2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 06:34:17 +08:00
linux-next/drivers/net/wireless/ath/dfs_pattern_detector.c
Sriram R f40105e674 ath: add support to get the detected radar specifications
This enables ath10k/ath9k drivers to collect the specifications of the
radar type once it is detected by the dfs pattern detector unit.
Usage of the collected info is specific to driver implementation.
For example, collected radar info could be used by the host driver
to send to co-processors for additional processing/validation.

Note: 'radar_detector_specs' data containing the specifications of
different radar types which was private within dfs_pattern_detector/
dfs_pri_detector is now shared with drivers as well for making use
of this information.

Signed-off-by: Sriram R <srirrama@codeaurora.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2018-05-25 13:15:21 +03:00

377 lines
11 KiB
C

/*
* Copyright (c) 2012 Neratec Solutions AG
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/slab.h>
#include <linux/export.h>
#include "dfs_pattern_detector.h"
#include "dfs_pri_detector.h"
#include "ath.h"
/**
* struct radar_types - contains array of patterns defined for one DFS domain
* @domain: DFS regulatory domain
* @num_radar_types: number of radar types to follow
* @radar_types: radar types array
*/
struct radar_types {
enum nl80211_dfs_regions region;
u32 num_radar_types;
const struct radar_detector_specs *radar_types;
};
/* percentage on ppb threshold to trigger detection */
#define MIN_PPB_THRESH 50
#define PPB_THRESH_RATE(PPB, RATE) ((PPB * RATE + 100 - RATE) / 100)
#define PPB_THRESH(PPB) PPB_THRESH_RATE(PPB, MIN_PPB_THRESH)
#define PRF2PRI(PRF) ((1000000 + PRF / 2) / PRF)
/* percentage of pulse width tolerance */
#define WIDTH_TOLERANCE 5
#define WIDTH_LOWER(X) ((X*(100-WIDTH_TOLERANCE)+50)/100)
#define WIDTH_UPPER(X) ((X*(100+WIDTH_TOLERANCE)+50)/100)
#define ETSI_PATTERN(ID, WMIN, WMAX, PMIN, PMAX, PRF, PPB, CHIRP) \
{ \
ID, WIDTH_LOWER(WMIN), WIDTH_UPPER(WMAX), \
(PRF2PRI(PMAX) - PRI_TOLERANCE), \
(PRF2PRI(PMIN) * PRF + PRI_TOLERANCE), PRF, PPB * PRF, \
PPB_THRESH(PPB), PRI_TOLERANCE, CHIRP \
}
/* radar types as defined by ETSI EN-301-893 v1.5.1 */
static const struct radar_detector_specs etsi_radar_ref_types_v15[] = {
ETSI_PATTERN(0, 0, 1, 700, 700, 1, 18, false),
ETSI_PATTERN(1, 0, 5, 200, 1000, 1, 10, false),
ETSI_PATTERN(2, 0, 15, 200, 1600, 1, 15, false),
ETSI_PATTERN(3, 0, 15, 2300, 4000, 1, 25, false),
ETSI_PATTERN(4, 20, 30, 2000, 4000, 1, 20, false),
ETSI_PATTERN(5, 0, 2, 300, 400, 3, 10, false),
ETSI_PATTERN(6, 0, 2, 400, 1200, 3, 15, false),
};
static const struct radar_types etsi_radar_types_v15 = {
.region = NL80211_DFS_ETSI,
.num_radar_types = ARRAY_SIZE(etsi_radar_ref_types_v15),
.radar_types = etsi_radar_ref_types_v15,
};
#define FCC_PATTERN(ID, WMIN, WMAX, PMIN, PMAX, PRF, PPB, CHIRP) \
{ \
ID, WIDTH_LOWER(WMIN), WIDTH_UPPER(WMAX), \
PMIN - PRI_TOLERANCE, \
PMAX * PRF + PRI_TOLERANCE, PRF, PPB * PRF, \
PPB_THRESH(PPB), PRI_TOLERANCE, CHIRP \
}
/* radar types released on August 14, 2014
* type 1 PRI values randomly selected within the range of 518 and 3066.
* divide it to 3 groups is good enough for both of radar detection and
* avoiding false detection based on practical test results
* collected for more than a year.
