2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 09:03:59 +08:00
linux-next/fs/btrfs/reada.c
Filipe Manana ce7791ffee Btrfs: fix race between readahead and device replace/removal
The list of devices is protected by the device_list_mutex and the device
replace code, in its finishing phase correctly takes that mutex before
removing the source device from that list. However the readahead code was
iterating that list without acquiring the respective mutex leading to
crashes later on due to invalid memory accesses:

[125671.831036] general protection fault: 0000 [#1] PREEMPT SMP
[125671.832129] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq acpi_cpufreq tpm_tis tpm ppdev evdev parport_pc psmouse sg parport
processor ser
[125671.834973] CPU: 10 PID: 19603 Comm: kworker/u32:19 Tainted: G        W       4.6.0-rc7-btrfs-next-29+ #1
[125671.834973] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[125671.834973] Workqueue: btrfs-readahead btrfs_readahead_helper [btrfs]
[125671.834973] task: ffff8801ac520540 ti: ffff8801ac918000 task.ti: ffff8801ac918000
[125671.834973] RIP: 0010:[<ffffffff81270479>]  [<ffffffff81270479>] __radix_tree_lookup+0x6a/0x105
[125671.834973] RSP: 0018:ffff8801ac91bc28  EFLAGS: 00010206
[125671.834973] RAX: 0000000000000000 RBX: 6b6b6b6b6b6b6b6a RCX: 0000000000000000
[125671.834973] RDX: 0000000000000000 RSI: 00000000000c1bff RDI: ffff88002ebd62a8
[125671.834973] RBP: ffff8801ac91bc70 R08: 0000000000000001 R09: 0000000000000000
[125671.834973] R10: ffff8801ac91bc70 R11: 0000000000000000 R12: ffff88002ebd62a8
[125671.834973] R13: 0000000000000000 R14: 0000000000000000 R15: 00000000000c1bff
[125671.834973] FS:  0000000000000000(0000) GS:ffff88023fd40000(0000) knlGS:0000000000000000
[125671.834973] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[125671.834973] CR2: 000000000073cae4 CR3: 00000000b7723000 CR4: 00000000000006e0
[125671.834973] Stack:
[125671.834973]  0000000000000000 ffff8801422d5600 ffff8802286bbc00 0000000000000000
[125671.834973]  0000000000000001 ffff8802286bbc00 00000000000c1bff 0000000000000000
[125671.834973]  ffff88002e639eb8 ffff8801ac91bc80 ffffffff81270541 ffff8801ac91bcb0
[125671.834973] Call Trace:
[125671.834973]  [<ffffffff81270541>] radix_tree_lookup+0xd/0xf
[125671.834973]  [<ffffffffa04ae6a6>] reada_peer_zones_set_lock+0x3e/0x60 [btrfs]
[125671.834973]  [<ffffffffa04ae8b9>] reada_pick_zone+0x29/0x103 [btrfs]
[125671.834973]  [<ffffffffa04af42f>] reada_start_machine_worker+0x129/0x2d3 [btrfs]
[125671.834973]  [<ffffffffa04880be>] btrfs_scrubparity_helper+0x185/0x3aa [btrfs]
[125671.834973]  [<ffffffffa0488341>] btrfs_readahead_helper+0xe/0x10 [btrfs]
[125671.834973]  [<ffffffff81069691>] process_one_work+0x271/0x4e9
[125671.834973]  [<ffffffff81069dda>] worker_thread+0x1eb/0x2c9
[125671.834973]  [<ffffffff81069bef>] ? rescuer_thread+0x2b3/0x2b3
[125671.834973]  [<ffffffff8106f403>] kthread+0xd4/0xdc
[125671.834973]  [<ffffffff8149e242>] ret_from_fork+0x22/0x40
[125671.834973]  [<ffffffff8106f32f>] ? kthread_stop+0x286/0x286

So fix this by taking the device_list_mutex in the readahead code. We
can't use here the lighter approach of using a rcu_read_lock() and
rcu_read_unlock() pair together with a list_for_each_entry_rcu() call
because we end up doing calls to sleeping functions (kzalloc()) in the
respective code path.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-30 12:58:18 +01:00

999 lines
25 KiB
C

/*
* Copyright (C) 2011 STRATO. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "transaction.h"
#include "dev-replace.h"
#undef DEBUG
/*
* This is the implementation for the generic read ahead framework.
