mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 07:34:08 +08:00
b830ac1d9a
Ben reported a lockup related to rtc. The lockup happens due to: CPU0 CPU1 rtc_irq_set_state() __run_hrtimer() spin_lock_irqsave(&rtc->irq_task_lock) rtc_handle_legacy_irq(); spin_lock(&rtc->irq_task_lock); hrtimer_cancel() while (callback_running); So the running callback never finishes as it's blocked on rtc->irq_task_lock. Use hrtimer_try_to_cancel() instead and drop rtc->irq_task_lock while waiting for the callback. Fix this for both rtc_irq_set_state() and rtc_irq_set_freq(). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reported-by: Ben Greear <greearb@candelatech.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
912 lines
22 KiB
C
912 lines
22 KiB
C
/*
|
|
* RTC subsystem, interface functions
|
|
*
|
|
* Copyright (C) 2005 Tower Technologies
|
|
* Author: Alessandro Zummo <a.zummo@towertech.it>
|
|
*
|
|
* based on arch/arm/common/rtctime.c
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/rtc.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
|
|
static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
|
|
|
|
static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
|
|
{
|
|
int err;
|
|
if (!rtc->ops)
|
|
err = -ENODEV;
|
|
else if (!rtc->ops->read_time)
|
|
err = -EINVAL;
|
|
else {
|
|
memset(tm, 0, sizeof(struct rtc_time));
|
|
err = rtc->ops->read_time(rtc->dev.parent, tm);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
|
|
{
|
|
int err;
|
|
|
|
err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
err = __rtc_read_time(rtc, tm);
|
|
mutex_unlock(&rtc->ops_lock);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_read_time);
|
|
|
|
int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
|
|
{
|
|
int err;
|
|
|
|
err = rtc_valid_tm(tm);
|
|
if (err != 0)
|
|
return err;
|
|
|
|
err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!rtc->ops)
|
|
err = -ENODEV;
|
|
else if (rtc->ops->set_time)
|
|
err = rtc->ops->set_time(rtc->dev.parent, tm);
|
|
else if (rtc->ops->set_mmss) {
|
|
unsigned long secs;
|
|
err = rtc_tm_to_time(tm, &secs);
|
|
if (err == 0)
|
|
err = rtc->ops->set_mmss(rtc->dev.parent, secs);
|
|
} else
|
|
err = -EINVAL;
|
|
|
|
mutex_unlock(&rtc->ops_lock);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_set_time);
|
|
|
|
int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
|
|
{
|
|
int err;
|
|
|
|
err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!rtc->ops)
|
|
err = -ENODEV;
|
|
else if (rtc->ops->set_mmss)
|
|
err = rtc->ops->set_mmss(rtc->dev.parent, secs);
|
|
else if (rtc->ops->read_time && rtc->ops->set_time) {
|
|
struct rtc_time new, old;
|
|
|
|
err = rtc->ops->read_time(rtc->dev.parent, &old);
|
|
if (err == 0) {
|
|
rtc_time_to_tm(secs, &new);
|
|
|
|
/*
|
|
* avoid writing when we're going to change the day of
|
|
* the month. We will retry in the next minute. This
|
|
* basically means that if the RTC must not drift
|
|
* by more than 1 minute in 11 minutes.
|
|
*/
|
|
if (!((old.tm_hour == 23 && old.tm_min == 59) ||
|
|
(new.tm_hour == 23 && new.tm_min == 59)))
|
|
err = rtc->ops->set_time(rtc->dev.parent,
|
|
&new);
|
|
}
|
|
}
|
|
else
|
|
err = -EINVAL;
|
|
|
|
mutex_unlock(&rtc->ops_lock);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_set_mmss);
|
|
|
|
static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
|
{
|
|
int err;
|
|
|
|
err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
if (rtc->ops == NULL)
|
|
err = -ENODEV;
|
|
else if (!rtc->ops->read_alarm)
|
|
err = -EINVAL;
|
|
else {
|
|
memset(alarm, 0, sizeof(struct rtc_wkalrm));
|
|
err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
|
|
}
|
|
|
|
mutex_unlock(&rtc->ops_lock);
|
|
return err;
|
|
}
|
|
|
|
int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
|
{
|
|
int err;
|
|
struct rtc_time before, now;
|
|
int first_time = 1;
|
|
unsigned long t_now, t_alm;
|
|
enum { none, day, month, year } missing = none;
|
|
unsigned days;
|
|
|
|
/* The lower level RTC driver may return -1 in some fields,
|
|
* creating invalid alarm->time values, for reasons like:
|
|
*
|
|
* - The hardware may not be capable of filling them in;
|
|
* many alarms match only on time-of-day fields, not
|
|
* day/month/year calendar data.
