2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 14:43:54 +08:00
linux-next/drivers/media/dvb-frontends/stv0297.c
Mauro Carvalho Chehab 7e3e68bcfd [media] dvb_frontend: pass the props cache to get_frontend() as arg
Instead of using the DTV properties cache directly, pass the get
frontend data as an argument. For now, everything should remain
the same, but the next patch will prevent get_frontend to
affect the global cache.

This is needed because several drivers don't care enough to only
change the properties if locked. Due to that, calling
G_PROPERTY before locking on those drivers will make them to
never lock. Ok, those drivers are crap and should never be
merged like that, but the core should not rely that the drivers
would be doing the right thing.

Reviewed-by: Michael Ira Krufky <mkrufky@linuxtv.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2016-02-04 16:27:30 -02:00

726 lines
17 KiB
C

/*
Driver for STV0297 demodulator
Copyright (C) 2004 Andrew de Quincey <adq_dvb@lidskialf.net>
Copyright (C) 2003-2004 Dennis Noermann <dennis.noermann@noernet.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/slab.h>
#include "dvb_frontend.h"
#include "stv0297.h"
struct stv0297_state {
struct i2c_adapter *i2c;
const struct stv0297_config *config;
struct dvb_frontend frontend;
unsigned long last_ber;
unsigned long base_freq;
};
#if 1
#define dprintk(x...) printk(x)
#else
#define dprintk(x...)
#endif
#define STV0297_CLOCK_KHZ 28900
static int stv0297_writereg(struct stv0297_state *state, u8 reg, u8 data)
{
int ret;
u8 buf[] = { reg, data };
struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1)
dprintk("%s: writereg error (reg == 0x%02x, val == 0x%02x, "
"ret == %i)\n", __func__, reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static int stv0297_readreg(struct stv0297_state *state, u8 reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = { {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
{.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
};
// this device needs a STOP between the register and data
if (state->config->stop_during_read) {
if ((ret = i2c_transfer(state->i2c, &msg[0], 1)) != 1) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg, ret);
return -1;
}
if ((ret = i2c_transfer(state->i2c, &msg[1], 1)) != 1) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg, ret);
return -1;
}
} else {
if ((ret = i2c_transfer(state->i2c, msg, 2)) != 2) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg, ret);
return -1;
}
}
return b1[0];
}
static int stv0297_writereg_mask(struct stv0297_state *state, u8 reg, u8 mask, u8 data)
{
int val;
val = stv0297_readreg(state, reg);
val &= ~mask;
val |= (data & mask);
stv0297_writereg(state, reg, val);
return 0;
}
static int stv0297_readregs(struct stv0297_state *state, u8 reg1, u8 * b, u8 len)
{
int ret;
struct i2c_msg msg[] = { {.addr = state->config->demod_address,.flags = 0,.buf =
&reg1,.len = 1},
{.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b,.len = len}
};
// this device needs a STOP between the register and data
if (state->config->stop_during_read) {
if ((ret = i2c_transfer(state->i2c, &msg[0], 1)) != 1) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg1, ret);
return -1;
}
if ((ret = i2c_transfer(state->i2c, &msg[1], 1)) != 1) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg1, ret);