*
* To trigger a readahead, btrfs_reada_add must be called. It will start
* a read ahead for the given range [start, end) on tree root. The returned
* handle can either be used to wait on the readahead to finish
* (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
*
* The read ahead works as follows:
* On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
* reada_start_machine will then search for extents to prefetch and trigger
* some reads. When a read finishes for a node, all contained node/leaf
* pointers that lie in the given range will also be enqueued. The reads will
* be triggered in sequential order, thus giving a big win over a naive
* enumeration. It will also make use of multi-device layouts. Each disk
* will have its on read pointer and all disks will by utilized in parallel.
* Also will no two disks read both sides of a mirror simultaneously, as this
* would waste seeking capacity. Instead both disks will read different parts
* of the filesystem.
* Any number of readaheads can be started in parallel. The read order will be
* determined globally, i.e. 2 parallel readaheads will normally finish faster
* than the 2 started one after another.
*/
#define MAX_IN_FLIGHT 6
struct reada_extctl {
struct list_head list;
struct reada_control *rc;
u64 generation;
};
struct reada_extent {
u64 logical;
struct btrfs_key top;
int err;
struct list_head extctl;
int refcnt;
spinlock_t lock;
struct reada_zone *zones[BTRFS_MAX_MIRRORS];
int nzones;
int scheduled;
};
struct reada_zone {
u64 start;
u64 end;
u64 elems;
struct list_head list;
spinlock_t lock;
int locked;
struct btrfs_device *device;
struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
* self */
int ndevs;
struct kref refcnt;
};
struct reada_machine_work {
struct btrfs_work work;
struct btrfs_fs_info *fs_info;
};
static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
static void reada_control_release(struct kref *kref);
static void reada_zone_release(struct kref *kref);
static void reada_start_machine(struct btrfs_fs_info *fs_info);
static void __reada_start_machine(struct btrfs_fs_info *fs_info);
static int reada_add_block(struct reada_control *rc, u64 logical,
struct btrfs_key *top, u64 generation);
/* recurses */
/* in case of err, eb might be NULL */
static void __readahead_hook(struct btrfs_fs_info *fs_info,
struct reada_extent *re, struct extent_buffer *eb,
u64 start, int err)
{
int level = 0;
int nritems;
int i;
u64 bytenr;
u64 generation;
struct list_head list;
if (eb)
level = btrfs_header_level(eb);
spin_lock(&re->lock);
/*
* just take the full list from the extent. afterwards we
* don't need the lock anymore
*/
list_replace_init(&re->extctl, &list);
re->scheduled = 0;
spin_unlock(&re->lock);
/*
* this is the error case, the extent buffer has not been
* read correctly. We won't access anything from it and
* just cleanup our data structures. Effectively this will
* cut the branch below this node from read ahead.
*/
if (err)
goto cleanup;
/*
* FIXME: currently we just set nritems to 0 if this is a leaf,
* effectively ignoring the content. In a next step we could
* trigger more readahead depending from the content, e.g.
* fetch the checksums for the extents in the leaf.
*/
if (!level)
goto cleanup;
nritems = btrfs_header_nritems(eb);
generation = btrfs_header_generation(eb);
for (i = 0; i < nritems; i++) {
struct reada_extctl *rec;
u64 n_gen;
struct btrfs_key key;
struct btrfs_key next_key;
btrfs_node_key_to_cpu(eb, &key, i);
if (i + 1 < nritems)
btrfs_node_key_to_cpu(eb, &next_key, i + 1);
else
next_key = re->top;
bytenr = btrfs_node_blockptr(eb, i);
n_gen = btrfs_node_ptr_generation(eb, i);
list_for_each_entry(rec, &list, list) {
struct reada_control *rc = rec->rc;
/*
* if the generation doesn't match, just ignore this
* extctl. This will probably cut off a branch from
* prefetch. Alternatively one could start a new (sub-)
* prefetch for this branch, starting again from root.