|
|
*
|
|
* - Some hardware uses illegal values as "wildcard" match
|
|
* values, which non-Linux firmware (like a BIOS) may try
|
|
* to set up as e.g. "alarm 15 minutes after each hour".
|
|
* Linux uses only oneshot alarms.
|
|
*
|
|
* When we see that here, we deal with it by using values from
|
|
* a current RTC timestamp for any missing (-1) values. The
|
|
* RTC driver prevents "periodic alarm" modes.
|
|
*
|
|
* But this can be racey, because some fields of the RTC timestamp
|
|
* may have wrapped in the interval since we read the RTC alarm,
|
|
* which would lead to us inserting inconsistent values in place
|
|
* of the -1 fields.
|
|
*
|
|
* Reading the alarm and timestamp in the reverse sequence
|
|
* would have the same race condition, and not solve the issue.
|
|
*
|
|
* So, we must first read the RTC timestamp,
|
|
* then read the RTC alarm value,
|
|
* and then read a second RTC timestamp.
|
|
*
|
|
* If any fields of the second timestamp have changed
|
|
* when compared with the first timestamp, then we know
|
|
* our timestamp may be inconsistent with that used by
|
|
* the low-level rtc_read_alarm_internal() function.
|
|
*
|
|
* So, when the two timestamps disagree, we just loop and do
|
|
* the process again to get a fully consistent set of values.
|
|
*
|
|
* This could all instead be done in the lower level driver,
|
|
* but since more than one lower level RTC implementation needs it,
|
|
* then it's probably best best to do it here instead of there..
|
|
*/
|
|
|
|
/* Get the "before" timestamp */
|
|
err = rtc_read_time(rtc, &before);
|
|
if (err < 0)
|
|
return err;
|
|
do {
|
|
if (!first_time)
|
|
memcpy(&before, &now, sizeof(struct rtc_time));
|
|
first_time = 0;
|
|
|
|
/* get the RTC alarm values, which may be incomplete */
|
|
err = rtc_read_alarm_internal(rtc, alarm);
|
|
if (err)
|
|
return err;
|
|
|
|
/* full-function RTCs won't have such missing fields */
|
|
if (rtc_valid_tm(&alarm->time) == 0)
|
|
return 0;
|
|
|
|
/* get the "after" timestamp, to detect wrapped fields */
|
|
err = rtc_read_time(rtc, &now);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* note that tm_sec is a "don't care" value here: */
|
|
} while ( before.tm_min != now.tm_min
|
|
|| before.tm_hour != now.tm_hour
|
|
|| before.tm_mon != now.tm_mon
|
|
|| before.tm_year != now.tm_year);
|
|
|
|
/* Fill in the missing alarm fields using the timestamp; we
|
|
* know there's at least one since alarm->time is invalid.
|
|
*/
|
|
if (alarm->time.tm_sec == -1)
|
|
alarm->time.tm_sec = now.tm_sec;
|
|
if (alarm->time.tm_min == -1)
|
|
alarm->time.tm_min = now.tm_min;
|
|
if (alarm->time.tm_hour == -1)
|
|
alarm->time.tm_hour = now.tm_hour;
|
|
|
|
/* For simplicity, only support date rollover for now */
|
|
if (alarm->time.tm_mday == -1) {
|
|
alarm->time.tm_mday = now.tm_mday;
|
|
missing = day;
|
|
}
|
|
if (alarm->time.tm_mon == -1) {
|
|
alarm->time.tm_mon = now.tm_mon;
|
|
if (missing == none)
|
|
missing = month;
|
|
}
|
|
if (alarm->time.tm_year == -1) {
|
|
alarm->time.tm_year = now.tm_year;
|
|
if (missing == none)
|
|
missing = year;
|
|
}
|
|
|
|
/* with luck, no rollover is needed */
|
|
rtc_tm_to_time(&now, &t_now);
|
|
rtc_tm_to_time(&alarm->time, &t_alm);
|
|
if (t_now < t_alm)
|
|
goto done;
|
|
|
|
switch (missing) {
|
|
|
|
/* 24 hour rollover ... if it's now 10am Monday, an alarm that
|
|
* that will trigger at 5am will do so at 5am Tuesday, which
|
|
* could also be in the next month or year. This is a common
|
|
* case, especially for PCs.