*/
static const struct radar_detector_specs fcc_radar_ref_types[] = {
FCC_PATTERN(0, 0, 1, 1428, 1428, 1, 18, false),
FCC_PATTERN(101, 0, 1, 518, 938, 1, 57, false),
FCC_PATTERN(102, 0, 1, 938, 2000, 1, 27, false),
FCC_PATTERN(103, 0, 1, 2000, 3066, 1, 18, false),
FCC_PATTERN(2, 0, 5, 150, 230, 1, 23, false),
FCC_PATTERN(3, 6, 10, 200, 500, 1, 16, false),
FCC_PATTERN(4, 11, 20, 200, 500, 1, 12, false),
FCC_PATTERN(5, 50, 100, 1000, 2000, 1, 1, true),
FCC_PATTERN(6, 0, 1, 333, 333, 1, 9, false),
};
static const struct radar_types fcc_radar_types = {
.region = NL80211_DFS_FCC,
.num_radar_types = ARRAY_SIZE(fcc_radar_ref_types),
.radar_types = fcc_radar_ref_types,
};
#define JP_PATTERN(ID, WMIN, WMAX, PMIN, PMAX, PRF, PPB, RATE, CHIRP) \
{ \
ID, WIDTH_LOWER(WMIN), WIDTH_UPPER(WMAX), \
PMIN - PRI_TOLERANCE, \
PMAX * PRF + PRI_TOLERANCE, PRF, PPB * PRF, \
PPB_THRESH_RATE(PPB, RATE), PRI_TOLERANCE, CHIRP \
}
static const struct radar_detector_specs jp_radar_ref_types[] = {
JP_PATTERN(0, 0, 1, 1428, 1428, 1, 18, 29, false),
JP_PATTERN(1, 2, 3, 3846, 3846, 1, 18, 29, false),
JP_PATTERN(2, 0, 1, 1388, 1388, 1, 18, 50, false),
JP_PATTERN(3, 1, 2, 4000, 4000, 1, 18, 50, false),
JP_PATTERN(4, 0, 5, 150, 230, 1, 23, 50, false),
JP_PATTERN(5, 6, 10, 200, 500, 1, 16, 50, false),
JP_PATTERN(6, 11, 20, 200, 500, 1, 12, 50, false),
JP_PATTERN(7, 50, 100, 1000, 2000, 1, 3, 50, true),
JP_PATTERN(5, 0, 1, 333, 333, 1, 9, 50, false),
};
static const struct radar_types jp_radar_types = {
.region = NL80211_DFS_JP,
.num_radar_types = ARRAY_SIZE(jp_radar_ref_types),
.radar_types = jp_radar_ref_types,
};
static const struct radar_types *dfs_domains[] = {
&etsi_radar_types_v15,
&fcc_radar_types,
&jp_radar_types,
};
/**
* get_dfs_domain_radar_types() - get radar types for a given DFS domain
* @param domain DFS domain
* @return radar_types ptr on success, NULL if DFS domain is not supported
*/
static const struct radar_types *
get_dfs_domain_radar_types(enum nl80211_dfs_regions region)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(dfs_domains); i++) {
if (dfs_domains[i]->region == region)
return dfs_domains[i];
}
return NULL;
}
/**
* struct channel_detector - detector elements for a DFS channel
* @head: list_head
* @freq: frequency for this channel detector in MHz
* @detectors: array of dynamically created detector elements for this freq
*
* Channel detectors are required to provide multi-channel DFS detection, e.g.
* to support off-channel scanning. A pattern detector has a list of channels
* radar pulses have been reported for in the past.
*/
struct channel_detector {
struct list_head head;
u16 freq;
struct pri_detector **detectors;
};
/* channel_detector_reset() - reset detector lines for a given channel */
static void channel_detector_reset(struct dfs_pattern_detector *dpd,
struct channel_detector *cd)
{
u32 i;
if (cd == NULL)
return;
for (i = 0; i < dpd->num_radar_types; i++)
cd->detectors[i]->reset(cd->detectors[i], dpd->last_pulse_ts);
}
/* channel_detector_exit() - destructor */
static void channel_detector_exit(struct dfs_pattern_detector *dpd,
struct channel_detector *cd)
{
u32 i;
if (cd == NULL)
return;
list_del(&cd->head);
for (i = 0; i < dpd->num_radar_types; i++) {
struct pri_detector *de = cd->detectors[i];
if (de != NULL)
de->exit(de);
}
kfree(cd->detectors);
kfree(cd);
}
static struct channel_detector *
channel_detector_create(struct dfs_pattern_detector *dpd, u16 freq)
{
u32 sz, i;
struct channel_detector *cd;
cd = kmalloc(sizeof(*cd), GFP_ATOMIC);
if (cd == NULL)
goto fail;
INIT_LIST_HEAD(&cd->head);
cd->freq = freq;
sz = sizeof(cd->detectors) * dpd->num_radar_types;
cd->detectors = kzalloc(sz, GFP_ATOMIC);
if (cd->detectors == NULL)
goto fail;
for (i = 0; i < dpd->num_radar_types; i++) {
const struct radar_detector_specs *rs = &dpd->radar_spec[i];
struct pri_detector *de = pri_detector_init(rs);
if (de == NULL)
goto fail;
cd->detectors[i] = de;
}
list_add(&cd->head, &dpd->channel_detectors);
return cd;
fail:
ath_dbg(dpd->common, DFS,
"failed to allocate channel_detector for freq=%d\n", freq);
channel_detector_exit(dpd, cd);
return NULL;
}
/**
* channel_detector_get() - get channel detector for given frequency
* @param dpd instance pointer
* @param freq frequency in MHz
* @return pointer to channel detector on success, NULL otherwise
*
* Return existing channel detector for the given frequency or return a
* newly create one.