* FIXME: move the generation check out of this loop
*/
#ifdef DEBUG
if (rec->generation != generation) {
btrfs_debug(fs_info,
"generation mismatch for (%llu,%d,%llu) %llu != %llu",
key.objectid, key.type, key.offset,
rec->generation, generation);
}
#endif
if (rec->generation == generation &&
btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
reada_add_block(rc, bytenr, &next_key, n_gen);
}
}
cleanup:
/*
* free extctl records
*/
while (!list_empty(&list)) {
struct reada_control *rc;
struct reada_extctl *rec;
rec = list_first_entry(&list, struct reada_extctl, list);
list_del(&rec->list);
rc = rec->rc;
kfree(rec);
kref_get(&rc->refcnt);
if (atomic_dec_and_test(&rc->elems)) {
kref_put(&rc->refcnt, reada_control_release);
wake_up(&rc->wait);
}
kref_put(&rc->refcnt, reada_control_release);
reada_extent_put(fs_info, re); /* one ref for each entry */
}
return;
}
/*
* start is passed separately in case eb in NULL, which may be the case with
* failed I/O
*/
int btree_readahead_hook(struct btrfs_fs_info *fs_info,
struct extent_buffer *eb, u64 start, int err)
{
int ret = 0;
struct reada_extent *re;
/* find extent */
spin_lock(&fs_info->reada_lock);
re = radix_tree_lookup(&fs_info->reada_tree,
start >> PAGE_SHIFT);
if (re)
re->refcnt++;
spin_unlock(&fs_info->reada_lock);
if (!re) {
ret = -1;
goto start_machine;
}
__readahead_hook(fs_info, re, eb, start, err);
reada_extent_put(fs_info, re); /* our ref */
start_machine:
reada_start_machine(fs_info);
return ret;
}
static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
struct btrfs_device *dev, u64 logical,
struct btrfs_bio *bbio)
{
int ret;
struct reada_zone *zone;
struct btrfs_block_group_cache *cache = NULL;
u64 start;
u64 end;
int i;
zone = NULL;
spin_lock(&fs_info->reada_lock);
ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
logical >> PAGE_SHIFT, 1);
if (ret == 1 && logical >= zone->start && logical <= zone->end) {
kref_get(&zone->refcnt);
spin_unlock(&fs_info->reada_lock);
return zone;
}
spin_unlock(&fs_info->reada_lock);
cache = btrfs_lookup_block_group(fs_info, logical);
if (!cache)
return NULL;
start = cache->key.objectid;
end = start + cache->key.offset - 1;
btrfs_put_block_group(cache);
zone = kzalloc(sizeof(*zone), GFP_KERNEL);
if (!zone)
return NULL;
zone->start = start;
zone->end = end;
INIT_LIST_HEAD(&zone->list);
spin_lock_init(&zone->lock);
zone->locked = 0;
kref_init(&zone->refcnt);
zone->elems = 0;
zone->device = dev; /* our device always sits at index 0 */
for (i = 0; i < bbio->num_stripes; ++i) {
/* bounds have already been checked */
zone->devs[i] = bbio->stripes[i].dev;
}
zone->ndevs = bbio->num_stripes;
spin_lock(&fs_info->reada_lock);
ret = radix_tree_insert(&dev->reada_zones,
(unsigned long)(zone->end >> PAGE_SHIFT),
zone);
if (ret == -EEXIST) {
kfree(zone);
ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
logical >> PAGE_SHIFT, 1);
if (ret == 1 && logical >= zone->start && logical <= zone->end)
kref_get(&zone->refcnt);
else
zone = NULL;
}
spin_unlock(&fs_info->reada_lock);
return zone;
}
static struct reada_extent *reada_find_extent(struct btrfs_root *root,
u64 logical,
struct btrfs_key *top)
{
int ret;
struct reada_extent *re = NULL;
struct reada_extent *re_exist = NULL;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_bio *bbio = NULL;
struct btrfs_device *dev;
struct btrfs_device *prev_dev;
u32 blocksize;
u64 length;
int real_stripes;
int nzones = 0;
unsigned long index = logical >> PAGE_SHIFT;
int dev_replace_is_ongoing;
int have_zone = 0;
spin_lock(&fs_info->reada_lock);
re = radix_tree_lookup(&fs_info->reada_tree, index);
if (re)
re->refcnt++;
spin_unlock(&fs_info->reada_lock);