|
|
*/
|
|
case day:
|
|
dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
|
|
t_alm += 24 * 60 * 60;
|
|
rtc_time_to_tm(t_alm, &alarm->time);
|
|
break;
|
|
|
|
/* Month rollover ... if it's the 31th, an alarm on the 3rd will
|
|
* be next month. An alarm matching on the 30th, 29th, or 28th
|
|
* may end up in the month after that! Many newer PCs support
|
|
* this type of alarm.
|
|
*/
|
|
case month:
|
|
dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
|
|
do {
|
|
if (alarm->time.tm_mon < 11)
|
|
alarm->time.tm_mon++;
|
|
else {
|
|
alarm->time.tm_mon = 0;
|
|
alarm->time.tm_year++;
|
|
}
|
|
days = rtc_month_days(alarm->time.tm_mon,
|
|
alarm->time.tm_year);
|
|
} while (days < alarm->time.tm_mday);
|
|
break;
|
|
|
|
/* Year rollover ... easy except for leap years! */
|
|
case year:
|
|
dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
|
|
do {
|
|
alarm->time.tm_year++;
|
|
} while (rtc_valid_tm(&alarm->time) != 0);
|
|
break;
|
|
|
|
default:
|
|
dev_warn(&rtc->dev, "alarm rollover not handled\n");
|
|
}
|
|
|
|
done:
|
|
return 0;
|
|
}
|
|
|
|
int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
|
{
|
|
int err;
|
|
|
|
err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
if (rtc->ops == NULL)
|
|
err = -ENODEV;
|
|
else if (!rtc->ops->read_alarm)
|
|
err = -EINVAL;
|
|
else {
|
|
memset(alarm, 0, sizeof(struct rtc_wkalrm));
|
|
alarm->enabled = rtc->aie_timer.enabled;
|
|
alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
|
|
}
|
|
mutex_unlock(&rtc->ops_lock);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_read_alarm);
|
|
|
|
static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
|
{
|
|
struct rtc_time tm;
|
|
long now, scheduled;
|
|
int err;
|
|
|
|
err = rtc_valid_tm(&alarm->time);
|
|
if (err)
|
|
return err;
|
|
rtc_tm_to_time(&alarm->time, &scheduled);
|
|
|
|
/* Make sure we're not setting alarms in the past */
|
|
err = __rtc_read_time(rtc, &tm);
|
|
rtc_tm_to_time(&tm, &now);
|
|
if (scheduled <= now)
|
|
return -ETIME;
|
|
/*
|
|
* XXX - We just checked to make sure the alarm time is not
|
|
* in the past, but there is still a race window where if
|
|
* the is alarm set for the next second and the second ticks
|
|
* over right here, before we set the alarm.