return -1;
}
} else {
if ((ret = i2c_transfer(state->i2c, msg, 2)) != 2) {
dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg1, ret);
return -1;
}
}
return 0;
}
static u32 stv0297_get_symbolrate(struct stv0297_state *state)
{
u64 tmp;
tmp = (u64)(stv0297_readreg(state, 0x55)
| (stv0297_readreg(state, 0x56) << 8)
| (stv0297_readreg(state, 0x57) << 16)
| (stv0297_readreg(state, 0x58) << 24));
tmp *= STV0297_CLOCK_KHZ;
tmp >>= 32;
return (u32) tmp;
}
static void stv0297_set_symbolrate(struct stv0297_state *state, u32 srate)
{
long tmp;
tmp = 131072L * srate; /* 131072 = 2^17 */
tmp = tmp / (STV0297_CLOCK_KHZ / 4); /* 1/4 = 2^-2 */
tmp = tmp * 8192L; /* 8192 = 2^13 */
stv0297_writereg(state, 0x55, (unsigned char) (tmp & 0xFF));
stv0297_writereg(state, 0x56, (unsigned char) (tmp >> 8));
stv0297_writereg(state, 0x57, (unsigned char) (tmp >> 16));
stv0297_writereg(state, 0x58, (unsigned char) (tmp >> 24));
}
static void stv0297_set_sweeprate(struct stv0297_state *state, short fshift, long symrate)
{
long tmp;
tmp = (long) fshift *262144L; /* 262144 = 2*18 */
tmp /= symrate;
tmp *= 1024; /* 1024 = 2*10 */
// adjust
if (tmp >= 0) {
tmp += 500000;
} else {
tmp -= 500000;
}
tmp /= 1000000;
stv0297_writereg(state, 0x60, tmp & 0xFF);
stv0297_writereg_mask(state, 0x69, 0xF0, (tmp >> 4) & 0xf0);
}
static void stv0297_set_carrieroffset(struct stv0297_state *state, long offset)
{
long tmp;
/* symrate is hardcoded to 10000 */
tmp = offset * 26844L; /* (2**28)/10000 */
if (tmp < 0)
tmp += 0x10000000;
tmp &= 0x0FFFFFFF;
stv0297_writereg(state, 0x66, (unsigned char) (tmp & 0xFF));
stv0297_writereg(state, 0x67, (unsigned char) (tmp >> 8));
stv0297_writereg(state, 0x68, (unsigned char) (tmp >> 16));
stv0297_writereg_mask(state, 0x69, 0x0F, (tmp >> 24) & 0x0f);
}
/*
static long stv0297_get_carrieroffset(struct stv0297_state *state)
{
s64 tmp;
stv0297_writereg(state, 0x6B, 0x00);
tmp = stv0297_readreg(state, 0x66);
tmp |= (stv0297_readreg(state, 0x67) << 8);
tmp |= (stv0297_readreg(state, 0x68) << 16);
tmp |= (stv0297_readreg(state, 0x69) & 0x0F) << 24;
tmp *= stv0297_get_symbolrate(state);
tmp >>= 28;
return (s32) tmp;
}
*/
static void stv0297_set_initialdemodfreq(struct stv0297_state *state, long freq)
{
s32 tmp;
if (freq > 10000)
freq -= STV0297_CLOCK_KHZ;
tmp = (STV0297_CLOCK_KHZ * 1000) / (1 << 16);
tmp = (freq * 1000) / tmp;
if (tmp > 0xffff)
tmp = 0xffff;
stv0297_writereg_mask(state, 0x25, 0x80, 0x80);
stv0297_writereg(state, 0x21, tmp >> 8);
stv0297_writereg(state, 0x20, tmp);
}
static int stv0297_set_qam(struct stv0297_state *state,
enum fe_modulation modulation)
{
int val = 0;
switch (modulation) {
case QAM_16:
val = 0;
break;
case QAM_32:
val = 1;
break;
case QAM_64:
val = 4;
break;
case QAM_128:
val = 2;
break;
case QAM_256:
val = 3;
break;
default:
return -EINVAL;
}
stv0297_writereg_mask(state, 0x00, 0x70, val << 4);
return 0;
}
static int stv0297_set_inversion(struct stv0297_state *state,
enum fe_spectral_inversion inversion)
{
int val = 0;
switch (inversion) {
case INVERSION_OFF:
val = 0;
break;
case INVERSION_ON:
val = 1;
break;
default:
return -EINVAL;
}
stv0297_writereg_mask(state, 0x83, 0x08, val << 3);
return 0;
}
static int stv0297_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct stv0297_state *state = fe->demodulator_priv;