if (re)
return re;
re = kzalloc(sizeof(*re), GFP_KERNEL);
if (!re)
return NULL;
blocksize = root->nodesize;
re->logical = logical;
re->top = *top;
INIT_LIST_HEAD(&re->extctl);
spin_lock_init(&re->lock);
re->refcnt = 1;
/*
* map block
*/
length = blocksize;
ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
&bbio, 0);
if (ret || !bbio || length < blocksize)
goto error;
if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
btrfs_err(root->fs_info,
"readahead: more than %d copies not supported",
BTRFS_MAX_MIRRORS);
goto error;
}
real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
for (nzones = 0; nzones < real_stripes; ++nzones) {
struct reada_zone *zone;
dev = bbio->stripes[nzones].dev;
/* cannot read ahead on missing device. */
if (!dev->bdev)
continue;
zone = reada_find_zone(fs_info, dev, logical, bbio);
if (!zone)
continue;
re->zones[re->nzones++] = zone;
spin_lock(&zone->lock);
if (!zone->elems)
kref_get(&zone->refcnt);
++zone->elems;
spin_unlock(&zone->lock);
spin_lock(&fs_info->reada_lock);
kref_put(&zone->refcnt, reada_zone_release);
spin_unlock(&fs_info->reada_lock);
}
if (re->nzones == 0) {
/* not a single zone found, error and out */
goto error;
}
/* insert extent in reada_tree + all per-device trees, all or nothing */
btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
spin_lock(&fs_info->reada_lock);
ret = radix_tree_insert(&fs_info->reada_tree, index, re);
if (ret == -EEXIST) {
re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
BUG_ON(!re_exist);
re_exist->refcnt++;
spin_unlock(&fs_info->reada_lock);
btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
goto error;
}
if (ret) {
spin_unlock(&fs_info->reada_lock);
btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
goto error;
}
prev_dev = NULL;
dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
&fs_info->dev_replace);
for (nzones = 0; nzones < re->nzones; ++nzones) {
dev = re->zones[nzones]->device;
if (dev == prev_dev) {
/*
* in case of DUP, just add the first zone. As both
* are on the same device, there's nothing to gain
* from adding both.
* Also, it wouldn't work, as the tree is per device
* and adding would fail with EEXIST
*/
continue;
}
if (!dev->bdev)
continue;
if (dev_replace_is_ongoing &&
dev == fs_info->dev_replace.tgtdev) {
/*
* as this device is selected for reading only as
* a last resort, skip it for read ahead.
*/
continue;
}
prev_dev = dev;
ret = radix_tree_insert(&dev->reada_extents, index, re);
if (ret) {
while (--nzones >= 0) {
dev = re->zones[nzones]->device;
BUG_ON(dev == NULL);
/* ignore whether the entry was inserted */
radix_tree_delete(&dev->reada_extents, index);
}
BUG_ON(fs_info == NULL);
radix_tree_delete(&fs_info->reada_tree, index);
spin_unlock(&fs_info->reada_lock);
btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
goto error;
}
have_zone = 1;
}
spin_unlock(&fs_info->reada_lock);
btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
if (!have_zone)
goto error;
btrfs_put_bbio(bbio);
return re;
error:
for (nzones = 0; nzones < re->nzones; ++nzones) {
struct reada_zone *zone;
zone = re->zones[nzones];
kref_get(&zone->refcnt);
spin_lock(&zone->lock);
--zone->elems;
if (zone->elems == 0) {
/*
* no fs_info->reada_lock needed, as this can't be
* the last ref
*/
kref_put(&zone->refcnt, reada_zone_release);
}
spin_unlock(&zone->lock);
spin_lock(&fs_info->reada_lock);
kref_put(&zone->refcnt, reada_zone_release);
spin_unlock(&fs_info->reada_lock);
}
btrfs_put_bbio(bbio);
kfree(re);
return re_exist;
}
static void reada_extent_put(struct btrfs_fs_info *fs_info,
struct reada_extent *re)
{
int i;
unsigned long index = re->logical >> PAGE_SHIFT;