*/
static struct channel_detector *
channel_detector_get(struct dfs_pattern_detector *dpd, u16 freq)
{
struct channel_detector *cd;
list_for_each_entry(cd, &dpd->channel_detectors, head) {
if (cd->freq == freq)
return cd;
}
return channel_detector_create(dpd, freq);
}
/*
* DFS Pattern Detector
*/
/* dpd_reset(): reset all channel detectors */
static void dpd_reset(struct dfs_pattern_detector *dpd)
{
struct channel_detector *cd;
if (!list_empty(&dpd->channel_detectors))
list_for_each_entry(cd, &dpd->channel_detectors, head)
channel_detector_reset(dpd, cd);
}
static void dpd_exit(struct dfs_pattern_detector *dpd)
{
struct channel_detector *cd, *cd0;
if (!list_empty(&dpd->channel_detectors))
list_for_each_entry_safe(cd, cd0, &dpd->channel_detectors, head)
channel_detector_exit(dpd, cd);
kfree(dpd);
}
static bool
dpd_add_pulse(struct dfs_pattern_detector *dpd, struct pulse_event *event,
struct radar_detector_specs *rs)
{
u32 i;
struct channel_detector *cd;
/*
* pulses received for a non-supported or un-initialized
* domain are treated as detected radars for fail-safety
*/
if (dpd->region == NL80211_DFS_UNSET)
return true;
cd = channel_detector_get(dpd, event->freq);
if (cd == NULL)
return false;
/* reset detector on time stamp wraparound, caused by TSF reset */
if (event->ts < dpd->last_pulse_ts)
dpd_reset(dpd);
dpd->last_pulse_ts = event->ts;
/* do type individual pattern matching */
for (i = 0; i < dpd->num_radar_types; i++) {
struct pri_detector *pd = cd->detectors[i];
struct pri_sequence *ps = pd->add_pulse(pd, event);
if (ps != NULL) {
if (rs != NULL)
memcpy(rs, pd->rs, sizeof(*rs));
ath_dbg(dpd->common, DFS,
"DFS: radar found on freq=%d: id=%d, pri=%d, "
"count=%d, count_false=%d\n",
event->freq, pd->rs->type_id,
ps->pri, ps->count, ps->count_falses);
pd->reset(pd, dpd->last_pulse_ts);
return true;
}
}
return false;
}
static struct ath_dfs_pool_stats
dpd_get_stats(struct dfs_pattern_detector *dpd)
{
return global_dfs_pool_stats;
}
static bool dpd_set_domain(struct dfs_pattern_detector *dpd,
enum nl80211_dfs_regions region)
{
const struct radar_types *rt;
struct channel_detector *cd, *cd0;
if (dpd->region == region)
return true;
dpd->region = NL80211_DFS_UNSET;
rt = get_dfs_domain_radar_types(region);
if (rt == NULL)
return false;
/* delete all channel detectors for previous DFS domain */
if (!list_empty(&dpd->channel_detectors))
list_for_each_entry_safe(cd, cd0, &dpd->channel_detectors, head)
channel_detector_exit(dpd, cd);
dpd->radar_spec = rt->radar_types;
dpd->num_radar_types = rt->num_radar_types;
dpd->region = region;
return true;
}
static const struct dfs_pattern_detector default_dpd = {
.exit = dpd_exit,
.set_dfs_domain = dpd_set_domain,
.add_pulse = dpd_add_pulse,
.get_stats = dpd_get_stats,
.region = NL80211_DFS_UNSET,
};
struct dfs_pattern_detector *
dfs_pattern_detector_init(struct ath_common *common,
enum nl80211_dfs_regions region)
{
struct dfs_pattern_detector *dpd;
if (!IS_ENABLED(CONFIG_CFG80211_CERTIFICATION_ONUS))
return NULL;
dpd = kmalloc(sizeof(*dpd), GFP_KERNEL);
if (dpd == NULL)
return NULL;
*dpd = default_dpd;
INIT_LIST_HEAD(&dpd->channel_detectors);
dpd->common = common;
if (dpd->set_dfs_domain(dpd, region))
return dpd;
ath_dbg(common, DFS,"Could not set DFS domain to %d", region);
kfree(dpd);
return NULL;
}
EXPORT_SYMBOL(dfs_pattern_detector_init);