|
|
*/
|
|
|
|
if (!rtc->ops)
|
|
err = -ENODEV;
|
|
else if (!rtc->ops->set_alarm)
|
|
err = -EINVAL;
|
|
else
|
|
err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
|
|
|
|
return err;
|
|
}
|
|
|
|
int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
|
{
|
|
int err;
|
|
|
|
err = rtc_valid_tm(&alarm->time);
|
|
if (err != 0)
|
|
return err;
|
|
|
|
err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
if (rtc->aie_timer.enabled) {
|
|
rtc_timer_remove(rtc, &rtc->aie_timer);
|
|
}
|
|
rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
|
|
rtc->aie_timer.period = ktime_set(0, 0);
|
|
if (alarm->enabled) {
|
|
err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
|
|
}
|
|
mutex_unlock(&rtc->ops_lock);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_set_alarm);
|
|
|
|
/* Called once per device from rtc_device_register */
|
|
int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
|
{
|
|
int err;
|
|
|
|
err = rtc_valid_tm(&alarm->time);
|
|
if (err != 0)
|
|
return err;
|
|
|
|
err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
|
|
rtc->aie_timer.period = ktime_set(0, 0);
|
|
if (alarm->enabled) {
|
|
rtc->aie_timer.enabled = 1;
|
|
timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
|
|
}
|
|
mutex_unlock(&rtc->ops_lock);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
|
|
|
|
|
|
|
|
int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
|
|
{
|
|
int err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
if (rtc->aie_timer.enabled != enabled) {
|
|
if (enabled)
|
|
err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
|
|
else
|
|
rtc_timer_remove(rtc, &rtc->aie_timer);
|
|
}
|
|
|
|
if (err)
|
|
/* nothing */;
|
|
else if (!rtc->ops)
|
|
err = -ENODEV;
|
|
else if (!rtc->ops->alarm_irq_enable)
|
|
err = -EINVAL;
|
|
else
|
|
err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
|
|
|
|
mutex_unlock(&rtc->ops_lock);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
|
|
|
|
int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
|
|
{
|
|
int err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
|
|
if (enabled == 0 && rtc->uie_irq_active) {
|
|
mutex_unlock(&rtc->ops_lock);
|
|
return rtc_dev_update_irq_enable_emul(rtc, 0);
|
|
}
|
|
#endif
|
|
/* make sure we're changing state */
|
|
if (rtc->uie_rtctimer.enabled == enabled)
|
|
goto out;
|
|
|
|
if (enabled) {
|
|
struct rtc_time tm;
|
|
ktime_t now, onesec;
|
|
|
|
__rtc_read_time(rtc, &tm);
|
|
onesec = ktime_set(1, 0);
|
|
now = rtc_tm_to_ktime(tm);
|
|
rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
|
|
rtc->uie_rtctimer.period = ktime_set(1, 0);
|
|
err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
|
|
} else
|
|
rtc_timer_remove(rtc, &rtc->uie_rtctimer);
|
|
|
|
out:
|
|
mutex_unlock(&rtc->ops_lock);
|
|
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
|
|
/*
|
|
* Enable emulation if the driver did not provide
|
|
* the update_irq_enable function pointer or if returned
|
|
* -EINVAL to signal that it has been configured without
|
|
* interrupts or that are not available at the moment.
|
|
*/
|
|
if (err == -EINVAL)
|
|
err = rtc_dev_update_irq_enable_emul(rtc, enabled);
|
|
#endif
|
|
return err;
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
|
|
|
|
|
|
/**
|
|
* rtc_handle_legacy_irq - AIE, UIE and PIE event hook
|
|
* @rtc: pointer to the rtc device
|
|
*
|
|
* This function is called when an AIE, UIE or PIE mode interrupt
|
|
* has occurred (or been emulated).
|
|
*
|
|
* Triggers the registered irq_task function callback.
|
|
*/
|
|
void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* mark one irq of the appropriate mode */
|
|
spin_lock_irqsave(&rtc->irq_lock, flags);
|
|
rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
|
|
spin_unlock_irqrestore(&rtc->irq_lock, flags);
|
|
|
|
/* call the task func */
|
|
spin_lock_irqsave(&rtc->irq_task_lock, flags);
|
|
if (rtc->irq_task)
|
|
rtc->irq_task->func(rtc->irq_task->private_data);
|
|
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
|
|
|
wake_up_interruptible(&rtc->irq_queue);
|
|
kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
|
|
}
|
|
|
|
|
|
/**
|
|
* rtc_aie_update_irq - AIE mode rtctimer hook
|
|
* @private: pointer to the rtc_device
|
|
*
|
|
* This functions is called when the aie_timer expires.
|
|
*/
|
|
void rtc_aie_update_irq(void *private)
|
|
{
|
|
struct rtc_device *rtc = (struct rtc_device *)private;
|
|
rtc_handle_legacy_irq(rtc, 1, RTC_AF);
|
|
}
|
|
|
|
|
|
/**
|
|
* rtc_uie_update_irq - UIE mode rtctimer hook
|
|
* @private: pointer to the rtc_device
|
|
*
|
|
* This functions is called when the uie_timer expires.