spin_lock(&fs_info->reada_lock);
if (--re->refcnt) {
spin_unlock(&fs_info->reada_lock);
return;
}
radix_tree_delete(&fs_info->reada_tree, index);
for (i = 0; i < re->nzones; ++i) {
struct reada_zone *zone = re->zones[i];
radix_tree_delete(&zone->device->reada_extents, index);
}
spin_unlock(&fs_info->reada_lock);
for (i = 0; i < re->nzones; ++i) {
struct reada_zone *zone = re->zones[i];
kref_get(&zone->refcnt);
spin_lock(&zone->lock);
--zone->elems;
if (zone->elems == 0) {
/* no fs_info->reada_lock needed, as this can't be
* the last ref */
kref_put(&zone->refcnt, reada_zone_release);
}
spin_unlock(&zone->lock);
spin_lock(&fs_info->reada_lock);
kref_put(&zone->refcnt, reada_zone_release);
spin_unlock(&fs_info->reada_lock);
}
kfree(re);
}
static void reada_zone_release(struct kref *kref)
{
struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
radix_tree_delete(&zone->device->reada_zones,
zone->end >> PAGE_SHIFT);
kfree(zone);
}
static void reada_control_release(struct kref *kref)
{
struct reada_control *rc = container_of(kref, struct reada_control,
refcnt);
kfree(rc);
}
static int reada_add_block(struct reada_control *rc, u64 logical,
struct btrfs_key *top, u64 generation)
{
struct btrfs_root *root = rc->root;
struct reada_extent *re;
struct reada_extctl *rec;
re = reada_find_extent(root, logical, top); /* takes one ref */
if (!re)
return -1;
rec = kzalloc(sizeof(*rec), GFP_KERNEL);
if (!rec) {
reada_extent_put(root->fs_info, re);
return -ENOMEM;
}
rec->rc = rc;
rec->generation = generation;
atomic_inc(&rc->elems);
spin_lock(&re->lock);
list_add_tail(&rec->list, &re->extctl);
spin_unlock(&re->lock);
/* leave the ref on the extent */
return 0;
}
/*
* called with fs_info->reada_lock held
*/
static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
{
int i;
unsigned long index = zone->end >> PAGE_SHIFT;
for (i = 0; i < zone->ndevs; ++i) {
struct reada_zone *peer;
peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
if (peer && peer->device != zone->device)
peer->locked = lock;
}
}
/*
* called with fs_info->reada_lock held
*/
static int reada_pick_zone(struct btrfs_device *dev)
{
struct reada_zone *top_zone = NULL;
struct reada_zone *top_locked_zone = NULL;
u64 top_elems = 0;
u64 top_locked_elems = 0;
unsigned long index = 0;
int ret;
if (dev->reada_curr_zone) {
reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
dev->reada_curr_zone = NULL;
}
/* pick the zone with the most elements */
while (1) {
struct reada_zone *zone;
ret = radix_tree_gang_lookup(&dev->reada_zones,
(void **)&zone, index, 1);
if (ret == 0)
break;
index = (zone->end >> PAGE_SHIFT) + 1;
if (zone->locked) {
if (zone->elems > top_locked_elems) {
top_locked_elems = zone->elems;
top_locked_zone = zone;
}
} else {
if (zone->elems > top_elems) {
top_elems = zone->elems;
top_zone = zone;
}
}
}
if (top_zone)
dev->reada_curr_zone = top_zone;
else if (top_locked_zone)
dev->reada_curr_zone = top_locked_zone;
else
return 0;
dev->reada_next = dev->reada_curr_zone->start;
kref_get(&dev->reada_curr_zone->refcnt);
reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
return 1;
}
static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
struct btrfs_device *dev)
{
struct reada_extent *re = NULL;
int mirror_num = 0;
struct extent_buffer *eb = NULL;
u64 logical;
int ret;
int i;
spin_lock(&fs_info->reada_lock);
if (dev->reada_curr_zone == NULL) {
ret = reada_pick_zone(dev);
if (!ret) {
spin_unlock(&fs_info->reada_lock);
return 0;
}
}
/*
* FIXME currently we issue the reads one extent at a time. If we have
* a contiguous block of extents, we could also coagulate them or use
* plugging to speed things up