if (enable) {
stv0297_writereg(state, 0x87, 0x78);
stv0297_writereg(state, 0x86, 0xc8);
}
return 0;
}
static int stv0297_init(struct dvb_frontend *fe)
{
struct stv0297_state *state = fe->demodulator_priv;
int i;
/* load init table */
for (i=0; !(state->config->inittab[i] == 0xff && state->config->inittab[i+1] == 0xff); i+=2)
stv0297_writereg(state, state->config->inittab[i], state->config->inittab[i+1]);
msleep(200);
state->last_ber = 0;
return 0;
}
static int stv0297_sleep(struct dvb_frontend *fe)
{
struct stv0297_state *state = fe->demodulator_priv;
stv0297_writereg_mask(state, 0x80, 1, 1);
return 0;
}
static int stv0297_read_status(struct dvb_frontend *fe,
enum fe_status *status)
{
struct stv0297_state *state = fe->demodulator_priv;
u8 sync = stv0297_readreg(state, 0xDF);
*status = 0;
if (sync & 0x80)
*status |=
FE_HAS_SYNC | FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_LOCK;
return 0;
}
static int stv0297_read_ber(struct dvb_frontend *fe, u32 * ber)
{
struct stv0297_state *state = fe->demodulator_priv;
u8 BER[3];
stv0297_readregs(state, 0xA0, BER, 3);
if (!(BER[0] & 0x80)) {
state->last_ber = BER[2] << 8 | BER[1];
stv0297_writereg_mask(state, 0xA0, 0x80, 0x80);
}
*ber = state->last_ber;
return 0;
}
static int stv0297_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
{
struct stv0297_state *state = fe->demodulator_priv;
u8 STRENGTH[3];
u16 tmp;
stv0297_readregs(state, 0x41, STRENGTH, 3);
tmp = (STRENGTH[1] & 0x03) << 8 | STRENGTH[0];
if (STRENGTH[2] & 0x20) {
if (tmp < 0x200)
tmp = 0;
else
tmp = tmp - 0x200;
} else {
if (tmp > 0x1ff)
tmp = 0;
else
tmp = 0x1ff - tmp;
}
*strength = (tmp << 7) | (tmp >> 2);
return 0;
}
static int stv0297_read_snr(struct dvb_frontend *fe, u16 * snr)
{
struct stv0297_state *state = fe->demodulator_priv;
u8 SNR[2];
stv0297_readregs(state, 0x07, SNR, 2);
*snr = SNR[1] << 8 | SNR[0];
return 0;
}
static int stv0297_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
{
struct stv0297_state *state = fe->demodulator_priv;
stv0297_writereg_mask(state, 0xDF, 0x03, 0x03); /* freeze the counters */
*ucblocks = (stv0297_readreg(state, 0xD5) << 8)
| stv0297_readreg(state, 0xD4);
stv0297_writereg_mask(state, 0xDF, 0x03, 0x02); /* clear the counters */
stv0297_writereg_mask(state, 0xDF, 0x03, 0x01); /* re-enable the counters */
return 0;
}
static int stv0297_set_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct stv0297_state *state = fe->demodulator_priv;
int u_threshold;
int initial_u;
int blind_u;
int delay;
int sweeprate;
int carrieroffset;
unsigned long timeout;
enum fe_spectral_inversion inversion;
switch (p->modulation) {
case QAM_16:
case QAM_32:
case QAM_64:
delay = 100;
sweeprate = 1000;
break;
case QAM_128:
case QAM_256:
delay = 200;
sweeprate = 500;
break;
default:
return -EINVAL;
}
// determine inversion dependent parameters
inversion = p->inversion;
if (state->config->invert)
inversion = (inversion == INVERSION_ON) ? INVERSION_OFF : INVERSION_ON;
carrieroffset = -330;
switch (inversion) {
case INVERSION_OFF:
break;
case INVERSION_ON:
sweeprate = -sweeprate;
carrieroffset = -carrieroffset;
break;
default:
return -EINVAL;
}
stv0297_init(fe);
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
}
/* clear software interrupts */
