(data, attr, channel);
case hwmon_temp:
return nct7904_temp_is_visible(data, attr, channel);
default:
return 0;
}
}
/* Return 0 if detection is successful, -ENODEV otherwise */
static int nct7904_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
if (!i2c_check_functionality(adapter,
I2C_FUNC_SMBUS_READ_BYTE |
I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
return -ENODEV;
/* Determine the chip type. */
if (i2c_smbus_read_byte_data(client, VENDOR_ID_REG) != NUVOTON_ID ||
i2c_smbus_read_byte_data(client, CHIP_ID_REG) != NCT7904_ID ||
(i2c_smbus_read_byte_data(client, DEVICE_ID_REG) & 0xf0) != 0x50 ||
(i2c_smbus_read_byte_data(client, BANK_SEL_REG) & 0xf8) != 0x00)
return -ENODEV;
strlcpy(info->type, "nct7904", I2C_NAME_SIZE);
return 0;
}
static const struct hwmon_channel_info *nct7904_info[] = {
HWMON_CHANNEL_INFO(in,
/* dummy, skipped in is_visible */
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM),
HWMON_CHANNEL_INFO(fan,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM,
HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM),
HWMON_CHANNEL_INFO(pwm,
HWMON_PWM_INPUT | HWMON_PWM_ENABLE,
HWMON_PWM_INPUT | HWMON_PWM_ENABLE,
HWMON_PWM_INPUT | HWMON_PWM_ENABLE,
HWMON_PWM_INPUT | HWMON_PWM_ENABLE),
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST,
HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT |
HWMON_T_CRIT_HYST),
NULL
};
static const struct hwmon_ops nct7904_hwmon_ops = {
.is_visible = nct7904_is_visible,
.read = nct7904_read,
.write = nct7904_write,
};
static const struct hwmon_chip_info nct7904_chip_info = {
.ops = &nct7904_hwmon_ops,
.info = nct7904_info,
};
/*
* Watchdog Function
*/
static int nct7904_wdt_start(struct watchdog_device *wdt)
{
struct nct7904_data *data = watchdog_get_drvdata(wdt);
/* Enable soft watchdog timer */
return nct7904_write_reg(data, BANK_0, WDT_LOCK_REG, WDT_SOFT_EN);
}
static int nct7904_wdt_stop(struct watchdog_device *wdt)
{
struct nct7904_data *data = watchdog_get_drvdata(wdt);
return nct7904_write_reg(data, BANK_0, WDT_LOCK_REG, WDT_SOFT_DIS);
}
static int nct7904_wdt_set_timeout(struct watchdog_device *wdt,
unsigned int timeout)
{
struct nct7904_data *data = watchdog_get_drvdata(wdt);
/*
* The NCT7904 is very special in watchdog function.
* Its minimum unit is minutes. And wdt->timeout needs
* to match the actual timeout selected. So, this needs
* to be: wdt->timeout = timeout / 60 * 60.
* For example, if the user configures a timeout of
* 119 seconds, the actual timeout will be 60 seconds.
* So, wdt->timeout must then be set to 60 seconds.
*/
wdt->timeout = timeout / 60 * 60;
return nct7904_write_reg(data, BANK_0, WDT_TIMER_REG,
wdt->timeout / 60);
}
static int nct7904_wdt_ping(struct watchdog_device *wdt)
{
/*
* Note:
* NCT7904 does not support refreshing WDT_TIMER_REG register when
* the watchdog is active. Please disable watchdog before feeding
* the watchdog and enable it again.
*/
struct nct7904_data *data = watchdog_get_drvdata(wdt);
int ret;
/* Disable soft watchdog timer */
ret = nct7904_write_reg(data, BANK_0, WDT_LOCK_REG, WDT_SOFT_DIS);
if (ret < 0)
return ret;
/* feed watchdog */
ret = nct7904_write_reg(data, BANK_0, WDT_TIMER_REG, wdt->timeout / 60);
if (ret < 0)
return ret;
/* Enable soft watchdog timer */
return nct7904_write_reg(data, BANK_0, WDT_LOCK_REG, WDT_SOFT_EN);
}
static unsigned int nct7904_wdt_get_timeleft(struct watchdog_device *wdt)
{
struct nct7904_data *data = watchdog_get_drvdata(wdt);
int ret;
ret = nct7904_read_reg(data, BANK_0, WDT_TIMER_REG);
if (ret < 0)
return 0;
return ret * 60;
}
static const struct watchdog_info nct7904_wdt_info = {
.options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING |
WDIOF_MAGICCLOSE,
.identity = "nct7904 watchdog",
};
static const struct watchdog_ops nct7904_wdt_ops = {
.owner = THIS_MODULE,
.start = nct7904_wdt_start,
.stop = nct7904_wdt_stop,
.ping = nct7904_wdt_ping,
.set_timeout = nct7904_wdt_set_timeout,
.get_timeleft = nct7904_wdt_get_timeleft,
};
static int nct7904_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct nct7904_data *data;
struct device *hwmon_dev;
struct device *dev = &client->dev;
int ret, i;
u32 mask;
u8 val, bit;
data = devm_kzalloc(dev, sizeof(struct nct7904_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = client;
mutex_init(&data->bank_lock);
data->bank_sel = -1;
/* Setup sensor groups. */
/* FANIN attributes */
ret = nct7904_read_reg16(data, BANK_0, FANIN_CTRL0_REG);
if (ret < 0)
return ret;
data->fanin_mask = (ret >> 8) | ((ret & 0xff) << 8);
/*
* VSEN attributes
*
* Note: voltage sensors overlap with external temperature
* sensors. So, if we ever decide to support the latter
* we will have to adjust 'vsen_mask' accordingly.