|
|
*/
|
|
void rtc_uie_update_irq(void *private)
|
|
{
|
|
struct rtc_device *rtc = (struct rtc_device *)private;
|
|
rtc_handle_legacy_irq(rtc, 1, RTC_UF);
|
|
}
|
|
|
|
|
|
/**
|
|
* rtc_pie_update_irq - PIE mode hrtimer hook
|
|
* @timer: pointer to the pie mode hrtimer
|
|
*
|
|
* This function is used to emulate PIE mode interrupts
|
|
* using an hrtimer. This function is called when the periodic
|
|
* hrtimer expires.
|
|
*/
|
|
enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
|
|
{
|
|
struct rtc_device *rtc;
|
|
ktime_t period;
|
|
int count;
|
|
rtc = container_of(timer, struct rtc_device, pie_timer);
|
|
|
|
period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
|
|
count = hrtimer_forward_now(timer, period);
|
|
|
|
rtc_handle_legacy_irq(rtc, count, RTC_PF);
|
|
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
/**
|
|
* rtc_update_irq - Triggered when a RTC interrupt occurs.
|
|
* @rtc: the rtc device
|
|
* @num: how many irqs are being reported (usually one)
|
|
* @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
|
|
* Context: any
|
|
*/
|
|
void rtc_update_irq(struct rtc_device *rtc,
|
|
unsigned long num, unsigned long events)
|
|
{
|
|
schedule_work(&rtc->irqwork);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_update_irq);
|
|
|
|
static int __rtc_match(struct device *dev, void *data)
|
|
{
|
|
char *name = (char *)data;
|
|
|
|
if (strcmp(dev_name(dev), name) == 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
struct rtc_device *rtc_class_open(char *name)
|
|
{
|
|
struct device *dev;
|
|
struct rtc_device *rtc = NULL;
|
|
|
|
dev = class_find_device(rtc_class, NULL, name, __rtc_match);
|
|
if (dev)
|
|
rtc = to_rtc_device(dev);
|
|
|
|
if (rtc) {
|
|
if (!try_module_get(rtc->owner)) {
|
|
put_device(dev);
|
|
rtc = NULL;
|
|
}
|
|
}
|
|
|
|
return rtc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_class_open);
|
|
|
|
void rtc_class_close(struct rtc_device *rtc)
|
|
{
|
|
module_put(rtc->owner);
|
|
put_device(&rtc->dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_class_close);
|
|
|
|
int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
|
|
{
|
|
int retval = -EBUSY;
|
|
|
|
if (task == NULL || task->func == NULL)
|
|
return -EINVAL;
|
|
|
|
/* Cannot register while the char dev is in use */
|
|
if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
|
|
return -EBUSY;
|
|
|
|
spin_lock_irq(&rtc->irq_task_lock);
|
|
if (rtc->irq_task == NULL) {
|
|
rtc->irq_task = task;
|
|
retval = 0;
|
|
}
|
|
spin_unlock_irq(&rtc->irq_task_lock);
|
|
|
|
clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_irq_register);
|
|
|
|
void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
|
|
{
|
|
spin_lock_irq(&rtc->irq_task_lock);
|
|
if (rtc->irq_task == task)
|
|
rtc->irq_task = NULL;
|
|
spin_unlock_irq(&rtc->irq_task_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_irq_unregister);
|
|
|
|
static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
|
|
{
|
|
/*
|
|
* We unconditionally cancel the timer here, because otherwise
|
|
* we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
|
|
* when we manage to start the timer before the callback
|
|
* returns HRTIMER_RESTART.
|
|
*
|
|
* We cannot use hrtimer_cancel() here as a running callback
|
|
* could be blocked on rtc->irq_task_lock and hrtimer_cancel()
|
|
* would spin forever.