stv0297_writereg(state, 0x82, 0x0);
/* set initial demodulation frequency */
stv0297_set_initialdemodfreq(state, 7250);
/* setup AGC */
stv0297_writereg_mask(state, 0x43, 0x10, 0x00);
stv0297_writereg(state, 0x41, 0x00);
stv0297_writereg_mask(state, 0x42, 0x03, 0x01);
stv0297_writereg_mask(state, 0x36, 0x60, 0x00);
stv0297_writereg_mask(state, 0x36, 0x18, 0x00);
stv0297_writereg_mask(state, 0x71, 0x80, 0x80);
stv0297_writereg(state, 0x72, 0x00);
stv0297_writereg(state, 0x73, 0x00);
stv0297_writereg_mask(state, 0x74, 0x0F, 0x00);
stv0297_writereg_mask(state, 0x43, 0x08, 0x00);
stv0297_writereg_mask(state, 0x71, 0x80, 0x00);
/* setup STL */
stv0297_writereg_mask(state, 0x5a, 0x20, 0x20);
stv0297_writereg_mask(state, 0x5b, 0x02, 0x02);
stv0297_writereg_mask(state, 0x5b, 0x02, 0x00);
stv0297_writereg_mask(state, 0x5b, 0x01, 0x00);
stv0297_writereg_mask(state, 0x5a, 0x40, 0x40);
/* disable frequency sweep */
stv0297_writereg_mask(state, 0x6a, 0x01, 0x00);
/* reset deinterleaver */
stv0297_writereg_mask(state, 0x81, 0x01, 0x01);
stv0297_writereg_mask(state, 0x81, 0x01, 0x00);
/* ??? */
stv0297_writereg_mask(state, 0x83, 0x20, 0x20);
stv0297_writereg_mask(state, 0x83, 0x20, 0x00);
/* reset equaliser */
u_threshold = stv0297_readreg(state, 0x00) & 0xf;
initial_u = stv0297_readreg(state, 0x01) >> 4;
blind_u = stv0297_readreg(state, 0x01) & 0xf;
stv0297_writereg_mask(state, 0x84, 0x01, 0x01);
stv0297_writereg_mask(state, 0x84, 0x01, 0x00);
stv0297_writereg_mask(state, 0x00, 0x0f, u_threshold);
stv0297_writereg_mask(state, 0x01, 0xf0, initial_u << 4);
stv0297_writereg_mask(state, 0x01, 0x0f, blind_u);
/* data comes from internal A/D */
stv0297_writereg_mask(state, 0x87, 0x80, 0x00);
/* clear phase registers */
stv0297_writereg(state, 0x63, 0x00);
stv0297_writereg(state, 0x64, 0x00);
stv0297_writereg(state, 0x65, 0x00);
stv0297_writereg(state, 0x66, 0x00);
stv0297_writereg(state, 0x67, 0x00);
stv0297_writereg(state, 0x68, 0x00);
stv0297_writereg_mask(state, 0x69, 0x0f, 0x00);
/* set parameters */
stv0297_set_qam(state, p->modulation);
stv0297_set_symbolrate(state, p->symbol_rate / 1000);
stv0297_set_sweeprate(state, sweeprate, p->symbol_rate / 1000);
stv0297_set_carrieroffset(state, carrieroffset);
stv0297_set_inversion(state, inversion);
/* kick off lock */
/* Disable corner detection for higher QAMs */
if (p->modulation == QAM_128 ||
p->modulation == QAM_256)
stv0297_writereg_mask(state, 0x88, 0x08, 0x00);
else
stv0297_writereg_mask(state, 0x88, 0x08, 0x08);
stv0297_writereg_mask(state, 0x5a, 0x20, 0x00);
stv0297_writereg_mask(state, 0x6a, 0x01, 0x01);
stv0297_writereg_mask(state, 0x43, 0x40, 0x40);
stv0297_writereg_mask(state, 0x5b, 0x30, 0x00);
stv0297_writereg_mask(state, 0x03, 0x0c, 0x0c);
stv0297_writereg_mask(state, 0x03, 0x03, 0x03);
stv0297_writereg_mask(state, 0x43, 0x10, 0x10);
/* wait for WGAGC lock */
timeout = jiffies + msecs_to_jiffies(2000);
while (time_before(jiffies, timeout)) {
msleep(10);
if (stv0297_readreg(state, 0x43) & 0x08)
break;
}
if (time_after(jiffies, timeout)) {
goto timeout;
}
msleep(20);
/* wait for equaliser partial convergence */
timeout = jiffies + msecs_to_jiffies(500);
while (time_before(jiffies, timeout)) {
msleep(10);
if (stv0297_readreg(state, 0x82) & 0x04) {
break;
}
}
if (time_after(jiffies, timeout)) {