*/
ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
dev->reada_next >> PAGE_SHIFT, 1);
if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
ret = reada_pick_zone(dev);
if (!ret) {
spin_unlock(&fs_info->reada_lock);
return 0;
}
re = NULL;
ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
dev->reada_next >> PAGE_SHIFT, 1);
}
if (ret == 0) {
spin_unlock(&fs_info->reada_lock);
return 0;
}
dev->reada_next = re->logical + fs_info->tree_root->nodesize;
re->refcnt++;
spin_unlock(&fs_info->reada_lock);
spin_lock(&re->lock);
if (re->scheduled || list_empty(&re->extctl)) {
spin_unlock(&re->lock);
reada_extent_put(fs_info, re);
return 0;
}
re->scheduled = 1;
spin_unlock(&re->lock);
/*
* find mirror num
*/
for (i = 0; i < re->nzones; ++i) {
if (re->zones[i]->device == dev) {
mirror_num = i + 1;
break;
}
}
logical = re->logical;
atomic_inc(&dev->reada_in_flight);
ret = reada_tree_block_flagged(fs_info->extent_root, logical,
mirror_num, &eb);
if (ret)
__readahead_hook(fs_info, re, NULL, logical, ret);
else if (eb)
__readahead_hook(fs_info, re, eb, eb->start, ret);
if (eb)
free_extent_buffer(eb);
atomic_dec(&dev->reada_in_flight);
reada_extent_put(fs_info, re);
return 1;
}
static void reada_start_machine_worker(struct btrfs_work *work)
{
struct reada_machine_work *rmw;
struct btrfs_fs_info *fs_info;
int old_ioprio;
rmw = container_of(work, struct reada_machine_work, work);
fs_info = rmw->fs_info;
kfree(rmw);
old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
task_nice_ioprio(current));
set_task_ioprio(current, BTRFS_IOPRIO_READA);
__reada_start_machine(fs_info);
set_task_ioprio(current, old_ioprio);
atomic_dec(&fs_info->reada_works_cnt);
}
static void __reada_start_machine(struct btrfs_fs_info *fs_info)
{
struct btrfs_device *device;
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
u64 enqueued;
u64 total = 0;
int i;
do {
enqueued = 0;
mutex_lock(&fs_devices->device_list_mutex);
list_for_each_entry(device, &fs_devices->devices, dev_list) {
if (atomic_read(&device->reada_in_flight) <
MAX_IN_FLIGHT)
enqueued += reada_start_machine_dev(fs_info,
device);
}
mutex_unlock(&fs_devices->device_list_mutex);
total += enqueued;
} while (enqueued && total < 10000);
if (enqueued == 0)
return;
/*
* If everything is already in the cache, this is effectively single
* threaded. To a) not hold the caller for too long and b) to utilize
* more cores, we broke the loop above after 10000 iterations and now
* enqueue to workers to finish it. This will distribute the load to
* the cores.
*/
for (i = 0; i < 2; ++i) {
reada_start_machine(fs_info);
if (atomic_read(&fs_info->reada_works_cnt) >
BTRFS_MAX_MIRRORS * 2)
break;
}
}
static void reada_start_machine(struct btrfs_fs_info *fs_info)
{
struct reada_machine_work *rmw;
rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
if (!rmw) {
/* FIXME we cannot handle this properly right now */
BUG();
}
btrfs_init_work(&rmw->work, btrfs_readahead_helper,
reada_start_machine_worker, NULL, NULL);
rmw->fs_info = fs_info;
btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
atomic_inc(&fs_info->reada_works_cnt);
}
#ifdef DEBUG
static void dump_devs(struct btrfs_fs_info *fs_info, int all)
{
struct btrfs_device *device;
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
unsigned long index;
int ret;
int i;
int j;
int cnt;
spin_lock(&fs_info->reada_lock);
list_for_each_entry(device, &fs_devices->devices, dev_list) {
printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
atomic_read(&device->reada_in_flight));
index = 0;
while (1) {
struct reada_zone *zone;
ret = radix_tree_gang_lookup(&device->reada_zones,
(void **)&zone, index, 1);