|
|
*/
|
|
if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
|
|
return -1;
|
|
|
|
if (enabled) {
|
|
ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
|
|
|
|
hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
|
|
* @rtc: the rtc device
|
|
* @task: currently registered with rtc_irq_register()
|
|
* @enabled: true to enable periodic IRQs
|
|
* Context: any
|
|
*
|
|
* Note that rtc_irq_set_freq() should previously have been used to
|
|
* specify the desired frequency of periodic IRQ task->func() callbacks.
|
|
*/
|
|
int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
|
|
{
|
|
int err = 0;
|
|
unsigned long flags;
|
|
|
|
retry:
|
|
spin_lock_irqsave(&rtc->irq_task_lock, flags);
|
|
if (rtc->irq_task != NULL && task == NULL)
|
|
err = -EBUSY;
|
|
if (rtc->irq_task != task)
|
|
err = -EACCES;
|
|
if (!err) {
|
|
if (rtc_update_hrtimer(rtc, enabled) < 0) {
|
|
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
|
cpu_relax();
|
|
goto retry;
|
|
}
|
|
rtc->pie_enabled = enabled;
|
|
}
|
|
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_irq_set_state);
|
|
|
|
/**
|
|
* rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
|
|
* @rtc: the rtc device
|
|
* @task: currently registered with rtc_irq_register()
|
|
* @freq: positive frequency with which task->func() will be called
|
|
* Context: any
|
|
*
|
|
* Note that rtc_irq_set_state() is used to enable or disable the
|
|
* periodic IRQs.
|
|
*/
|
|
int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
|
|
{
|
|
int err = 0;
|
|
unsigned long flags;
|
|
|
|
if (freq <= 0 || freq > 5000)
|
|
return -EINVAL;
|
|
retry:
|
|
spin_lock_irqsave(&rtc->irq_task_lock, flags);
|
|
if (rtc->irq_task != NULL && task == NULL)
|
|
err = -EBUSY;
|
|
if (rtc->irq_task != task)
|
|
err = -EACCES;
|
|
if (!err) {
|
|
rtc->irq_freq = freq;
|
|
if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
|
|
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
|
cpu_relax();
|
|
goto retry;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
|
|
|
|
/**
|
|
* rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
|
|
* @rtc rtc device
|
|
* @timer timer being added.
|
|
*
|
|
* Enqueues a timer onto the rtc devices timerqueue and sets
|
|
* the next alarm event appropriately.
|
|
*
|
|
* Sets the enabled bit on the added timer.
|
|
*
|
|
* Must hold ops_lock for proper serialization of timerqueue
|
|
*/
|
|
static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
|
|
{
|
|
timer->enabled = 1;
|
|
timerqueue_add(&rtc->timerqueue, &timer->node);
|
|
if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
|
|
struct rtc_wkalrm alarm;
|
|
int err;
|
|
alarm.time = rtc_ktime_to_tm(timer->node.expires);
|
|
alarm.enabled = 1;
|
|
err = __rtc_set_alarm(rtc, &alarm);
|
|
if (err == -ETIME)
|
|
schedule_work(&rtc->irqwork);
|
|
else if (err) {
|
|
timerqueue_del(&rtc->timerqueue, &timer->node);
|
|
timer->enabled = 0;
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
|
|
* @rtc rtc device
|
|
* @timer timer being removed.
|
|
*
|
|
* Removes a timer onto the rtc devices timerqueue and sets
|
|
* the next alarm event appropriately.
|
|
*
|
|
* Clears the enabled bit on the removed timer.
|
|
*
|
|
* Must hold ops_lock for proper serialization of timerqueue
|
|
*/
|
|
static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
|
|
{
|
|
struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
|
|
timerqueue_del(&rtc->timerqueue, &timer->node);
|
|
timer->enabled = 0;
|
|
if (next == &timer->node) {
|
|
struct rtc_wkalrm alarm;
|
|
int err;
|
|
next = timerqueue_getnext(&rtc->timerqueue);
|
|
if (!next)
|
|
return;
|
|
alarm.time = rtc_ktime_to_tm(next->expires);
|
|
alarm.enabled = 1;
|
|
err = __rtc_set_alarm(rtc, &alarm);
|
|
if (err == -ETIME)
|
|
schedule_work(&rtc->irqwork);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rtc_timer_do_work - Expires rtc timers
|
|
* @rtc rtc device
|
|
* @timer timer being removed.