*/
mask = 0;
ret = nct7904_read_reg16(data, BANK_0, VT_ADC_CTRL0_REG);
if (ret >= 0)
mask = (ret >> 8) | ((ret & 0xff) << 8);
ret = nct7904_read_reg(data, BANK_0, VT_ADC_CTRL2_REG);
if (ret >= 0)
mask |= (ret << 16);
data->vsen_mask = mask;
/* CPU_TEMP attributes */
ret = nct7904_read_reg(data, BANK_0, VT_ADC_CTRL0_REG);
if (ret < 0)
return ret;
if ((ret & 0x6) == 0x6)
data->tcpu_mask |= 1; /* TR1 */
if ((ret & 0x18) == 0x18)
data->tcpu_mask |= 2; /* TR2 */
if ((ret & 0x20) == 0x20)
data->tcpu_mask |= 4; /* TR3 */
if ((ret & 0x80) == 0x80)
data->tcpu_mask |= 8; /* TR4 */
/* LTD */
ret = nct7904_read_reg(data, BANK_0, VT_ADC_CTRL2_REG);
if (ret < 0)
return ret;
if ((ret & 0x02) == 0x02)
data->tcpu_mask |= 0x10;
/* Multi-Function detecting for Volt and TR/TD */
ret = nct7904_read_reg(data, BANK_0, VT_ADC_MD_REG);
if (ret < 0)
return ret;
data->temp_mode = 0;
for (i = 0; i < 4; i++) {
val = (ret >> (i * 2)) & 0x03;
bit = (1 << i);
if (val == VOLT_MONITOR_MODE) {
data->tcpu_mask &= ~bit;
} else if (val == THERMAL_DIODE_MODE && i < 2) {
data->temp_mode |= bit;
data->vsen_mask &= ~(0x06 << (i * 2));
} else if (val == THERMISTOR_MODE) {
data->vsen_mask &= ~(0x02 << (i * 2));
} else {
/* Reserved */
data->tcpu_mask &= ~bit;
data->vsen_mask &= ~(0x06 << (i * 2));
}
}
/* PECI */
ret = nct7904_read_reg(data, BANK_2, PFE_REG);
if (ret < 0)
return ret;
if (ret & 0x80) {
data->enable_dts = 1; /* Enable DTS & PECI */
} else {
ret = nct7904_read_reg(data, BANK_2, TSI_CTRL_REG);
if (ret < 0)
return ret;
if (ret & 0x80)
data->enable_dts = 0x3; /* Enable DTS & TSI */
}
/* Check DTS enable status */
if (data->enable_dts) {
ret = nct7904_read_reg(data, BANK_0, DTS_T_CTRL0_REG);
if (ret < 0)
return ret;
data->has_dts = ret & 0xF;
if (data->enable_dts & ENABLE_TSI) {
ret = nct7904_read_reg(data, BANK_0, DTS_T_CTRL1_REG);
if (ret < 0)
return ret;
data->has_dts |= (ret & 0xF) << 4;
}
}
for (i = 0; i < FANCTL_MAX; i++) {
ret = nct7904_read_reg(data, BANK_3, FANCTL1_FMR_REG + i);
if (ret < 0)
return ret;
data->fan_mode[i] = ret;
}
/* Read all of SMI status register to clear alarms */
for (i = 0; i < SMI_STS_MAX; i++) {
ret = nct7904_read_reg(data, BANK_0, SMI_STS1_REG + i);
if (ret < 0)
return ret;
}
hwmon_dev =
devm_hwmon_device_register_with_info(dev, client->name, data,
&nct7904_chip_info, NULL);
ret = PTR_ERR_OR_ZERO(hwmon_dev);
if (ret)
return ret;
/* Watchdog initialization */
data->wdt.ops = &nct7904_wdt_ops;
data->wdt.info = &nct7904_wdt_info;
data->wdt.timeout = WATCHDOG_TIMEOUT * 60; /* Set default timeout */
data->wdt.min_timeout = MIN_TIMEOUT;
data->wdt.max_timeout = MAX_TIMEOUT;
data->wdt.parent = &client->dev;
watchdog_init_timeout(&data->wdt, timeout * 60, &client->dev);
watchdog_set_nowayout(&data->wdt, nowayout);
watchdog_set_drvdata(&data->wdt, data);
watchdog_stop_on_unregister(&data->wdt);
return devm_watchdog_register_device(dev, &data->wdt);
}
static const struct i2c_device_id nct7904_id[] = {
{"nct7904", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, nct7904_id);
static struct i2c_driver nct7904_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "nct7904",
},
.probe = nct7904_probe,
.id_table = nct7904_id,
.detect = nct7904_detect,
.address_list = normal_i2c,
};
module_i2c_driver(nct7904_driver);
MODULE_AUTHOR("Vadim V. Vlasov <vvlasov@dev.rtsoft.ru>");
MODULE_DESCRIPTION("Hwmon driver for NUVOTON NCT7904");
MODULE_LICENSE("GPL");