if (ret == 0)
break;
printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
"%d devs", zone->start, zone->end, zone->elems,
zone->locked);
for (j = 0; j < zone->ndevs; ++j) {
printk(KERN_CONT " %lld",
zone->devs[j]->devid);
}
if (device->reada_curr_zone == zone)
printk(KERN_CONT " curr off %llu",
device->reada_next - zone->start);
printk(KERN_CONT "\n");
index = (zone->end >> PAGE_SHIFT) + 1;
}
cnt = 0;
index = 0;
while (all) {
struct reada_extent *re = NULL;
ret = radix_tree_gang_lookup(&device->reada_extents,
(void **)&re, index, 1);
if (ret == 0)
break;
printk(KERN_DEBUG
" re: logical %llu size %u empty %d scheduled %d",
re->logical, fs_info->tree_root->nodesize,
list_empty(&re->extctl), re->scheduled);
for (i = 0; i < re->nzones; ++i) {
printk(KERN_CONT " zone %llu-%llu devs",
re->zones[i]->start,
re->zones[i]->end);
for (j = 0; j < re->zones[i]->ndevs; ++j) {
printk(KERN_CONT " %lld",
re->zones[i]->devs[j]->devid);
}
}
printk(KERN_CONT "\n");
index = (re->logical >> PAGE_SHIFT) + 1;
if (++cnt > 15)
break;
}
}
index = 0;
cnt = 0;
while (all) {
struct reada_extent *re = NULL;
ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
index, 1);
if (ret == 0)
break;
if (!re->scheduled) {
index = (re->logical >> PAGE_SHIFT) + 1;
continue;
}
printk(KERN_DEBUG
"re: logical %llu size %u list empty %d scheduled %d",
re->logical, fs_info->tree_root->nodesize,
list_empty(&re->extctl), re->scheduled);
for (i = 0; i < re->nzones; ++i) {
printk(KERN_CONT " zone %llu-%llu devs",
re->zones[i]->start,
re->zones[i]->end);
for (j = 0; j < re->zones[i]->ndevs; ++j) {
printk(KERN_CONT " %lld",
re->zones[i]->devs[j]->devid);
}
}
printk(KERN_CONT "\n");
index = (re->logical >> PAGE_SHIFT) + 1;
}
spin_unlock(&fs_info->reada_lock);
}
#endif
/*
* interface
*/
struct reada_control *btrfs_reada_add(struct btrfs_root *root,
struct btrfs_key *key_start, struct btrfs_key *key_end)
{
struct reada_control *rc;
u64 start;
u64 generation;
int ret;
struct extent_buffer *node;
static struct btrfs_key max_key = {
.objectid = (u64)-1,
.type = (u8)-1,
.offset = (u64)-1
};
rc = kzalloc(sizeof(*rc), GFP_KERNEL);
if (!rc)
return ERR_PTR(-ENOMEM);
rc->root = root;
rc->key_start = *key_start;
rc->key_end = *key_end;
atomic_set(&rc->elems, 0);
init_waitqueue_head(&rc->wait);
kref_init(&rc->refcnt);
kref_get(&rc->refcnt); /* one ref for having elements */
node = btrfs_root_node(root);
start = node->start;
generation = btrfs_header_generation(node);
free_extent_buffer(node);
ret = reada_add_block(rc, start, &max_key, generation);
if (ret) {
kfree(rc);
return ERR_PTR(ret);
}
reada_start_machine(root->fs_info);
return rc;
}
#ifdef DEBUG
int btrfs_reada_wait(void *handle)
{
struct reada_control *rc = handle;
struct btrfs_fs_info *fs_info = rc->root->fs_info;
while (atomic_read(&rc->elems)) {
if (!atomic_read(&fs_info->reada_works_cnt))
reada_start_machine(fs_info);
wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
5 * HZ);
dump_devs(rc->root->fs_info,
atomic_read(&rc->elems) < 10 ? 1 : 0);
}
dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
kref_put(&rc->refcnt, reada_control_release);
return 0;
}
#else
int btrfs_reada_wait(void *handle)
{
struct reada_control *rc = handle;
struct btrfs_fs_info *fs_info = rc->root->fs_info;
while (atomic_read(&rc->elems)) {
if (!atomic_read(&fs_info->reada_works_cnt))
reada_start_machine(fs_info);
wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
(HZ + 9) / 10);
}
kref_put(&rc->refcnt, reada_control_release);
return 0;
}
#endif
void btrfs_reada_detach(void *handle)
{
struct reada_control *rc = handle;
kref_put(&rc->refcnt, reada_control_release);
}