|
|
*
|
|
* Expires rtc timers. Reprograms next alarm event if needed.
|
|
* Called via worktask.
|
|
*
|
|
* Serializes access to timerqueue via ops_lock mutex
|
|
*/
|
|
void rtc_timer_do_work(struct work_struct *work)
|
|
{
|
|
struct rtc_timer *timer;
|
|
struct timerqueue_node *next;
|
|
ktime_t now;
|
|
struct rtc_time tm;
|
|
|
|
struct rtc_device *rtc =
|
|
container_of(work, struct rtc_device, irqwork);
|
|
|
|
mutex_lock(&rtc->ops_lock);
|
|
again:
|
|
__rtc_read_time(rtc, &tm);
|
|
now = rtc_tm_to_ktime(tm);
|
|
while ((next = timerqueue_getnext(&rtc->timerqueue))) {
|
|
if (next->expires.tv64 > now.tv64)
|
|
break;
|
|
|
|
/* expire timer */
|
|
timer = container_of(next, struct rtc_timer, node);
|
|
timerqueue_del(&rtc->timerqueue, &timer->node);
|
|
timer->enabled = 0;
|
|
if (timer->task.func)
|
|
timer->task.func(timer->task.private_data);
|
|
|
|
/* Re-add/fwd periodic timers */
|
|
if (ktime_to_ns(timer->period)) {
|
|
timer->node.expires = ktime_add(timer->node.expires,
|
|
timer->period);
|
|
timer->enabled = 1;
|
|
timerqueue_add(&rtc->timerqueue, &timer->node);
|
|
}
|
|
}
|
|
|
|
/* Set next alarm */
|
|
if (next) {
|
|
struct rtc_wkalrm alarm;
|
|
int err;
|
|
alarm.time = rtc_ktime_to_tm(next->expires);
|
|
alarm.enabled = 1;
|
|
err = __rtc_set_alarm(rtc, &alarm);
|
|
if (err == -ETIME)
|
|
goto again;
|
|
}
|
|
|
|
mutex_unlock(&rtc->ops_lock);
|
|
}
|
|
|
|
|
|
/* rtc_timer_init - Initializes an rtc_timer
|
|
* @timer: timer to be intiialized
|
|
* @f: function pointer to be called when timer fires
|
|
* @data: private data passed to function pointer
|
|
*
|
|
* Kernel interface to initializing an rtc_timer.
|
|
*/
|
|
void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
|
|
{
|
|
timerqueue_init(&timer->node);
|
|
timer->enabled = 0;
|
|
timer->task.func = f;
|
|
timer->task.private_data = data;
|
|
}
|
|
|
|
/* rtc_timer_start - Sets an rtc_timer to fire in the future
|
|
* @ rtc: rtc device to be used
|
|
* @ timer: timer being set
|
|
* @ expires: time at which to expire the timer
|
|
* @ period: period that the timer will recur
|
|
*
|
|
* Kernel interface to set an rtc_timer
|
|
*/
|
|
int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
|
|
ktime_t expires, ktime_t period)
|
|
{
|
|
int ret = 0;
|
|
mutex_lock(&rtc->ops_lock);
|
|
if (timer->enabled)
|
|
rtc_timer_remove(rtc, timer);
|
|
|
|
timer->node.expires = expires;
|
|
timer->period = period;
|
|
|
|
ret = rtc_timer_enqueue(rtc, timer);
|
|
|
|
mutex_unlock(&rtc->ops_lock);
|
|
return ret;
|
|
}
|
|
|
|
/* rtc_timer_cancel - Stops an rtc_timer
|
|
* @ rtc: rtc device to be used
|
|
* @ timer: timer being set
|
|
*
|
|
* Kernel interface to cancel an rtc_timer
|
|
*/
|
|
int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
|
|
{
|
|
int ret = 0;
|
|
mutex_lock(&rtc->ops_lock);
|
|
if (timer->enabled)
|
|
rtc_timer_remove(rtc, timer);
|
|
mutex_unlock(&rtc->ops_lock);
|
|
return ret;
|
|
}
|
|
|
|
|