goto timeout;
}
/* wait for equaliser full convergence */
timeout = jiffies + msecs_to_jiffies(delay);
while (time_before(jiffies, timeout)) {
msleep(10);
if (stv0297_readreg(state, 0x82) & 0x08) {
break;
}
}
if (time_after(jiffies, timeout)) {
goto timeout;
}
/* disable sweep */
stv0297_writereg_mask(state, 0x6a, 1, 0);
stv0297_writereg_mask(state, 0x88, 8, 0);
/* wait for main lock */
timeout = jiffies + msecs_to_jiffies(20);
while (time_before(jiffies, timeout)) {
msleep(10);
if (stv0297_readreg(state, 0xDF) & 0x80) {
break;
}
}
if (time_after(jiffies, timeout)) {
goto timeout;
}
msleep(100);
/* is it still locked after that delay? */
if (!(stv0297_readreg(state, 0xDF) & 0x80)) {
goto timeout;
}
/* success!! */
stv0297_writereg_mask(state, 0x5a, 0x40, 0x00);
state->base_freq = p->frequency;
return 0;
timeout:
stv0297_writereg_mask(state, 0x6a, 0x01, 0x00);
return 0;
}
static int stv0297_get_frontend(struct dvb_frontend *fe,
struct dtv_frontend_properties *p)
{
struct stv0297_state *state = fe->demodulator_priv;
int reg_00, reg_83;
reg_00 = stv0297_readreg(state, 0x00);
reg_83 = stv0297_readreg(state, 0x83);
p->frequency = state->base_freq;
p->inversion = (reg_83 & 0x08) ? INVERSION_ON : INVERSION_OFF;
if (state->config->invert)
p->inversion = (p->inversion == INVERSION_ON) ? INVERSION_OFF : INVERSION_ON;
p->symbol_rate = stv0297_get_symbolrate(state) * 1000;
p->fec_inner = FEC_NONE;
switch ((reg_00 >> 4) & 0x7) {
case 0:
p->modulation = QAM_16;
break;
case 1:
p->modulation = QAM_32;
break;
case 2:
p->modulation = QAM_128;
break;
case 3:
p->modulation = QAM_256;
break;
case 4:
p->modulation = QAM_64;
break;
}
return 0;
}
static void stv0297_release(struct dvb_frontend *fe)
{
struct stv0297_state *state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops stv0297_ops;
struct dvb_frontend *stv0297_attach(const struct stv0297_config *config,
struct i2c_adapter *i2c)
{
struct stv0297_state *state = NULL;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct stv0297_state), GFP_KERNEL);
if (state == NULL)
goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
state->last_ber = 0;
state->base_freq = 0;
/* check if the demod is there */
if ((stv0297_readreg(state, 0x80) & 0x70) != 0x20)
goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &stv0297_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static struct dvb_frontend_ops stv0297_ops = {
.delsys = { SYS_DVBC_ANNEX_A },
.info = {
.name = "ST STV0297 DVB-C",
.frequency_min = 47000000,
.frequency_max = 862000000,
.frequency_stepsize = 62500,
.symbol_rate_min = 870000,
.symbol_rate_max = 11700000,
.caps = FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 |
FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_FEC_AUTO},
.release = stv0297_release,
.init = stv0297_init,
.sleep = stv0297_sleep,
.i2c_gate_ctrl = stv0297_i2c_gate_ctrl,
.set_frontend = stv0297_set_frontend,
.get_frontend = stv0297_get_frontend,
.read_status = stv0297_read_status,
.read_ber = stv0297_read_ber,
.read_signal_strength = stv0297_read_signal_strength,
.read_snr = stv0297_read_snr,
.read_ucblocks = stv0297_read_ucblocks,
};
MODULE_DESCRIPTION("ST STV0297 DVB-C Demodulator driver");
MODULE_AUTHOR("Dennis Noermann and Andrew de Quincey");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(stv0297_attach);